• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Universal quantum control based on parametric modulation in superconducting circuits*

    2021-07-30 07:35:06DanYuLi李丹宇JiChu儲(chǔ)繼WenZheng鄭文DongLan蘭棟JieZhao趙杰ShaoXiongLi李邵雄XinShengTan譚新生andYangYu于揚(yáng)
    Chinese Physics B 2021年7期
    關(guān)鍵詞:新生

    Dan-Yu Li(李丹宇) Ji Chu(儲(chǔ)繼) Wen Zheng(鄭文) Dong Lan(蘭棟) Jie Zhao(趙杰)Shao-Xiong Li(李邵雄) Xin-Sheng Tan(譚新生) and Yang Yu(于揚(yáng))

    1National Laboratory of Solid State Microstructures,School of Physics,Nanjing University,Nanjing 210093,China

    2Shenzhen Institute for Quantum Science and Engineering,Southern University of Science and Technology,Shenzhen 518055,China

    Keywords: superconducting qubits,parametric modulation,single-qubit gate,iSWAP gate

    1. Introduction

    Recent progress shows that superconducting quantum circuit is one of the most promising candidates for quantum computing.[1-4]While quantum chips with hundreds of qubits can be expected in the near future,[5,6]the expansion of electronic devices for quantum control has become a significant problem. There is an urgent need for a scalable and economical control scheme.

    The frequency of superconducting qubits generally lies in a range of 4 GHz-10 GHz.[7-9]To manipulate the qubits,sequences of microwave pulses with a duration from tens to hundreds of nanoseconds are injected into the quantum chip through control lines. Although such microwave pulses can be directly generated by digital-to-analog converters(DACs)with a high sampling rate,[10,11]the instruments are not economical for widespread integration. Currently, the up-conversion technology is widely used. The microwave signal is produced by mixing up a continuous microwave with intermediate frequency (IF) pulses, utilizing an IQ mixer. The IF pulses are produced by DACs with sampling rates of a few gigahertz.This method has the following drawbacks: (i) Each qubit requires at least two DACs and an IQ mixer for up-conversion,which has become a great cost when scaling up;(ii)Since the electrical performance of the mixer varies due to manufacturing and environmental influence, regular calibration is necessary to suppress image tones and carrier leakage.[12]The careful calibration of hundreds of IQ mixers regularly becomes a daunting task in real experiments. Besides, additional hardware is needed for the calibration,such as spectrum analyzers.To alleviate these problems,some efforts have been made recently by hardware improvement.[13,14]

    In this paper, we propose a simple and economical universal control scheme based on parametric modulation,[15-20]which provides a solution from another aspect. In the scheme,a continuous microwave signal is used as a global pump for all qubits in the chip. Each qubit is individually controlled by a sub-GHz parametric signal through itsZcontrol line. Both single-qubit manipulations and two-qubit gates can be realized through parametric modulation. The control scheme gets rid of IQ mixers, dramatically simplifies the input chain and reduces the potential source of errors. The demand for DACs has also been halved, reducing the cost. The rest of this paper is organized as follows. We introduce the control scheme and compare it with conventional methods in Section 2. We explain how to construct universal quantum gates using parametric modulation in Section 3 and analyze the control fidelity in Section 4. We summarize the article in the last section.

    2. Control scheme

    We illustrate our control scheme in Fig. 1(a). A continuous pump signal is injected into the quantum chip through a common drive line,which is coupled to all qubits. The pump signal drives all the qubits non-resonantly. Since the effective drive amplitude on the qubits (tens of megahertz in Rabi frequency)is generally much smaller than the frequency detuning between the qubits and the pump signal,negligible excitation is caused.

    To perform gate operations, we parametrically modulate a qubit’s frequency with a sinusoidal pulse,through its Z control line. When the frequency of the modulated pulse closely resonates with the detuning between the qubit and the pump signal,single-qubit excitation can be achieved. Two-qubit operations (typically iSWAP-type gates) are realized when the modulation frequency is closely resonant to the detuning between two coupled qubits.

    Fig.1. Illustration of three control schemes: (a)full parametric modulation;(b)full microwave control; (c)hybrid control including microwave control and frequency modulation. The left side shows the electronic circuits of the schemes and the middle part illustrates pulse sequences. The right side represents the quantum devices. For simplicity, control schemes for two coupled qubits are shown.

