• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Evaluation of second-order Zeeman frequency shift in NTSC-F2*

    2021-07-30 07:36:52JunRuShi施俊如XinLiangWang王心亮YangBai白楊FanYang楊帆YongGuan管勇DanDanLiu劉丹丹JunRuan阮軍andShouGangZhang張首剛
    Chinese Physics B 2021年7期
    關(guān)鍵詞:楊帆丹丹白楊

    Jun-Ru Shi(施俊如) Xin-Liang Wang(王心亮) Yang Bai(白楊) Fan Yang(楊帆)Yong Guan(管勇) Dan-Dan Liu(劉丹丹) Jun Ruan(阮軍) and Shou-Gang Zhang(張首剛)

    1National Time Service Center,Chinese Academy of Sciences,Xi’an 710600,China

    2Key Laboratory of Time and Frequency Primary Standards,Chinese Academy of Sciences,Xi’an 710600,China

    3University of Chinese Academy of Sciences,Beijing 100049,China

    Keywords: caesium atomic fountain clock,second-order Zeeman frequency shift,C-field,magnetic shielding

    1. Introduction

    Caesium atomic fountain clock is a primary frequency standard device which realizes the SI“second”.[1]Several laboratories worldwide are studying atomic fountain clock to improve its performance, which includes the two extremely important parameters,that is,frequency accuracy and frequency stability.[2-8]

    Recently,a new caesium atomic fountain clock NTSC-F2 has just been developed and put into operation at the National Time Service Center (NTSC). To evaluate the frequency uncertainty, it must be corrected for the following several frequency shifts: second-order Zeeman frequency shift,[9]collisional frequency shift,[10]gravitational red frequency shift,[11]black-body radiation frequency shift,[12]and so on. Among these frequency shifts, the second-order Zeeman frequency shift is the dominant frequency correction and its uncertainty largely limits the improvement of frequency accuracy. It is induced by C-field, which is generated deliberately over the atomic flight region to remove the degeneracy of the magnetic sub-states.

    Over the years second-order Zeeman frequency shift has been studied widely with great improvements.[13-16]Several techniques are used to measure the C-field precisely and evaluate this frequency shift,such as magnetically sensitive Ramsey transition,[17]stimulated Raman transition,[18]and slow frequency transition.[19]In order to identify the central fringe of the magnetically sensitive Ramsey pattern, we can compare the measured magnetically sensitive Ramsey pattern with the theoretically predicted one,which is obtained by integrating the measured C-field along the atomic flight trajectory.[14]Another method to identify the central fringe is to measure the central fringe step by step with the atomic launching height increasing.[20]To evaluate the second-order Zeeman frequency shift uncertainty induced by the fluctuation of the Cfield,the interrogating microwave frequency is locked on this central fringe and this central frequency fluctuation is recorded in time domain. At present, the worldwide state-of-theart caesium atomic fountain clocks including PTB-CsF2,[21]NIST-F2,[22]FO2 double fountains at LNE-SYRTE,[23]NPLCsF3,[24]MTsR-F2 at VNIIFTRI[6]have realized the evaluation of second-order Zeeman frequency shift with the uncertainty up to the order of 10-17. This is of great importance to improve the performance of caesium atomic fountain clock.

    The uncertainty of second-order Zeeman frequency shift is dominated by C-field instability and nonuniformity. In this paper, by applying a high-precision current supply to C-field solenoid and high-performance magnetic shieldings,we realize a significant improvement of second-order Zeeman frequency shift uncertainty compared with our first caesium atomic fountain clock NTSC-F1. At the same time, by designing a doubly wound C-field solenoid instead of a singly wound one as in NTSC-F1, we achieve a more uniform Cfield. On the basis of the improved C-field,the first evaluation of second-order Zeeman frequency shift of NTSC-F2 has been performed and is described in the following sections. In traditional magnetically sensitive Ramsey transition method,we construct the C-field profile and obtain the central frequency of the magnetically sensitive Ramsey transition fringe. Meanwhile,by monitoring the variation of this central frequency for ten consecutive days,we obtain the range less than±0.45 Hz.Lastly, we realize the improvement of second-order Zeeman frequency shift and obtain this fractional frequency shift of 131.03×10-15with the uncertainty of 0.10×10-15.

    2. Theoretical study of second-order Zeeman frequency shift

    In C-fieldBin units of T, the frequencies of caesium ground-state hyperfine transition(ΔF=1, ΔmF=0)in units of Hz are given by the Breit-Rabi formula, which are shown(approximate to second order)as follows:[25]

    wheremFis the projection of the angular momentum operatorFalong the C-fieldB,namely magnetic quantum number;νhfs= 9192631770 Hz is the unperturbed caesium groundstate hyperfine transition frequency betweenF=3 andF=4;x=(gJ-gI)μBB/(hνhfs);gJandgIare the electronic and nucleargfactors;μBis Bohr’s magneton;andhis Planck’s constant.

    According to Eq. (1), we obtain the frequencies of the transitions|F= 3,mF= 0〉 →|F= 4,mF= 0〉and|F=3,mF=-1〉→|F=4,mF=-1〉as

    Above all, as long as we find the central fringe of the magnetically sensitive Ramsey transition|F=3,mF=-1〉→|F=4,mF=-1〉experimentally, the evaluation of secondorder Zeeman frequency shift is realized.

