• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Positivity-preserving Conservative Semi-Lagrangian Multi-moment Global Transport Model on the Cubed Sphere

    2021-07-26 14:38:22JieTANGChungangCHENXueshunSHENFengXIAOandXingliangLI
    Advances in Atmospheric Sciences 2021年9期

    Jie TANG ,Chungang CHEN ,Xueshun SHEN ,Feng XIAO ,and Xingliang LI*

    1National Meteorological Center/Center of Numerical Weather Predication,China Meteorological Administration,Beijing 100081,China

    2State Key Laboratory for Strength and Vibration of Mechanical Structures & School of Aerospace Engineering,Xi’an Jiaotong University,Xi’an 710049,China

    3Department of Mechanical Engineering,Tokyo Institute of Technology,Tokyo 152-8850,Japan

    ABSTRACT A positivity-preserving conservative semi-Lagrangian transport model by multi-moment finite volume method has been developed on the cubed-sphere grid.Two kinds of moments (i.e.,point values (PV moment) at cell interfaces and volume integrated average (VIA moment) value) are defined within a single cell.The PV moment is updated by a conventional semi-Lagrangian method,while the VIA moment is cast by the flux form formulation to assure the exact numerical conservation.Different from the spatial approximation used in the CSL2 (conservative semi-Lagrangian scheme with second order polynomial function) scheme,a monotonic rational function which can effectively remove non-physical oscillations is reconstructed within a single cell by the PV moments and VIA moment.To achieve exactly positive-definite preserving,two kinds of corrections are made on the original conservative semi-Lagrangian with rational function (CSLR)scheme.The resulting scheme is inherently conservative,non-negative,and allows a Courant number larger than one.Moreover,the spatial reconstruction can be performed within a single cell,which is very efficient and economical for practical implementation.In addition,a dimension-splitting approach coupled with multi-moment finite volume scheme is adopted on cubed-sphere geometry,which benefitsthe implementation of the 1D CSLR solver with large Courant number.The proposed model is evaluated by several widely used benchmark tests on cubed-sphere geometry.Numerical results show that the proposed transport model can effectively remove nonphysical oscillations and preserve the numerical nonnegativity,and it has the potential to transport the tracers accurately in a real atmospheric model.

    Key words:global transport model,cubed-sphere grid,multi-moment method,single-cell-based scheme,conservative semi-Lagrangian method

    1.Introduction

    Global advection transport describes the motion of various passive tracers in the atmosphere,which is a basic process in atmospheric dynamics.The advection transport model is important in developing general circulation models (GCMs).The traditional latitude-longitude grid is very easy for application but has singularities at the poles.Moreover,its nonuniform grid system would also seriously affect computational efficiency.To address these issues,quasi-uniform grid systems without singularities or with weak singularities,such as the cubed-sphere grid,Yin-Yang grid,and icosahedral grid are becoming more and more popular in developing global transport models.Among those grids,the cubed-sphere grid is usually preferred due to its computational merits,such as locally structured grid and quasi-uniform grid.Recently,many transport models have been developed on the cubed-sphere grid,such as the discontinuous Galerkin transport models (Nair et al.,2005;Guo et al.,2014,2016),the conservative semi-Lagrangian multitracer (CSLAM) model (Lauritzen et al.,2010),the finite volume transport model (Norman and Nair,2018),and the multi-moment transport models (Chen et al.,2011;Tang et al.,2018).In this study,the cubed-sphere grid with gnomonic projection is adopted for our transport model.

    The semi-Lagrangian method is a popular choice for developing a global transport model,since it allows a large time step without reducing accuracy.The traditional semi-Lagrangian method defines a set of parcels that arrive at the Euler computational grid at every time step,and then these parcels are traced back to find their departure locations at the previous time step.A review of the semi-Lagrangian method can be seen inStaniforth and C?té (1991).However,the traditional semi-Lagrangian method has a serious shortcoming regarding mass conservation.To deal with this,many efforts have been made to develop the conservative semi-Lagrangian method.The finite-volume semi-Lagrangian (FVSL) method is a popular one which can be probably separated into two categories (departure volume based and flux form based).The departure volume based FVSL method initially finds the departure volume and then remaps the departure volume from the given Euler computational grid.Examples of using this method can be seen inNair and Machenhauer (2002),Nair et al.(2002),Zerroukat et al.(2002),andLauritzen et al.(2010).The flux form based FVSL method calculates the flux traveling across the interfaces of a cell and uses a flux form formulation to update.Lin and Rood (1996)is a typical example of this kind.