    In the gate scheme, all pulses are directly produced by DACs, without using any IQ mixer for up-conversion. Since the single-qubit gates(SQGs)and iSWAP gates can share the same control line and DACs,anN-qubit chip can be fully controlled byN Zcontrol lines andNDACs. The frequency difference between qubits and the pump signal is about 1 GHz-2 GHz, which means the sampling rate of DACs needs to be about 5 GHz. To reduce the limitations of the scheme, the qubit(typically transmon)can be biased at its sweet spot and the modulation frequency is then halved.[15,16,21,22]Therefore,DACs with a sampling rate of 2 GHz-3 GHz are sufficient for gate operations in experiments (See Supplementary material for details).

    Our gate scheme is fully based on the parametric frequency modulation of the qubits. We compare our scheme with conventional control schemes which are based on full microwave modulation[23-26]and the hybrid control.[4,27]In the full microwave scheme,both SQGs and two-qubit gates(typically CR gates) are realized with microwave pulses, which are upconverted from a continuous microwave using IQ mixers. SQGs and two-qubit gates share the same control line and room temperature equipments. In this scheme,two DACs and one mixer are needed to manipulate one qubit, see Fig. 1(b).In the hybrid control scheme, the SQGs are realized by upconverted microwave pulses injected through theXYlines,and two-qubit gates are realized by low-frequency pulses injected through theZlines, see Fig. 1(c). Although theZline andXYline can be merged in circuit design,[1,28]the microwave excitation and the frequency modulation still need independent DACs for control. Therefore,in the hybrid scheme,each qubit needs 3 DACs (two for microwave control and one for frequency modulation)and one mixer. The comparison shows that our scheme greatly simplifies the control system and completely gets rid of IQ mixers. Generally,each pump signal can control tens of qubits,with the frequencies of the qubits alternately arranged. For larger-scale quantum computation,more than one pump signals can be introduced.

    Although parametric modulation is preferred in our proposal,it is feasible to construct SQGs(iSWAP gates)by tuning qubit frequency into resonance with the pump frequency(frequency of neighboring qubit). However, there are two drawbacks in the latter case: i) The frequency crowding problem:during gate operations,the system may pass through unwanted crossings with neighboring qubit’s energy levels,causing state leakage; ii) Generally, the qubits are idly biased at the sweet spot with longer coherent time.Strongly tuning the qubit away from the sweet spot will cause severe decoherence. The parametric modulation enables frequency-selective gates and can effectively avoid these two problems.

    3. Universal quantum gates based on parametric modulation

    In this section, we theoretically explain how the SQGs and the iSWAP-type gates are constructed in our control scheme. For simplicity, here we consider two coupled qubitsQ1andQ2. The coupling strength between the two qubits isg12. The frequency of each qubit is tuned by an external flux signal. A global pump signal of amplitudePis injected into the quantum chip. The system Hamiltonian is(set ˉh=1)

    3.1. Single-qubit gates

    For SQGs, we consider the single qubitQ1. The corresponding modulation signal is in derivative formξ1(t)=ζ′1(t),whereζ1(t)=A(t)sin(Δp1t+φf(shuō)).Using Jacobi-Anger expansion,the first three terms in Eq.(3)becomes

    where Jn(z)is then-th-order Bessel function of the first kind.The rapid oscillation terms in the expansion are omitted using RWA,the effect of these terms will be discussed in Section 4.The phaseφf(shuō)controls the direction ofXYrotation and

    3.2. iSWAP-type gates

    For two-qubit gates between two coupled qubitsQ1andQ2, we consider a sinusoidal signalζ1(t)=A(t)sin(-Δ12t+φf(shuō)) onQ1(andζ2(t)=0 onQ2). The effective interaction Hamiltonian betweenQ1andQ2is

    3.3. Phase accumulation

    In real experiments, the non-resonance terms in the Jacobi-Anger expansion will cause frequency shift of the qubits during parametric modulation, known as Stark shift.[31,32]The frequency shift will introduce an additional phase accumulation on the qubits. The phase accumulations become more complicated when considering higher energy levels and nonlinear frequency response to external signal(Ref.[15]and Supplementary material). The phase accumulations can be measured by Ramsey experiments and cancelled by virtualZgates.[29]

    It is worth mentioning that the actual frequency modulationξ(t)is the derivation of primitive function:ξ(t)=ζ′(t)=A′(t)sin(ωt+φf(shuō))+ωA(t)cos(ωt+φf(shuō)).ξ(t) is also a sinusoidal modulation,the phase ofξ(t)is

    If the envelopeA(t)is slowly varied compared toω(A′(t)?ωA(t)),the phase can be approximated byφm=φf(shuō).