    3. C-field profile construction

    During the evaluation of second-order Zeeman frequency shift,the mentioned central frequency of the magnetically sensitive Ramsey transitionF=3,mF=-1〉→|F=4,mF=-1〉is determined by the time integral of the C-field along the atomic flight trajectory:[26]

    whereTis the atomic flight time above Ramsey cavity,B(t)is the C-field atoms experience at timet. In the above approximation,Tis divided intoNparts,Biis the C-field of thei-th part andtiis the corresponding time. Thus,we could use the magnetically sensitive Ramsey transition to measure the C-field by measuring the frequency of the central fringe at a series of discrete positions,as shown in Fig.1.

    Fig.1. The deconvolution model for constructing C-field profile in the Ramsey method.

    Assuming the reference point is right at the top of Ramsey cavity with the heighth=0 cm,and the C-field below the reference point isB0,Zeeman frequency isνz(h)correspondingly. According to Eq.(5)we could calculateB0as

    where the coefficientc=(1/7.0083)nT/Hz.

    As shown in Fig. 1, we suppose the C-field of the 1st,2nd,...,n-th points above the reference point areB1,B2,...,Bn,the corresponding heights areh1,h2,...,hn,and the corresponding Zeeman frequencies areνz(h1),νz(h2),...,νz(hn).The time atoms spend passing from the apogee at each launching height to positions beneath the 1st,2nd,...,n-th points areT1,T2,...,Tn,respectively. Therefore,by a deconvolution of the time-averaged C-field and the atoms’ flight time,[27]we can obtain the C-field of the 1st, 2nd, ...,n-th points above the reference point as follows:

    In this Ramsey method, we could map the C-field precisely using the atoms as a probe.

    4. C-field design

    According to the theoretical calculation in Section 2,we could evaluate the second-order Zeeman frequency shift by measuring the magnetically sensitive frequencyν-1instead ofν0. Here,ν-1is 106times as sensitive to the fluctuation of Cfield asν0. However,because of the C-field’s nonuniformity,the central fringe of the magnetically sensitive Ramsey transition|F=3,mF=-1〉→|F=4,mF=-1〉will deviate from the Rabi pedestal, it is difficult to identify the central fringe from the large amounts of Ramsey fringes to measure the frequencyν-1. Above all,it is of great importance to produce a uniform and stable C-field.

    C-field is composed of three parts, those are, solenoid’s magnetic field, magnetic shieldings’ residual magnetic field and the Earth’s magnetic field (about 105nT). In the NTSCF2 magnetic field system, four cylindrical magnetic shieldings made of JIS C 2531 soft metal (thickness: 2 mm, high magnetic permeability: 1.8×105) are assembled around the solenoid to provide a uniform C-field deliberately over the atomic flight region, they are coaxial with Ramsey cavity.Each magnetic shielding is closed with upper and lower endcaps,and each has a 50 mm diameter hole in the center for the vacuum system. We also place compensation coils at the bottom of magnetic shieldings to guarantee the axial C-field far away from zero,which might induce Majorana transitions[28]In order to increase the selection efficiency, a compensation coil is applied in the lower selection zone to minimize the background magnetic field gradient. Figure 2(a)illustrates the structure of NTSC-F2 magnetic system.

    In order to measure the central axial shielding factor of the assembled magnetic shieldings,[29-31]we wind a horizontal coil around the magnetic shieldings symmetrically. By measuring the central axial magnetic field strength with a fluxgate magnetometer, we obtain the distributions of the axial magnetic field component in different magnetic fields:Bb+,Bb,Ba+,Ba-. The subscripts b and a indicate the measurements are implemented before and after the magnetic shieldings being assembled respectively,+and-indicate the external coil’s current in two different directions. Therefore,applying the shielding factor expression

    we obtain the total central axial shielding factor along the atomic flight trajectory as shown in Fig. 2(b). We can obviously see that the shielding factor in the middle part is at the maximum level of 3×105. Due to the holes at both ends of the magnetic shieldings, the shielding factor gradually attenuates from the middle to its both ends. Compared with the traditional method by measuring the background magnetic field strength straightforwardly,[32]this method has eliminated the measurement error induced by the residual magnetic field of the magnetic shieldings, and is applicable to measure the high-performance magnetic shieldings. At the same time,we use a high-precision current supply (brand: Keithley, model:2614B)for C-field solenoid to achieve a stable C-field.

    Fig.2.Schematic diagrams of NTSC-F2 magnetic system:(a)four concentric cylindrical magnetic shieldings with endcaps, C-field solenoid is placed inside the innermost magnetic shielding, two compensation coils are set at the bottom of magnetic shieldings and in the lower selection zone respectively. (b)Central axial magnetic shielding factor along atomic flight trajectory.

    Traditionally, the C-field solenoid is spirally wound by a single wire from the top to the end as the one installed in NTSC-F1. If the two ends of this wire outgo from each nearby end-caps separately for power in and out,then the hole punched at the bottom end-caps would reduce the C-field uniformity of the crucial atomic flight region (in the lower part)seriously. Thus, we usually lead the bottom end of this wire upward straightly and combine with the top end of this wire,outgoing together from the top end-caps. However,according to the Biot-Savart law with the C-field solenoid parameters,the bottom end of this wire along C-field solenoid sidewall would generate a radial magnetic field on the central axis at about 0.3 nT,which affects the C-field uniformity and orientation to a certain extent,inducing the Ramsey frequency pulling shift.[33]Concerning this issue, we propose a doubly wound C-field solenoid design as shown in Fig. 3, where the double wires are red and black nonmagnetic enameled copper wires separately. Here the double wires spirally wind around the teflon tube from top to bottom, then separate into two single wires and symmetrically go along the sidewall straight up to the top separately. On the top,the two wires combine together again for current in. So the radial magnetic fields generated by two single wires on the central axis cancel each other out to implement a more uniform C-field. It has a total of 97 turns and an input current 1.007 mA. The size parameters of magnetic shieldings and C-field solenoid are listed in Table 1.