    Nakamura et al.(2001)proposed a flux-form FVSL method based on their previous Constrained Interpolation Profile (CIP) scheme (Yabe and Aoki,1991),calling it CIPCSL.In their method,the point values at cell boundaries and the cell-averaged value are used to reconstruct the piecewise interpolation profile.The point values are updated by the semi-Lagrangian approach,while the cell-average or volume-average values are calculated by the flux-form formulation.The semi-Lagrangian approach permits a large time step,and the flux-form formulation of updating cell-average values makes the scheme inherently conservative in terms of cell-integrated average values.Xiao and Yabe(2001)introduced a slope limiter in the CIP-CSL scheme to suppress oscillations around discontinuities,but the stencil for spatial reconstruction extended from one cell to three cells.Instead of the cubic polynomial function used in CIPCSL2,Xiao et al.(2002)utilized a rational interpolation as an alternative,calling it the CSLR scheme,which used only one cell as stencil to reconstruct the interpolation function and could remove nonphysical oscillations simultaneously.However,this scheme can’t completely preserve positivity.In this paper,we make some modifications on the CSLR scheme to make it non-negative and extend it to the cubedsphere grid to develop a global transport model.

    The paper is organized as follows.In section 2,we introduce the algorithm of the CSLR method and its modifications on the Cartesian geometry.In section 3,we extend this formula to the cubed-sphere grid.Section 4 presents several kinds of benchmark tests to evaluate the performance of the proposed global transport model.And a brief summary is given in section 5.

    2.CSLR methods on Cartesian geometry

    2.1.CSLR method in one dimension

    2.1.1.Spatial reconstruction

    To reconstruct the spatial approximation profile,two kinds of moments are introduced in each cell,as illustrated inFig.1.Point value (PV) moments at cell boundaries and the volume integrated average (VIA) moment in Ci(i=1,2,...,N) are defined as:

    Fig.1.Illustration of moments in one dimension.

    after which the coefficients can be determined as

    where βiis predetermined in Eq.(3) [seeXiao et al.(2002)for details],γi=1+βi?x,and ε is a very small number,such as ε=1×10?20,for avoiding a zero denominator in Eq.(10).

    2.1.2.Moments updating

    Consider the following one-dimensional transport equation,

    whereuis the velocity.

    ● Updating the PV moments:

    The PV moments are updated by the traditional semi-Lagrangian approach.Rewriting Eq.(11) in an advection form gives

    and it can be viewed as an advection equation plus a source term,?q?u/?x.The advection part is calculated by the semi-Lagrangian concept

    2.1.3.Modifications for positivity preserving

    Preserving the positivity of certain physical quantities requires that the minimum valueqminshould not be less than zero.However,the point values calculated by Eq.(15) may produce negative values.Since the conservation of the PV moment is not required in the context of the multi-moment finite volume scheme,an easy and effective modification for the PV moments is used:

    Despite this modification,in the specific case when a“valley” shape near the lower boundary is transported,the negative values may still appear.As illustrated inFig.2,if the PV moments at the cell boundary are bigger than the VIA moment,the reconstructed rational function would produce “undershoots”.Thus,a further modification of the approximation profile is needed:

    Fig.2.Illustration of the rational reconstruction when a“valley” is advected.

    whereqmaxis the maximum value of transport quantity and ε is a small parameter,such as ε=10?3.It should be noted that the modification of Eq.(19) can guarantee the spatial approximation profile is above zero,and by using the fluxform formula of VIA moment we can obtain an absolutely positive result.Therefore,after utilizing these two modifications the numerical result can strictly preserve positivity.

    In this paper,the scheme using Eq.(3) for spatial reconstruction is called CSLR1,and the scheme with two-step modifications is called CSLR1-M hereafter.When β=0 in Eq.(3),the scheme reduces to CSL2 (Yabe et al.,2001).

    Given the known PVs and VIAs at the previous time step,the CSLR1-M algorithm updating procedure can be summarized as follows:

    1) Using Eq.(3) and the modification of Eq.(19),the reconstructed profile within each cell can be determined.