    4. Error analysis

    In the above discussion, only the resonant term (n=1)in the Jacobi-Anger expansion is considered. While the nonresonant interaction terms (n/=1) may cause unwanted transition and damage the control fidelity. We can use a simplified Rabi model to estimate the transition errors. During the parametric control,both the interaction strengthΩand the detuningΔof a non-resonant interaction in the Rabi model are treated as constants. The transition rate caused by the nonresonant interaction is

    In the case of large detuning(Δ ?Ω~1/Tgate),εis a rapid oscillation term. We use the average value to evaluate the gate error, the transition rate can be simplified asε ?Ω2/2Δ2.Since typical superconducting qubits such as transmons and C-shunted flux qubits are weakly anharmonic,[33,34]the error analysis should include the second excitation level. Thus,the lowest three levels of each qubit are considered in the following discussion.

    4.1. Errors of the parametric SQGs

    With the sinusoidal modulationζ(t)=A(t)sin(ωt+φf(shuō)),the Hamiltonian for the parametric SQGs is

    whereα1is the anharmonicity of the qubitQ1andΔp1is the detuning between pump signal andQ1.B=λPdenotes the effective pump strength on the qubit.

    The parametric SQGs are realized by setting the first order Bessel interaction into resonance (ω=Δp1,n=1). All the other terms are non-resonant interactions,the corresponding interaction strength and the estimated error rates with typical parameters are shown in Table 1. According to Eq. (9),the terms with relatively small detuning and large interaction strength generally cause dominant errors. Assuming the modulation amplitude is smaller than the detuning(|A(t)|<1),the terms withn >1 andn <0 can be neglected since these terms have both small interaction strength and large detuning. Notice that the transition errors should be multiplied by an extra factorf. For example, the error rates caused by interactions in subspace{|1〉,|2〉}should be multiplied byf=0.5, since such an interaction has no effect if the qubit is in state|0〉.

    All transition errors scale quadratically with the pump strengthB, as shown in Fig. 2(a). Since J0(A(t))~1 withA(t)<1, the 0th-order error is almost independent of the modulation amplitudeA(t). But the 1st-order interaction in{|1〉,|2〉}subspace is strongly related to the modulation amplitude. This error becomes dominant with largeA(t),shown as the dashed blue line in Fig.2(a). There is a trade-off between the gate time and the transition errors. Stronger pump strengthBor modulation strengthA(t) will result in shorter gate time but cause more transition errors. In all,we find that total error rates are smaller than 0.1%,with a gate time of about 60 ns.

    Fig.2.Error analysis of parametric modulation.(a)Gate time(black circles)and transition errors(solid lines)of X/2 gate versus pump strength B,with modulation factor A=0.27. The detuning between qubit’s frequency and the pump frequency is Δp1/2π =1.5 GHz. The anharmonicity of the qubit is α1/2π =-250 MHz. State leakage arising from 1st-order Bessel interaction becomes dominant in case of strong modulation amplitude(A=0.4),shown as the dashed blue line. (b)Gate time(black squares)and transition errors(solid lines)of iSWAP gates versus modulation factor A. The detuning between the two qubits is Δ12/2π=800 MHz and the coupling strength strength is g12/2π =6.7 MHz. The anharmonicities of both qubits are set as-250 MHz. The dashed black line shows the ZZ interaction error during the parametric modulation.

    Table 1. Non-resonant interactions in a parametric SQG.The error rates are evaluated as(Ω2/2Δ2)f,with B/2π=30 MHz,Δp1/2π =1.5 GHz,α1/2π =-250 MHz,and A(t)=0.27.

    4.2. Errors of the iSWAP gate

    Similar error analysis can be given to the iSWAP gates.The interaction Hamiltonian for two-qubit gates betweenQ1andQ2is

    The resonant condition isΔ12+ω=0. We show the nonresonant interaction terms in Table 2. Error rates caused by the terms withn >1 orn <0 are negligible. Notice that the strength of 0th-order interaction is in form of 1-J0(A),instead of J0(A), in the dressed eigenstates basis. The corresponding error rates of iSWAP gatesversusmodulation amplitude are shown in Fig. 2(b). The 1st-order terms in the subspace of{|11〉,|20〉}and{|11〉,|02〉}are the dominant sources of errors.

    In addition to transition errors, there is also intrinsicZZerror. TheZZcoupling strength is defined asη=ω11+ω00-ω01-ω10.[35-37]Due to the level repulsion effect of higher levels, theZZcoupling strength between two coupled qubits is[38,39]

    Table 2. Non-resonant interactions in a parametric iSWAP gate. The error rates are calculated with g12/2π =6.7 MHz,Δ12/2π =800 MHz,α1/2π =α2/2π =-250 MHz,and A(t)=1.