    Fig.3. Doubly wound C-field solenoid.

    Table 1. Size parameters for NTSC-F2 magnetic shieldings and C-field solenoid(in millimeters). The four cylindrical magnetic shieldings are numbered as 1,2,3,4 from the innermost to outermost sequentially.

    5. The evaluation of second-order Zeeman frequency shift

    The physical and optical system of NTSC-F2 has been described in Ref. [34] in detail. After launching, the atoms distributed in the 9 sub-levels of stateF=4 fly through Ramsey cavity twice without selection.By scanning the interrogating microwave frequency in step 0.2 Hz(with the microwave field amplitude corresponding to aπ/2 pulse area)and recording the atoms’population in stateF=3 andF=4 respectively,we obtain 7 obvious Ramsey patterns corresponding toσtransitions(ΔmF=0)shown in Fig.4.Because the Ramsey cavity resonant frequency deviates fromνhfs,these transition patterns are not medianly zygomorphic. Meanwhile, the tiny signals corresponding toπtransitions(ΔmF=±1)induced by radial magnetic field are less than 1.7%, we deduce that the C-field is well aligned with the clock central axis.

    Fig. 4. Microwave spectrum in Ramsey cavity (π/2 pulse area) without selection: 7 Ramsey patterns,from left to right corresponding to σ transitions mF =-3,-2,...,3,respectively.

    Because the atoms in states|F=4,mF/=-1〉do not contribute to this magnetically sensitive Ramsey transition signal,it is necessary to perform a state selection process to improve frequency accuracy and stability. By the application of compensation coil in selection zone as mentioned in Section 4,the magnetic field gradient is reduced from the order of 103nT/cm to 102nT/cm, which eases the selection of atoms in state|F=3,mF=-1〉. Based on the optimized magnetic field in the selection zone,we scan the selecting microwave frequency and obtain the selecting microwave frequency between states|F=4,mF=-1〉and|F=3,mF=-1〉as 9192435142 Hz.By setting the selecting microwave frequency to this value,we realize the selection of atoms in state|F=3,mF=-1〉.

    Fig. 5. The magnetically sensitive Ramsey transition |F = 3,mF =-1〉→|F =4,mF =-1〉fringes of the first five launching heights and the corresponding heights are marked on the right. The arrow marks the central frequency at each height.

    Substituting the structural parameters of NTSC-F2, we obtain the detuning frequency as Δν0=2.30 MHz when the atoms’ launching height ish0= 0 cm above the reference point. By slowly increasing the detuning frequency Δνifrom 2.30 MHz to 2.86 MHz with 0.02 MHz increment (correspondingn=28), we observe the number of Ramsey fringes increase and record the movement of central Ramsey fringe.When the launching height is low, the central frequency differences between the central Ramsey fringe and its adjacent Ramsey fringes are much larger (about 10 Hz) than the central Ramsey fringe frequency increment, so it is easy to distinguish which Ramsey fringe is central. Figure 5 shows the magnetically sensitive Ramsey transition|F= 3,mF=-1〉→|F=4,mF=-1〉fringes of the first five launching heights (h0,h1,h2,h3andh4), and each central frequency at the corresponding launching height is marked with an arrow. In these five signals, the square marked curve corresponds to the launching height ash0= 0 cm. Because of the nonuniformity of the microwave magnetic field of TE011mode in Ramsey cavity, there is an obvious Ramsey fringe with a tiny transition signal on its right side. This obvious fringe is exactly the central Ramsey fringe with the central frequency asν-1(h0)=9192630591.0 Hz and Zeeman frequency asνz(h0)=νhfs-ν-1(h0)=1179.0 Hz. The triangular marked curve corresponds to the detuning frequency as Δν1= 2.32 MHz, by comparing the Ramsey fringes of the first two heights, we find the central Ramsey fringe moving towards the right and the central frequencyν-1(h1)increasing by 0.6 Hz,i.e.,ν-1(h1)=9192630591.6 Hz. Meanwhile,the tiny transition signal becomes stronger. The dot-marked curve corresponds to the detuning frequency as Δν2=2.34 MHz.The number of Ramsey fringes increases to three and the central frequencyν-1(h2)increases to 9192630593.0 Hz. In the same method, we also find the central Ramsey fringes of the next two launching heights.

    Above all, we obtain the relation between launching heighthiand detuning frequency Δνias follows:

    where the local gravitational acceleration isg=9.79666 m/s2.[35]

    Increasing the launching height up to the point 32 cm above the reference point and repeating the above measurement, we obtain the central Ramsey fringes and Zeeman frequencyνz(h)of the magnetically sensitive Ramsey transition|F=3,mF=-1〉→|F=4,mF=-1〉as a function ofh,as the dot-marked curve shown in Fig. 6. At the same time,we record the central frequencies of the two adjacent fringes,and obtain the variation of the two corresponding Zeeman frequencies as the square and triangle marked curves shown in Fig. 6. It obviously confirms that the frequency differences among these three curves are much larger than Zeeman frequency shift,which eases the identification of the central Ramsey fringe. With the increase of launching height, the two adjacent fringes gradually move towards the central Ramsey fringe.

    Fig.6.NTSC-F2 three central Zeeman frequency variations of the magnetically sensitive Ramsey transition|F=3,mF =-1〉→|F=4,mF =-1〉with the launching height increasing.