    2) Point values are updated by Eq.(13) and Eq.(15).

    3) Cell-averaged values are updated by Eq.(16).

    4) Modifying the PV moments by Eq.(18) ensures positive PV moments at next time step.

    It is noted that given the monotonicity of rational function and the PVs at cell boundaries as predicted variables,the CSLR1-M scheme can easily facilitate a positive-preserving property,as shown in this paper.

    2.2.CSLR methods in two dimensions

    A second order Strang dimension-splitting time-stepping (Strang,1968) technique is adopted to extend the 1D algorithm to the two-dimensional Cartesian case.For the sake of simplicity,we collectively define the 1D CSLR1 and CSLR1-M algorithm as

    where ?xand ?yare grid spacing in thex- andy-directions,respectively.

    ● Point value (PV):four point-values located at vertices

    ● Line-integrated average values along-direction

    Fig.3.Illustration of moments defined in a two-dimensional case.

    ● Line-integrated average value alongy-direction

    Consider the two-dimensional transport equation in the Cartesian coordinates:

    whereuandvare the velocity in thex- andy-directions,respectively.

    By using the dimension-splitting technique,the transport Eq.(25) is split into two 1D equations:

    3.Extension to the cubed-sphere grid

    In this section,we extend the proposed scheme to the cubed-sphere grid to develop a global transport model.The quasi-uniform cubed-sphere grid (Sadourny,1972) with equiangular central projection is adopted in this paper,as shown inFig.4,which has six identical cube faces with local coordinate (α,β)=[?π/4,π/4].It is worth mentioning that the conventional tropic-belt arrangement (Nair et al.,2005) is used in this paper although the staircase arrangement (Chen,2021) is a good interlock pattern which has better symmetry for patch information exchange.The two-dimensional transport equation in local coordinates can be written as

    As shown inFig.5,we divided the cubed-sphere grid into three directions (ξ,η,ζ),and Eq.(28) is split into three sequential 1D equations along three directions (Guo et al.,2014):

    Fig.4.Schematic of a cubed-sphere grid with 1 2×12×6 meshes.

    Fig.5.Schematic for three directions on the cubed-sphere grid.Top left is the ξ-direction along the αdirection on Patch 1,Patch 2,Patch 3,and Patch 4;Top right is the η-direction along the β-direction on Patch 1,Patch 3,Patch 5,and Patch 6;bottom is the ζ-direction along the β-direction on Patch 2 and Patch 4 and along the α-direction on Patch 5 and Patch 6.

    whereUξ,Uη,andUζare the velocity along ξ -,η-,and ζ-directions,respectively.

    Then,the numerical solutions are updated by the splitting algorithm.In each direction,the moments are updated by the one-dimensional algorithm,similar to the case in the two-dimensional Cartesian geometry.Given the known point values,line-integrated values,and cell-integrated values,the final updating procedures on a sphere for a time step ?tare summarized as follows:

    4) Update in η-direction for another ?t/2 as in step 2;

    5) Update in ξ-direction for ?t/2 as in step 1.

    Note that the cubed-sphere grid is not continuous across the cube patch boundaries,and some special treatments are needed.In Eq.(14),if the first guess pointmoves across the cube patch boundary,we first calculate the time that the arrival point reaches the cube patch boundary:

    wherexbis the coordinate of cube patch boundary.Then,the departure point is calculated by:

    whereubis the velocity atxb.At cube patch boundaries,the‘source term’ is calculated by one-side difference instead of the central difference in Eq.(15).

    We should note that the flux across the cube patch boundaries is calculated only once in this study.As shown inFig.6,A is the arrival point on a patch boundary and Adis the corresponding departure point on Patch 4.The point value of point A is calculated on Patch 4,and the flux across A is calculated by integrating the spatial approximation profile on Patch 4 along the Ad?A line segment.If Adis on Patch 1,the same process is executed for Patch 1,and so on for each patch boundary.

    4.Numerical simulations

    To verify the performance of the proposed transport model,several widely used benchmark tests,including solid body rotation,moving vortices,and deformational flow tests are performed on the spherical mesh.

    The normalized errors proposed byWilliamson et al.(1992)are used:

    Fig.6.Illustration of departure points along patch boundary.

    where ? is the whole computational domain andqandqtrefer to numerical solutions (volume-integrated average in our paper) and exact solutions,respectively.