    5. Summary

    We propose a universal control scheme based on parametric frequency modulation. By halving the required DAC,this control scheme effectively saves the cost of large-scale quantum control. The input system has been greatly simplified.Because no IQ mixer is used, complicated calibration work is avoided. We theoretically explain how the universal gates are constructed by introducing a global microwave pump. The fidelity analysis shows that The error rate of parametric control is below 0.1% with a typical gate time of 60 ns (100 ns)for single-qubit (two-qubit) gates, proving its potential for a broad application.

    猜你喜歡
    新生
    重獲新生 庇佑
    張新生藏品
    張新生藏品
    新生月賽優(yōu)秀作品
    北廣人物(2020年21期)2020-06-01 07:37:58
    領(lǐng)途新生
    汽車觀察(2018年10期)2018-11-06 07:05:22
    新生
    讀者(2018年15期)2018-07-18 07:41:28
    堅(jiān)守,讓百年非遺煥新生
    海峽姐妹(2017年7期)2017-07-31 19:08:23
    狂熱新生力
    新生娃萌萌噠
    視野(2015年4期)2015-07-26 02:56:52
    新生改版
    搡老岳熟女国产| 免费看十八禁软件| 国产精品美女特级片免费视频播放器 | 欧美+亚洲+日韩+国产| 国产精品免费一区二区三区在线| 他把我摸到了高潮在线观看| 高清黄色对白视频在线免费看| 久9热在线精品视频| 最新在线观看一区二区三区| 亚洲男人的天堂狠狠| 国产日韩一区二区三区精品不卡| 黑人操中国人逼视频| 欧美一区二区精品小视频在线| 亚洲精品一二三| 一级片免费观看大全| 亚洲人成伊人成综合网2020| 亚洲国产欧美网| 女人被躁到高潮嗷嗷叫费观| 在线免费观看的www视频| 精品一区二区三卡| 人人澡人人妻人| 成人18禁高潮啪啪吃奶动态图| 免费在线观看亚洲国产| 久久精品国产99精品国产亚洲性色 | 国产精品久久电影中文字幕| 日本一区二区免费在线视频| 老司机福利观看| 成人三级做爰电影| 久久影院123| 黄色丝袜av网址大全| 两个人看的免费小视频| 热re99久久国产66热| 亚洲精品国产色婷婷电影| 50天的宝宝边吃奶边哭怎么回事| 亚洲中文日韩欧美视频| 法律面前人人平等表现在哪些方面| 久久香蕉激情| bbb黄色大片| 精品久久久久久电影网| 女人被狂操c到高潮| 亚洲欧美精品综合久久99| 老司机午夜福利在线观看视频| 成人影院久久| 9191精品国产免费久久| 老司机亚洲免费影院| 久热爱精品视频在线9| 久久精品91蜜桃| 亚洲全国av大片| 欧美人与性动交α欧美精品济南到| 男人操女人黄网站| 亚洲欧美精品综合久久99| 亚洲情色 制服丝袜| 日韩大尺度精品在线看网址 | 黄网站色视频无遮挡免费观看| 丰满人妻熟妇乱又伦精品不卡| 成人免费观看视频高清| av在线播放免费不卡| 午夜影院日韩av| 久热这里只有精品99| 在线天堂中文资源库| 99在线人妻在线中文字幕| 在线免费观看的www视频| 