    From Fig. 6, we typically measure the central frequency asν-1(32 cm)=9192630593.6 Hz and Zeeman frequency asνz(32 cm)=1176.4 Hz during NTSC-F2 normal operation.Figure 7 shows the corresponding complete magnetically sensitive Ramsey transition|F=3,mF=-1〉→|F=4,mF=-1〉fringes and the arrow marks the central frequency.

    With the C-field slowly drifting, the central fringe of the magnetically sensitive Ramsey transition may lose identity.After the above measurement,ν-1(32 cm)is immediately input to the control system as the initial estimate to identify and lock on this central fringe. Thus we have a good record of the central frequencyν-1fluctuation every four seconds over a ten-day-interval during NTSC-F2 normal operation continuously and obtain the result shown in Fig.8,in which the black dots indicate the average of central frequencies in every interval and error bars mean the variation ranges of central frequency.

    Fig. 7. NTSC-F2 |F = 3,mF = -1〉 →|F = 4,mF = -1〉 Ramsey fringes during normal operation.

    Fig.8. Temporal variation of central frequency ν-1 (32 cm)in NTSC-F2.

    Combining Eq.(4)and noting that the Zeeman frequency mean value isνz=1176.47 Hz with the temporal variation range ofδνz(32 cm) =±0.45 Hz, we obtain the relative second-order Zeeman frequency shift during NTSC-F2 normal operation as

    with the uncertainty arising from the instability and nonuniformity of C-field as[36]

    In the evaluation of second-order Zeeman frequency shift we use an approximation〈B2〉=〈B〉2. Considering the Cfield nonuniformity along the atomic flight trajectory,〈B2〉=〈B〉2+σ2and the C-field standard deviation isσ, which describes the nonuniformity of C-field. After performing a correction to Eq.(4),the relative uncertainty of second-order Zeeman frequency shift arising from calculation approximation is expressed as[15]

    In order to evaluate this contribution,we need to measure the C-field along the atomic flight trajectory. As mentioned in Section 3,the central Ramsey fringe in Fig.6 gives the information of time-integrated C-field.By deconvoluting,we could construct the actual C-field profile. When the atoms launching height ishi,the timeTj(j=1,2,...,i)atoms spend from the apogee to its lower nextj-th point as shown in Fig.1 could be expressed as

    Substituting Eq. (14) and the above measured Zeeman frequencyνz(hi)into Eq.(8),we obtain the time-averaged Cfield along the atomic flight trajectory as shown in Fig.9. We can clearly see a bump near the Ramsey cavity, which may be attributed to two reasons: the effect of Ramsey cavity’s vacuum feedthroughs with high permeability and the effect of magnetic field leakage from the magnetic shieldings’end-caps holes. The data tells us that the C-field variation range is less than 0.5 nT within 30 cm. When the atoms are launched to the maximum height, 32 cm above the reference point, the standard deviation of the C-fieldσis 0.15 nT, less than 0.1% of the C-field mean value〈B〉= 167.85 nT. As a result, from Eq.(13)the relative uncertainty of second-order Zeeman frequency shift arising from calculation approximation is

    Fig.9. The C-field profile of NTSC-F2.

    The C-field fluctuation induces fluctuation of clock transitionF=3,mF=0→F=4,mF=0 frequency during NTSCF2 normal operation. The corresponding Allan deviation of clock transition frequency is shown in Fig. 10. These data tell us that the NTSC-F2 fractional frequency stability is better than 2.6×10-17.

    Fig. 10. C-field instability induced total deviation of the frequency fluctuation on the clock transition F =3,mF =0 →F =4,mF =0 in NTSCF2. These data are obtained by measuring and translating the transition|F=3,mF =-1〉→|F=4,mF =-1〉frequency fluctuation into frequency shift on the clock transition.

    Above all, the total relative uncertainty of second-order Zeeman frequency shift is 0.10×10-15. Comparing with NTSC-F1, the C-field nonuniformity and second-order Zeeman frequency shift uncertainty in NTSC-F2 are improved significantly[9]as listed in Table 2, which proves that this C-field design contribution to NTSC-F2 final performance is great.

    Table 2. The improvement of C-field nonuniformity and secondorder Zeeman frequency shift uncertainty in NTSC-F2,compared with NTSC-F1.

    Comparing the second-order Zeeman frequency shift uncertainty of NTSC-F2 with the worldwide state-of-the-art caesium atomic fountain clocks,which are on the order of 10-17,it is still too big to be neglected. According to Eq. (12), this gap is mainly attributed to the instability and magnitude of solenoid current, and consequently the C-field as well. Next,we plan to reduce the solenoid current and design a C-field dual servo system[13,22,37,38]to improve the C-field stability and to reduce the fractional uncertainty to the order of 10-17,which is realized by monitoring the C-field variation in slow frequency transition method and modulating the C-field solenoid’s input current in real time.

    6. Conclusion

    Second-order Zeeman frequency shift is a frequency bias induced by C-field, which limits the accuracy improvement of caesium atomic frequency standard. Concerning that NTSC-F1 C-field is not uniform and stable enough, we propose a doubly wound C-field solenoid. Also, by applying a high-precision current supply and high-performance magnetic shieldings, we obtain an improved C-field. Meanwhile,based on the improved magnetic field in selection zone, we perform a state selection process to obtain the atoms in magnetically sensitive state|F=3,mF=-1〉. Then we evaluate the second-order Zeeman frequency shift of NTSC-F2 for the first time in magnetically sensitive Ramsey transition method and construct a uniform C-field profile along the atomic flight trajectory. Subjected to the solenoid current instability, the second-order Zeeman frequency shift needs further improvement.Next we will reduce the solenoid current and design a Cfield dual servo system to improve the C-field stability,which could further reduce this uncertainty contribution to secondorder Zeeman frequency shift uncertainty and clock frequency stability.