    4.1.Solid-body rotation tests

    The solid-body rotation test (Williamson et al.,1992) is widely used in two-dimensional spherical transport modeling to evaluate the performance of a transport model.The wind components in the latitude-longitude coordinates (λ,θ)are defined as:

    where (us,vs) is the velocity vector,u0=2πR/1036800(1036800 s equals 12 days),which means it takes 12 days to complete a full revolution on the sphere,R is the radius of the sphere,and α is a parameter which controls the rotation angle.In this test,two kinds of initial conditions are used,including a cosine bell and a step cylinder.

    4.1.1.Solid body rotation of a cosine bell

    The initial condition of a cosine bell test is specified as:

    whererdis the great circle distance between ( λ,θ) and the center of the cosine bell,located at ( 3π/2,0),r0=7πR/64 is the radius of the cosine bell,andh0=1.

    The normalized errors on 32×32×6 meshes and with 256 time steps compared with other existing published semi-Lagrangian schemes,the PPM-M scheme (Zerroukat et al.,2007) and CSLAM-M (Lauritzen et al.,2010),are presented inTable 1.The result shows that CSLR1 and CSLR1-M get almost the same result.And our scheme is com-parable to the PPM-M scheme,and the result in the nearpole flow direction (α =π/2 and α=π/2?0.05) is better than the CSLAM-M scheme.

    Table 1.Comparison of the normalized errors of rotation of a cosine bell after one revolution with other published schemes.

    To check the influence of the weak singularities at the eight vertices of the cubed-sphere gird,this test is conducted with α=π/4 to pass through four vertices.The history of normalized errors (CSLR1 and CSLR1-M are almost the same,so we only present the result of CSLR1-M here) are shown inFig.7.We can see that the normalized errors have little fluctuations (except thel∞errors at around day 4 and day 10) when the flow passes four weak singularities.

    To demonstrate the ability of the CSLR1-M scheme using a large Courant number to transport,we use 72 time steps (local maximum Courant number is about 1.78) with rotation angle α=π/2 to complete one revolution.The normalized errors arel1=0.052,l2=0.046,andl∞=0.061.

    4.1.2.Solid body rotation of a step cylinder

    Fig.7.History of normalized errors of the solid body rotation of a cosine bell for one revolution on grid N=32 (number of cells in one direction on each cell),256 time steps and with α =π/4.

    A non-smooth step cylinder is calculated to evaluate the non-oscillatory property.The initial distribution is specified as

    whererdis the great circle distance between (λ,θ) and(3π/2,0),which is the center of the step cylinder,r1=2/3Randr2=1/3R.

    In this test,we set α=π/4,which is the most challenging case of the rotation test where the step cylinder moves through four vertices and along two boundary edges of the cubed-sphere grid to complete a full revolution.Here,we use 90×90×6 meshes and 720 time steps to conduct this test.The numerical results after 12 days are shown inFig.8,and we can see that the CSL2 scheme will generate obvious oscillations around the discontinuities.By using the CLSR1 and CSLR1-M approaches,these nonphysical oscillations are effectively removed.The maximum and minimum value of CSL2 areqmax=1034.23 andqmin=?2.45,and for CLSR1 and CSLR1-M they areqmax=1001.85 andqmin=0.The history of relative mass errors is given inFig.9,which shows that the relative mass errors are up to the tolerance of machine precision,therefore the proposed global transport model is exactly mass conservative during the simulation procedure.

    4.2.Moving vortices on the sphere

    The second benchmark test we used is the moving vortices test proposed byNair and Jablonowski (2008).The wind component of this test is a combination of the solid body rotation test and two vortices,and it is much more complicated than the solid body rotation test.The velocity fields on the sphere are specified as:

    Fig.8.Numerical results of solid body rotation of the step cylinder after one revolution (12 days).(a) is the result of CSL2,(b) is the result of CSLR1,and (c) is the result of CSLR1-M.

    Fig.9.The time history of relative mass error for solid body rotation of the step cylinder test case by the CSLR1-M scheme.

    whereusandvsare calculated by Eqs.(37) and (38),and the rotation angle of this test is set to be α=π/4.ρ0=3,λc(t)and θc(t) are the center of the moving vortex at timet,and the calculation procedure of λc(t) and θc(t) can be found in(Nair and Jablonowski,2008).