国产高清视频在线播放一区| 少妇粗大呻吟视频| 亚洲av成人不卡在线观看播放网| 在线观看一区二区三区| 精品国产美女av久久久久小说| 国产av一区二区精品久久| 久久久久亚洲av毛片大全| 国产精品99久久99久久久不卡| 成年版毛片免费区| 午夜两性在线视频| 黄色 视频免费看| 免费在线观看影片大全网站| 国产男靠女视频免费网站| 电影成人av| 99香蕉大伊视频| svipshipincom国产片| 国产熟女xx| 久久欧美精品欧美久久欧美| 久久中文字幕一级| 丰满人妻熟妇乱又伦精品不卡| 久久国产精品影院| 午夜免费观看网址| 99在线视频只有这里精品首页| 免费观看精品视频网站| 最好的美女福利视频网| 人成视频在线观看免费观看| 久久人妻av系列| 日本黄色视频三级网站网址| 88av欧美| 美女 人体艺术 gogo| 真人做人爱边吃奶动态| 99热国产这里只有精品6| 757午夜福利合集在线观看| 日韩大尺度精品在线看网址 | 电影成人av| 精品熟女少妇八av免费久了| 9热在线视频观看99| 亚洲中文av在线| 精品久久蜜臀av无| 日韩大尺度精品在线看网址 | 亚洲国产中文字幕在线视频| 精品久久久久久久毛片微露脸| 久久久国产一区二区| 色哟哟哟哟哟哟| 黑丝袜美女国产一区| 大码成人一级视频| 热re99久久精品国产66热6| 狠狠狠狠99中文字幕| 色老头精品视频在线观看| 久久精品国产亚洲av高清一级| 国产99久久九九免费精品| 午夜福利在线免费观看网站| 亚洲欧美日韩高清在线视频| 精品国产一区二区久久| 波多野结衣av一区二区av| 黄色丝袜av网址大全| 亚洲久久久国产精品| 一本综合久久免费| 操出白浆在线播放| 一进一出好大好爽视频| 国产成+人综合+亚洲专区| 国产欧美日韩综合在线一区二区| 亚洲片人在线观看| 免费日韩欧美在线观看| 99在线人妻在线中文字幕| 久久天躁狠狠躁夜夜2o2o| 色综合欧美亚洲国产小说| 精品久久久精品久久久| 欧美午夜高清在线| 制服诱惑二区| 亚洲 欧美一区二区三区| 国产精品1区2区在线观看.| 亚洲欧美日韩无卡精品| 亚洲精品国产精品久久久不卡| 99热国产这里只有精品6| 99国产精品99久久久久| 18禁观看日本| 亚洲精品美女久久av网站| 最新美女视频免费是黄的| 成熟少妇高潮喷水视频| 久久草成人影院| 久久精品国产99精品国产亚洲性色 | 日韩大码丰满熟妇| 在线观看午夜福利视频| 中文欧美无线码| 国产国语露脸激情在线看| 真人一进一出gif抽搐免费| 国产麻豆69| 夜夜夜夜夜久久久久| 美女扒开内裤让男人捅视频| 精品久久久久久成人av| 男女高潮啪啪啪动态图| 久久久久精品国产欧美久久久| 高潮久久久久久久久久久不卡| 看黄色毛片网站| 国产精品98久久久久久宅男小说| 激情视频va一区二区三区| 波多野结衣高清无吗| 精品电影一区二区在线| 男人舔女人的私密视频| 国产乱人伦免费视频| 老司机深夜福利视频在线观看| 不卡av一区二区三区| 9热在线视频观看99| 成人特级黄色片久久久久久久| 少妇粗大呻吟视频| 最好的美女福利视频网| 精品一区二区三卡| 国产xxxxx性猛交| 亚洲精品一二三| 一个人免费在线观看的高清视频| 精品免费久久久久久久清纯| 又大又爽又粗| 中文欧美无线码| 97超级碰碰碰精品色视频在线观看| 中文字幕色久视频| www.熟女人妻精品国产| 亚洲情色 制服丝袜| 日韩大尺度精品在线看网址 | 亚洲国产中文字幕在线视频| 日韩大尺度精品在线看网址 | 欧美日韩国产mv在线观看视频| 色婷婷久久久亚洲欧美| 久久国产精品影院| 不卡一级毛片| 精品久久久久久,| 精品国产美女av久久久久小说| 琪琪午夜伦伦电影理论片6080| 日本a在线网址| 中亚洲国语对白在线视频| 午夜精品在线福利| 大码成人一级视频| 亚洲精品久久午夜乱码| 老司机亚洲免费影院| 一边摸一边抽搐一进一出视频| 亚洲精品在线美女| 日韩中文字幕欧美一区二区| 亚洲av成人一区二区三| 法律面前人人平等表现在哪些方面| 国产精品偷伦视频观看了| 