    猜你喜歡
    楊帆丹丹白楊
    Band structures of strained kagome lattices
    Effect of short-term plasticity on working memory
    白楊
    相距多少米
    高中數(shù)學(xué)之美
    白楊
    劫后華夏再楊帆(弋陽腔)
    影劇新作(2020年2期)2020-09-23 03:22:12
    林丹丹
    海峽姐妹(2020年1期)2020-03-03 13:36:06
    A brief introduction to the English Suffix—ive
    我是一棵深秋的白楊
    中國火炬(2015年11期)2015-07-31 17:28:58
    国产免费一级a男人的天堂| 人人妻,人人澡人人爽秒播| 日韩精品青青久久久久久| 国产男靠女视频免费网站| 久久欧美精品欧美久久欧美| 一级黄色大片毛片| 黄色日韩在线| 一级黄色大片毛片| 欧美日韩一区二区视频在线观看视频在线 | 亚洲无线观看免费| 日日摸夜夜添夜夜添小说| 亚洲丝袜综合中文字幕| 欧美日本视频| 亚洲欧美日韩东京热| 成年版毛片免费区| 亚洲国产高清在线一区二区三| av在线蜜桃| 人人妻,人人澡人人爽秒播| 欧美bdsm另类| 国产精品,欧美在线| 国产精品日韩av在线免费观看| 一夜夜www| 亚洲精品国产av成人精品 | 97超视频在线观看视频| 99久久中文字幕三级久久日本| av免费在线看不卡| 国产精品久久久久久亚洲av鲁大| 亚洲乱码一区二区免费版| 成人国产麻豆网| 色综合亚洲欧美另类图片| 亚洲欧美日韩卡通动漫| 在线播放国产精品三级| 夜夜看夜夜爽夜夜摸| www.色视频.com| 国产精品久久久久久av不卡| 亚洲精品乱码久久久v下载方式| 一个人看视频在线观看www免费| 自拍偷自拍亚洲精品老妇| 亚洲精品国产成人久久av| 国产真实乱freesex| 久久久久久久亚洲中文字幕| 国产老妇女一区| 欧美bdsm另类| 久久午夜福利片| 成年av动漫网址| 大香蕉久久网| 我的女老师完整版在线观看| 久久久久九九精品影院| 日韩欧美国产在线观看| 我的老师免费观看完整版| 在线免费观看的www视频| 亚洲精品国产av成人精品 | 成年女人永久免费观看视频| 97超级碰碰碰精品色视频在线观看| 国产精品人妻久久久久久| 日韩人妻高清精品专区| 色哟哟·www| 亚洲国产精品成人久久小说 | 91久久精品电影网| 九色成人免费人妻av| 国产亚洲精品久久久com| 国产色爽女视频免费观看| 欧美日韩综合久久久久久| 国产成人91sexporn| 午夜福利在线观看吧| 精品99又大又爽又粗少妇毛片| 黄色一级大片看看| 久久这里只有精品中国| 午夜精品在线福利| 日日摸夜夜添夜夜添小说| 日韩人妻高清精品专区| 91久久精品国产一区二区三区| 国产精品美女特级片免费视频播放器| 看片在线看免费视频| 日韩一本色道免费dvd| 欧美一区二区国产精品久久精品| 干丝袜人妻中文字幕| 欧美+日韩+精品| 精品人妻视频免费看| а√天堂www在线а√下载| 国产v大片淫在线免费观看| 欧美最新免费一区二区三区| avwww免费| 六月丁香七月| 国产欧美日韩精品一区二区| 欧美+亚洲+日韩+国产| 亚洲最大成人av| 日本黄色片子视频| 白带黄色成豆腐渣| 五月玫瑰六月丁香| 麻豆乱淫一区二区| 成年版毛片免费区| АⅤ资源中文在线天堂| 免费看av在线观看网站| 国产精品99久久久久久久久| 3wmmmm亚洲av在线观看| 日本一二三区视频观看| 久久久久久久久中文| 最好的美女福利视频网| 99久久无色码亚洲精品果冻| 男女那种视频在线观看| 嫩草影视91久久| 嫩草影院精品99| 久久久国产成人精品二区| 久久鲁丝午夜福利片| 日本 av在线| 国模一区二区三区四区视频| 中文字幕久久专区| 亚洲激情五月婷婷啪啪| 亚洲国产精品成人综合色| 级片在线观看| 午夜福利高清视频| 乱人视频在线观看| 直男gayav资源| 99视频精品全部免费 在线| 在线免费观看的www视频| 成人av在线播放网站| 人人妻人人看人人澡| 国产午夜精品久久久久久一区二区三区 | 欧美xxxx性猛交bbbb| 亚洲国产日韩欧美精品在线观看| 国产伦精品一区二区三区视频9| 性色avwww在线观看| 中文字幕久久专区| 亚洲精品在线观看二区| 久久久久国内视频| 欧美日本视频| 日日撸夜夜添| 国产人妻一区二区三区在| 中国美白少妇内射xxxbb| 日本色播在线视频| 久久久色成人| 