午夜福利免费观看在线| 欧美在线黄色| 老熟妇仑乱视频hdxx| 久久国产精品影院| 又黄又粗又硬又大视频| 黑人欧美特级aaaaaa片| 国产97色在线日韩免费| 高清毛片免费观看视频网站 | videosex国产| 日韩欧美三级三区| 亚洲国产看品久久| 自线自在国产av| 又黄又爽又免费观看的视频| 黄色 视频免费看| 国产xxxxx性猛交| 久久久精品欧美日韩精品| 香蕉国产在线看| 午夜久久久在线观看| 搡老熟女国产l中国老女人| 国产精品综合久久久久久久免费 | 久久久国产一区二区| 国产高清videossex| 亚洲自偷自拍图片 自拍| ponron亚洲| 欧美黑人欧美精品刺激| 在线观看午夜福利视频| 亚洲第一欧美日韩一区二区三区| 亚洲精品av麻豆狂野| 妹子高潮喷水视频| 亚洲片人在线观看| 国产精品自产拍在线观看55亚洲| 一区二区三区精品91| 91麻豆av在线| 色综合婷婷激情| 自线自在国产av| 日本精品一区二区三区蜜桃| 交换朋友夫妻互换小说| 国产精品亚洲av一区麻豆| 亚洲中文日韩欧美视频| 亚洲国产欧美日韩在线播放| 精品乱码久久久久久99久播| 老鸭窝网址在线观看| aaaaa片日本免费| 亚洲午夜理论影院| 国产成人欧美| 亚洲精品美女久久av网站| 超色免费av| av天堂久久9| 亚洲欧美精品综合一区二区三区| 国产主播在线观看一区二区| 满18在线观看网站| 国产区一区二久久| 91九色精品人成在线观看| 国产欧美日韩一区二区三区在线| 在线免费观看的www视频| 一级,二级,三级黄色视频| 精品久久久久久成人av| 一边摸一边抽搐一进一出视频| 在线视频色国产色| 免费女性裸体啪啪无遮挡网站| 一边摸一边抽搐一进一小说| 在线av久久热| 两性午夜刺激爽爽歪歪视频在线观看 | 丝袜美足系列| 三上悠亚av全集在线观看| 亚洲av美国av| 如日韩欧美国产精品一区二区三区| 男女高潮啪啪啪动态图| 黄色成人免费大全| 日韩欧美一区视频在线观看| 国产成人精品久久二区二区91| 久久久久国产一级毛片高清牌| 又黄又粗又硬又大视频| 欧美av亚洲av综合av国产av| 欧美日韩亚洲综合一区二区三区_| 极品人妻少妇av视频| 亚洲av片天天在线观看| 精品电影一区二区在线| 亚洲av电影在线进入| 操美女的视频在线观看| 精品国产国语对白av| 国产亚洲精品第一综合不卡| 亚洲狠狠婷婷综合久久图片| 老司机午夜十八禁免费视频| 好看av亚洲va欧美ⅴa在| 久久久国产欧美日韩av| 淫秽高清视频在线观看| 视频区图区小说| 亚洲午夜理论影院| 久久久国产欧美日韩av| 满18在线观看网站| 日韩欧美在线二视频| 女同久久另类99精品国产91| 99精品欧美一区二区三区四区| 欧美日韩一级在线毛片| 久久人人爽av亚洲精品天堂| 老司机靠b影院| 99在线人妻在线中文字幕| 久久这里只有精品19| 无限看片的www在线观看| 在线观看免费视频网站a站| 亚洲一区二区三区欧美精品| 91大片在线观看| 欧美日韩黄片免| 亚洲熟妇熟女久久| 夜夜夜夜夜久久久久| 免费在线观看视频国产中文字幕亚洲| 国产亚洲精品第一综合不卡| 久久人妻福利社区极品人妻图片| 中出人妻视频一区二区| 97人妻天天添夜夜摸| 宅男免费午夜| 精品熟女少妇八av免费久了| 精品国产国语对白av| 欧美av亚洲av综合av国产av| cao死你这个sao货| 久久国产精品人妻蜜桃| 丰满饥渴人妻一区二区三| 十八禁网站免费在线| 日韩一卡2卡3卡4卡2021年| 99国产精品一区二区三区| 日本 av在线| 亚洲精华国产精华精| 久久国产精品人妻蜜桃| 国产欧美日韩一区二区三区在线| 亚洲人成77777在线视频| 国产亚洲欧美98| 91在线观看av| 在线观看免费视频网站a站| 香蕉国产在线看| 国产亚洲精品一区二区www| 久久狼人影院| 丝袜人妻中文字幕| 久久 成人 亚洲| 村上凉子中文字幕在线| 男女之事视频高清在线观看| av网站在线播放免费| 又紧又爽又黄一区二区| 精品乱码久久久久久99久播| 欧美日韩一级在线毛片| 中文字幕精品免费在线观看视频| 国产高清激情床上av| 日韩大码丰满熟妇| 精品国产乱子伦一区二区三区| 亚洲专区中文字幕在线| 大陆偷拍与自拍| 日本三级黄在线观看| 久久婷婷成人综合色麻豆| 成在线人永久免费视频| 婷婷丁香在线五月| 国产精品99久久99久久久不卡| 亚洲成人国产一区在线观看| 欧美人与性动交α欧美精品济南到| 色播在线永久视频| 午夜福利欧美成人| 这个男人来自地球电影免费观看| 欧美最黄视频在线播放免费 | 国产欧美日韩精品亚洲av| 99在线视频只有这里精品首页| 又黄又粗又硬又大视频| 在线观看免费视频网站a站| 两性夫妻黄色片| 真人做人爱边吃奶动态| 91成人精品电影| 亚洲黑人精品在线| 精品国产乱子伦一区二区三区| 伊人久久大香线蕉亚洲五| 琪琪午夜伦伦电影理论片6080| 免费不卡黄色视频| 亚洲色图av天堂| 99在线人妻在线中文字幕| 大码成人一级视频| 国产视频一区二区在线看| 啦啦啦 在线观看视频| 久久久久久亚洲精品国产蜜桃av| 黄色成人免费大全| av有码第一页| 色综合欧美亚洲国产小说| 色婷婷久久久亚洲欧美| 亚洲成人国产一区在线观看| 99久久国产精品久久久| 激情在线观看视频在线高清| 免费高清视频大片| 无人区码免费观看不卡| 岛国在线观看网站| 亚洲成av片中文字幕在线观看| 久久精品国产99精品国产亚洲性色 | 少妇裸体淫交视频免费看高清 | 精品熟女少妇八av免费久了| 中文字幕精品免费在线观看视频| 久久精品国产清高在天天线| 真人一进一出gif抽搐免费| a级毛片黄视频| 人人妻人人爽人人添夜夜欢视频| 久久久国产成人免费| 欧美激情久久久久久爽电影 | 亚洲精品国产精品久久久不卡| 精品欧美一区二区三区在线| 黑人巨大精品欧美一区二区mp4| 国产一区二区激情短视频| 久久久久国产一级毛片高清牌| 夜夜看夜夜爽夜夜摸 | 欧美色视频一区免费| 国产成人精品久久二区二区免费| 日韩免费av在线播放| 久久中文看片网| 一二三四社区在线视频社区8| 日韩欧美一区视频在线观看| 午夜精品国产一区二区电影| 亚洲午夜精品一区,二区,三区| 亚洲国产欧美网| 精品高清国产在线一区| 亚洲欧美日韩另类电影网站| 男人舔女人下体高潮全视频| tocl精华| 亚洲色图av天堂| 国产欧美日韩精品亚洲av| 91麻豆av在线| 精品国产亚洲在线| 久久精品人人爽人人爽视色| 精品久久蜜臀av无| 国产99白浆流出| av网站免费在线观看视频| 日日夜夜操网爽| 久久精品aⅴ一区二区三区四区| 真人一进一出gif抽搐免费| a级毛片黄视频| 成人亚洲精品一区在线观看| 亚洲精品国产一区二区精华液| 亚洲专区中文字幕在线| 19禁男女啪啪无遮挡网站| 18禁美女被吸乳视频| 中文字幕av电影在线播放| 一区二区日韩欧美中文字幕| 男人操女人黄网站| 欧美激情久久久久久爽电影 | 精品久久久久久久毛片微露脸| 国产av一区在线观看免费| 国产三级在线视频| 真人一进一出gif抽搐免费| 欧美激情久久久久久爽电影 | 欧美激情高清一区二区三区| 免费在线观看日本一区| 精品一品国产午夜福利视频| 很黄的视频免费| 变态另类成人亚洲欧美熟女 | 亚洲欧美一区二区三区黑人| 50天的宝宝边吃奶边哭怎么回事| 精品一区二区三卡| 美女 人体艺术 gogo| 国产无遮挡羞羞视频在线观看| 亚洲av熟女| 成人精品一区二区免费| 少妇被粗大的猛进出69影院| 亚洲成国产人片在线观看| 12—13女人毛片做爰片一| 色精品久久人妻99蜜桃| 好看av亚洲va欧美ⅴa在| 美女高潮喷水抽搐中文字幕| 国产激情久久老熟女| 国产三级在线视频| 在线观看日韩欧美| 少妇 在线观看| 中文字幕另类日韩欧美亚洲嫩草| 窝窝影院91人妻| 99re在线观看精品视频| x7x7x7水蜜桃| 亚洲成人久久性| 久久久久九九精品影院| 午夜激情av网站| 叶爱在线成人免费视频播放| 一级毛片精品| 岛国视频午夜一区免费看| 黑人猛操日本美女一级片| 国产精品久久久av美女十八| 日本wwww免费看| 色哟哟哟哟哟哟| 