亚洲最大成人中文| 欧美精品国产亚洲| 如何舔出高潮| 成人特级黄色片久久久久久久| 久久人人爽人人爽人人片va| 一级av片app| 成年版毛片免费区| 国产一区二区亚洲精品在线观看| 老司机午夜福利在线观看视频| 国语自产精品视频在线第100页| 高清日韩中文字幕在线| 联通29元200g的流量卡| 日韩精品青青久久久久久| а√天堂www在线а√下载| 精品久久久久久久久久久久久| 永久网站在线| 超碰av人人做人人爽久久| 九九爱精品视频在线观看| 国产一级毛片七仙女欲春2| 久久久久久国产a免费观看| 99热这里只有是精品在线观看| 又黄又爽又免费观看的视频| АⅤ资源中文在线天堂| 国产单亲对白刺激| 亚洲一区二区三区色噜噜| 乱人视频在线观看| 国产aⅴ精品一区二区三区波| 国内少妇人妻偷人精品xxx网站| 免费大片18禁| 亚洲在线观看片| 人妻夜夜爽99麻豆av| 偷拍熟女少妇极品色| 亚洲图色成人| 神马国产精品三级电影在线观看| 欧美成人一区二区免费高清观看| 91在线观看av| 草草在线视频免费看| 1024手机看黄色片| 婷婷亚洲欧美| 久久久久久久午夜电影| 级片在线观看| 欧美日韩在线观看h| 中国美女看黄片| 国产探花在线观看一区二区| 一a级毛片在线观看| 免费观看的影片在线观看| 国产亚洲精品综合一区在线观看| 91麻豆精品激情在线观看国产| 国产真实乱freesex| 伊人久久精品亚洲午夜| 五月玫瑰六月丁香| 亚洲精品456在线播放app| 欧美不卡视频在线免费观看| 欧美一区二区国产精品久久精品| 又爽又黄a免费视频| 大型黄色视频在线免费观看| 色播亚洲综合网| 精品国内亚洲2022精品成人| 国产一区二区在线观看日韩| 99热6这里只有精品| 网址你懂的国产日韩在线| 免费高清视频大片| 欧洲精品卡2卡3卡4卡5卡区| 自拍偷自拍亚洲精品老妇| 在线观看午夜福利视频| 伦精品一区二区三区| 91麻豆精品激情在线观看国产| 午夜激情福利司机影院| 午夜福利在线观看免费完整高清在 | 欧美在线一区亚洲| 国产精品人妻久久久久久| 国产蜜桃级精品一区二区三区| 人妻少妇偷人精品九色| 亚洲成人av在线免费| 亚洲无线在线观看| 观看免费一级毛片| 国产一区二区在线观看日韩| 精品人妻熟女av久视频| 夜夜看夜夜爽夜夜摸| 欧美一区二区亚洲| 可以在线观看毛片的网站| 色噜噜av男人的天堂激情| 人妻少妇偷人精品九色| 夜夜看夜夜爽夜夜摸| 一级毛片久久久久久久久女| 亚洲在线观看片| 亚洲精品成人久久久久久| 亚洲av免费高清在线观看| 天天一区二区日本电影三级| 嫩草影院精品99| 国产又黄又爽又无遮挡在线| 男人舔女人下体高潮全视频| 欧美色欧美亚洲另类二区| 精品不卡国产一区二区三区| 69人妻影院| 国产欧美日韩精品一区二区| 少妇被粗大猛烈的视频| 国产一区二区在线av高清观看| 亚洲美女搞黄在线观看 | 午夜福利高清视频| 91麻豆精品激情在线观看国产| av卡一久久| 亚洲图色成人| 国产精品亚洲一级av第二区| 精品乱码久久久久久99久播| 久久久色成人| 一级毛片aaaaaa免费看小| 人妻夜夜爽99麻豆av| 久久久久久国产a免费观看| 美女 人体艺术 gogo| 在线国产一区二区在线| 国产爱豆传媒在线观看| 男女边吃奶边做爰视频| 在线免费十八禁| a级一级毛片免费在线观看| av中文乱码字幕在线| 国产一区二区在线av高清观看| 精品久久久久久成人av| 欧美日本亚洲视频在线播放| 国产精华一区二区三区| 一级黄色大片毛片| 久久韩国三级中文字幕| 精品少妇黑人巨大在线播放 | 日日撸夜夜添| 亚洲美女搞黄在线观看 | 久久久久精品国产欧美久久久| 午夜影院日韩av| 久久午夜亚洲精品久久| 高清午夜精品一区二区三区 | 亚洲久久久久久中文字幕| 国产精品久久久久久亚洲av鲁大| 简卡轻食公司| 人妻夜夜爽99麻豆av| 18禁在线无遮挡免费观看视频 | 插阴视频在线观看视频| 婷婷亚洲欧美| av视频在线观看入口| 久久久欧美国产精品| 久久久久久久久久黄片| 国产av一区在线观看免费| 嫩草影视91久久| 久久九九热精品免费| 黄色配什么色好看| 嫩草影院精品99| 青春草视频在线免费观看| www.色视频.com| 免费看日本二区| 久久久久久九九精品二区国产| 中国美女看黄片| 国产精品乱码一区二三区的特点| 一个人免费在线观看电影| 美女被艹到高潮喷水动态| 国产私拍福利视频在线观看| 午夜精品国产一区二区电影 | 久久精品国产清高在天天线| 国产av一区在线观看免费| 亚洲成人中文字幕在线播放| 欧美丝袜亚洲另类| 1000部很黄的大片| 国产亚洲精品久久久com| 网址你懂的国产日韩在线| 在线观看美女被高潮喷水网站| 啦啦啦韩国在线观看视频| 精品一区二区免费观看| 国产精品久久电影中文字幕| 欧美日韩精品成人综合77777| 三级毛片av免费| 亚洲一区二区三区色噜噜| 久久午夜福利片| 亚洲国产精品合色在线| 岛国在线免费视频观看| 人妻制服诱惑在线中文字幕| 校园人妻丝袜中文字幕| 国产伦在线观看视频一区| 精品久久久久久久久av| 免费人成在线观看视频色| 日日撸夜夜添| 国产精品永久免费网站| 亚洲美女视频黄频| 内地一区二区视频在线| 欧美bdsm另类| 国产91av在线免费观看| 久久精品国产自在天天线| 在线看三级毛片| 国产爱豆传媒在线观看| 成人av在线播放网站| 欧美三级亚洲精品| 国内精品宾馆在线| 精品一区二区三区人妻视频| 国内精品宾馆在线| 色哟哟哟哟哟哟| 春色校园在线视频观看| 波野结衣二区三区在线| 嫩草影院入口| 在线观看66精品国产| 一区二区三区四区激情视频 | 国产 一区精品| 亚洲成a人片在线一区二区| 国产三级中文精品| 久久精品国产亚洲网站| 免费看a级黄色片| 国产美女午夜福利| 天天躁夜夜躁狠狠久久av| 麻豆成人午夜福利视频| 99久久久亚洲精品蜜臀av| 99久久精品国产国产毛片| 亚洲人成网站在线播放欧美日韩| 亚洲va在线va天堂va国产| 一个人看的www免费观看视频| 男女之事视频高清在线观看| 国产探花极品一区二区| 超碰av人人做人人爽久久| 亚洲国产日韩欧美精品在线观看| 久久综合国产亚洲精品| 天天一区二区日本电影三级| 亚洲aⅴ乱码一区二区在线播放| 久久精品国产亚洲av涩爱 | 男人狂女人下面高潮的视频| 日产精品乱码卡一卡2卡三| 国产中年淑女户外野战色| 亚洲一区二区三区色噜噜| 久久九九热精品免费| av.在线天堂| 中文字幕熟女人妻在线| 国产 一区 欧美 日韩| 菩萨蛮人人尽说江南好唐韦庄 | 高清日韩中文字幕在线| 久久久a久久爽久久v久久| 久久精品国产清高在天天线| 亚洲av成人精品一区久久| 亚洲av免费在线观看| 中文在线观看免费www的网站| 九九久久精品国产亚洲av麻豆| 九九爱精品视频在线观看| 精品国产三级普通话版| 中文字幕人妻熟人妻熟丝袜美| 色综合亚洲欧美另类图片| 精品久久久久久久久久久久久| 99热网站在线观看| 亚洲av成人精品一区久久| 国产成年人精品一区二区| 99热这里只有是精品50| 变态另类丝袜制服| 欧美高清成人免费视频www| 久久久精品欧美日韩精品| 91在线观看av| 狠狠狠狠99中文字幕| 国内精品一区二区在线观看| 欧美成人a在线观看| 在线观看66精品国产| 午夜老司机福利剧场| 在线观看66精品国产| 欧美成人一区二区免费高清观看| 精品熟女少妇av免费看| 亚洲国产色片| 午夜福利在线在线| 又爽又黄无遮挡网站| 一级a爱片免费观看的视频| 国产视频内射| 精品久久久久久久久亚洲| 老司机午夜福利在线观看视频| 日韩一本色道免费dvd| 俺也久久电影网| 国产午夜精品论理片| 国产高清激情床上av| 成年女人永久免费观看视频| 国产激情偷乱视频一区二区| 美女xxoo啪啪120秒动态图| 亚洲无线观看免费| 欧美zozozo另类| 欧美绝顶高潮抽搐喷水| 欧美成人a在线观看| 99视频精品全部免费 在线| 毛片女人毛片| 日韩一本色道免费dvd| 精品无人区乱码1区二区| 国产三级在线视频| 老司机福利观看| 成人国产麻豆网| 又爽又黄a免费视频| 亚州av有码| 啦啦啦韩国在线观看视频| 久久久精品94久久精品| 内射极品少妇av片p| 亚洲欧美日韩卡通动漫| 插逼视频在线观看| av女优亚洲男人天堂| 在线观看av片永久免费下载| 亚洲一区高清亚洲精品| 久久精品久久久久久噜噜老黄 | 晚上一个人看的免费电影| 久久精品久久久久久噜噜老黄 | 国产91av在线免费观看| 精品乱码久久久久久99久播| 真人做人爱边吃奶动态| 搡老妇女老女人老熟妇| 亚洲精品一卡2卡三卡4卡5卡| 一边摸一边抽搐一进一小说| 日韩欧美 国产精品| 国产中年淑女户外野战色| 亚洲欧美日韩无卡精品| 日本在线视频免费播放| 天堂√8在线中文| 亚洲中文日韩欧美视频| 成人午夜高清在线视频| 日本黄色视频三级网站网址| 乱系列少妇在线播放| av在线观看视频网站免费| 女的被弄到高潮叫床怎么办| av在线天堂中文字幕| 国产精品不卡视频一区二区| av视频在线观看入口| 成人亚洲欧美一区二区av| 亚洲四区av| 日韩av不卡免费在线播放| 美女高潮的动态| 欧美bdsm另类| 淫妇啪啪啪对白视频| 九九热线精品视视频播放| 两性午夜刺激爽爽歪歪视频在线观看| 一边摸一边抽搐一进一小说| 久久热精品热| 国产v大片淫在线免费观看| www.