中国美女看黄片| 99国产精品一区二区三区| 亚洲狠狠婷婷综合久久图片| 人人妻人人添人人爽欧美一区卜| 男女做爰动态图高潮gif福利片 | 免费搜索国产男女视频| 美国免费a级毛片| 琪琪午夜伦伦电影理论片6080| 高潮久久久久久久久久久不卡| 丰满的人妻完整版| 亚洲男人的天堂狠狠| 乱人伦中国视频| 一进一出抽搐动态| 身体一侧抽搐| 久久精品亚洲av国产电影网| 国产精品99久久99久久久不卡| 久久99一区二区三区| 91在线观看av| 一个人免费在线观看的高清视频| 日日夜夜操网爽| 99国产精品免费福利视频| 9色porny在线观看| 男人舔女人下体高潮全视频| 女人被狂操c到高潮| 国产男靠女视频免费网站| 别揉我奶头~嗯~啊~动态视频| 热re99久久精品国产66热6| 亚洲精品中文字幕一二三四区| 日韩免费高清中文字幕av| 色综合站精品国产| 黄色毛片三级朝国网站| 国产一卡二卡三卡精品| 日本三级黄在线观看| 国产真人三级小视频在线观看| 久久久国产成人精品二区 | 欧美日韩福利视频一区二区| 精品一区二区三区视频在线观看免费 | 欧美激情高清一区二区三区| 精品卡一卡二卡四卡免费| 欧美激情极品国产一区二区三区| 亚洲精品久久午夜乱码| 免费在线观看完整版高清| 男女高潮啪啪啪动态图| av在线播放免费不卡| 精品午夜福利视频在线观看一区| 欧美日本亚洲视频在线播放| av片东京热男人的天堂| 亚洲av成人不卡在线观看播放网| 真人一进一出gif抽搐免费| 久久精品91蜜桃| 桃红色精品国产亚洲av| 国产精品亚洲一级av第二区| 最近最新免费中文字幕在线| 丰满的人妻完整版| 在线播放国产精品三级| 国产主播在线观看一区二区| 久久久久精品国产欧美久久久| 99热只有精品国产| 亚洲欧美日韩高清在线视频| 久久香蕉国产精品| 在线国产一区二区在线| 国产伦人伦偷精品视频| 手机成人av网站| 一边摸一边抽搐一进一小说| 欧美成人午夜精品| 波多野结衣一区麻豆| www.自偷自拍.com| 两人在一起打扑克的视频| 欧美av亚洲av综合av国产av| 熟女少妇亚洲综合色aaa.| 久久天堂一区二区三区四区| 亚洲精品久久午夜乱码| 久久久久久大精品| 超碰成人久久| 中亚洲国语对白在线视频| 妹子高潮喷水视频| 一进一出抽搐动态| 亚洲自拍偷在线| 欧美中文综合在线视频| 1024香蕉在线观看| 日韩大尺度精品在线看网址 | 亚洲熟妇中文字幕五十中出 | 91麻豆精品激情在线观看国产 | 少妇被粗大的猛进出69影院| 午夜成年电影在线免费观看| 久久狼人影院| 久久久久国产一级毛片高清牌| 99re在线观看精品视频| 美女扒开内裤让男人捅视频| 国产xxxxx性猛交| 多毛熟女@视频| 欧美午夜高清在线| 怎么达到女性高潮| 久久久久久大精品| 香蕉久久夜色| 久久99一区二区三区| 亚洲国产精品合色在线| 日韩人妻精品一区2区三区| 亚洲熟女毛片儿| 国产av又大| 欧美一区二区精品小视频在线| 美女 人体艺术 gogo| 天天躁狠狠躁夜夜躁狠狠躁| www国产在线视频色| 一a级毛片在线观看| 午夜成年电影在线免费观看| 免费在线观看完整版高清| 亚洲 欧美一区二区三区| 欧美日韩中文字幕国产精品一区二区三区 | 叶爱在线成人免费视频播放| 久久久久国产精品人妻aⅴ院| 亚洲国产欧美一区二区综合| 丰满饥渴人妻一区二区三| 亚洲人成电影免费在线| 女人高潮潮喷娇喘18禁视频| 性欧美人与动物交配| 在线观看免费视频网站a站| 黄色丝袜av网址大全| 国产精品二区激情视频| 看片在线看免费视频| 欧美日韩亚洲综合一区二区三区_| 在线十欧美十亚洲十日本专区| 久久精品91无色码中文字幕| 精品一区二区三区视频在线观看免费 | 久久香蕉激情| 亚洲精品一区av在线观看| 国产激情久久老熟女| 岛国视频午夜一区免费看| 热re99久久国产66热| 国产亚洲精品久久久久5区| 国产精品1区2区在线观看.| 又大又爽又粗| 久久久久久人人人人人| 日本撒尿小便嘘嘘汇集6| av欧美777| 久久人妻av系列|