色视频.com| 联通29元200g的流量卡| 我要搜黄色片| 成人亚洲欧美一区二区av| 麻豆成人午夜福利视频| 日韩欧美精品v在线| 亚洲精品乱码久久久v下载方式| 日韩三级伦理在线观看| 中文字幕av在线有码专区| 亚洲av第一区精品v没综合| 欧美激情久久久久久爽电影| 亚洲精品国产av成人精品 | 一卡2卡三卡四卡精品乱码亚洲| 国产私拍福利视频在线观看| 看黄色毛片网站| 岛国在线免费视频观看| 国产成人精品久久久久久| 麻豆乱淫一区二区| 草草在线视频免费看| 国内精品久久久久精免费| 久久久久久大精品| 少妇熟女aⅴ在线视频| 亚洲精品久久国产高清桃花| 国内少妇人妻偷人精品xxx网站| 又爽又黄无遮挡网站| 免费av毛片视频| 国产精品野战在线观看| 久久6这里有精品| 国产午夜福利久久久久久| 少妇熟女欧美另类| 日本 av在线| 中文字幕久久专区| 国产黄色小视频在线观看| av福利片在线观看| 国产成人aa在线观看| 美女大奶头视频| 久久人妻av系列| 九九热线精品视视频播放| 欧美激情久久久久久爽电影| 好男人在线观看高清免费视频| 午夜影院日韩av| av黄色大香蕉| 淫秽高清视频在线观看| .国产精品久久| 别揉我奶头~嗯~啊~动态视频| 国产 一区精品| 十八禁国产超污无遮挡网站| 久久综合国产亚洲精品| 全区人妻精品视频| 国产精品一二三区在线看| 99久久精品热视频| 亚洲av中文字字幕乱码综合| 久久韩国三级中文字幕| 国内少妇人妻偷人精品xxx网站| 99久国产av精品| 亚州av有码| 国产伦一二天堂av在线观看| 美女cb高潮喷水在线观看| 99国产极品粉嫩在线观看| 精品久久久久久成人av| 亚洲内射少妇av| 久久鲁丝午夜福利片| 久久久色成人| 日韩中字成人| 啦啦啦观看免费观看视频高清| 校园人妻丝袜中文字幕| 亚洲中文字幕一区二区三区有码在线看| 国产亚洲欧美98| 免费电影在线观看免费观看| 97超碰精品成人国产| videossex国产| 日韩一本色道免费dvd| 免费黄网站久久成人精品| 亚洲熟妇熟女久久| 大香蕉久久网| 国产精品美女特级片免费视频播放器| 久久亚洲精品不卡| 麻豆一二三区av精品| 国产精品久久久久久av不卡| 97碰自拍视频| 尤物成人国产欧美一区二区三区| a级毛片免费高清观看在线播放| 精品福利观看| 国产黄色视频一区二区在线观看 | 亚洲成人精品中文字幕电影| 亚洲av成人精品一区久久| 天美传媒精品一区二区| 国产午夜福利久久久久久| 久久草成人影院| АⅤ资源中文在线天堂| 少妇高潮的动态图| 51国产日韩欧美| 菩萨蛮人人尽说江南好唐韦庄 | 国产69精品久久久久777片| 丰满人妻一区二区三区视频av| 国产伦一二天堂av在线观看| 一本一本综合久久| 国产一区二区在线观看日韩| 免费一级毛片在线播放高清视频| 亚洲五月天丁香| 波多野结衣高清无吗| 中文在线观看免费www的网站| 深爱激情五月婷婷| 亚洲欧美精品自产自拍| 成人二区视频| 十八禁网站免费在线| 久久久久国产网址| 午夜爱爱视频在线播放| 欧美日韩在线观看h| 蜜桃久久精品国产亚洲av| 精品国产三级普通话版| 亚洲中文日韩欧美视频| 欧美成人一区二区免费高清观看| 国产精品一区二区性色av| 非洲黑人性xxxx精品又粗又长| 亚洲精品成人久久久久久| 国产欧美日韩精品一区二区| 午夜福利在线观看吧| 国产精品福利在线免费观看| 国产色婷婷99| 欧美成人a在线观看| 亚洲真实伦在线观看| 男女那种视频在线观看| av在线播放精品| 寂寞人妻少妇视频99o| 精品99又大又爽又粗少妇毛片| 久久久久久大精品| 成人特级黄色片久久久久久久| 如何舔出高潮| 久久久精品94久久精品| 在线天堂最新版资源| 国产精品久久久久久久久免| 亚洲国产欧美人成| 国产视频一区二区在线看| 一级av片app| 亚洲国产欧美人成| 熟女电影av网| 色av中文字幕| 亚洲最大成人av| 国产成人精品久久久久久| 蜜桃久久精品国产亚洲av| 我要看日韩黄色一级片| 色哟哟哟哟哟哟| 欧美国产日韩亚洲一区| 在线观看美女被高潮喷水网站| 一进一出抽搐gif免费好疼| 直男gayav资源| 一个人免费在线观看电影| 日本免费一区二区三区高清不卡| 久久久久精品国产欧美久久久| 校园人妻丝袜中文字幕| 91午夜精品亚洲一区二区三区| 国产高清三级在线| 卡戴珊不雅视频在线播放| 自拍偷自拍亚洲精品老妇| 99精品在免费线老司机午夜| 久久久久国内视频| 日韩中字成人| 久久亚洲国产成人精品v| 亚洲国产精品成人久久小说 |