    The tracer field is defined as:

    where γ is a parameter to control the smoothness of the tracer field,(λ′,θ′) is the rotated spherical coordinates,which can be calculated by:

    This test is conducted on 80 × 80 × 6 meshes and uses 400 time steps to move forward 12 days.The contour plots inFig.10show that compared with the exact solution,our proposed scheme can simulate this complicated procedure well.The plot along the equator is presented inFig.11,and it shows that there are no obvious oscillations around large gradients.The normalized errors of CSLR1 and CSLR1-M are almost the same,beingl1=5.295×10?2,l2=0.1295,andl∞=0.5667,respectively.The histories of minimum values are shown inFig.12,where we can see that the CSLR1 scheme would produce negative values during the simulation procedure,while the minimum values of CSLR1-M can completely preserve positivity (the minimum values are within the machine precision).

    4.3.Deformational flow test

    The last benchmark test used in our paper is the deformational flow test proposed byNair and Lauritzen (2010),which is the most challenging test case.The nondivergent and time-dependent flow fields are defined as:

    where κ =2,T=5,and λ′=λ?(2πt/T).

    Two kinds of initial conditions are checked here,including the twin slotted cylinders case to evaluate the positivity preserving property and correlated cosine bells to evaluate the nonlinear correlations between tracers (Lauritzen and Thuburn,2012).By the given flow fields,the initial distributions will be deformed into thin bars during the first half period,then return to its initial state during the second half period.

    Fig.10.Contour plot of moving vortices after 12 days.(a) is the exact solution,(b) is the result of the CSLR1-M scheme.

    Fig.11.Plot along the equator for the moving vortices test at 12 days.

    4.3.1.Deformation of twin slotted cylinders

    The initial condition is defined as:

    wherer0=0.5 andri(i=1,2) represent the great circle distances between the center of the two slotted cylinders and a given point.The centers of the two slotted cylinders are located at (λ1,θ1)=(5π/6,0) and (λ2,θ2)=(7π/6,0),respectively.

    Fig.12.The histories of minimum values qmin of the moving vortices test.(a) is the result of the CSLR1 scheme,(b) is the result of the CSLR1-M scheme.

    The numerical results of deformational flow of the CSLR1-M scheme with 90 × 90 × 6 meshes and with 390 time steps (local maximum Courant number is about 3) are shown inFig.13.As shown inFig.13b,the two slotted cylinders are deformed into two thin filaments by the background flow field during the first half period.Figure 13 cgives the counters of the slotted cylinders at the final time,and it is indicated that the proposed scheme can correctly reproduce this complicated deformational flow and does not produce oscillations.The histories of minimum values are shown inFig.14,which indicates that the CSLR1 scheme would produce negative values,while the CSLR1-M scheme keeps minimum values within the tolerance of machine precision,which can be viewed as non-negativity.The Normalized errors arel1=0.3287,l2=0.3321,andl∞=0.9415 for both the CSLR1 and CSLR1-M schemes.

    4.3.2.Deformation of correlated cosine bells

    To check the ability of preserving nonlinearly correlated relations between two tracers,we used two kinds of tracers.One is the quasi-smooth twin cosine bells:

    The other one is the correlated cosine bells:

    where ψ (q)=?0.8q2+0.9.

    This test is conducted on 90×90×6 meshes with 1800 time steps.The scatter plot of numerical result att=T/2 is shown inFig.15.The solution of cosine bells is in the x-direction,and the correlated cosine bells is in the y-direction.The mixing diagnostics arelr=1.05×10?3,lu=2.40×10?5,andl0=5.57×10?4,respectively (seeLauritzen and Thuburn,2012) for the detail definition of these three parameters).The CSLR1-M scheme is built using a monotone rational polynomial with modest accuracy,which always overly flattens the maximum and minimum values,as shown in the bottom-right corner ofFig.15.In the whole,the scattering points of the CSLR1-M scheme are almost located inside the convex hull which means that the CSLR1-M scheme can preserve nonlinearly correlated relations between tracers well.

    5.Summary

    In this paper,a non-negativity and conservative semi-Lagrangian transport scheme based on a multi-moment finite volume method has been developed on the cubed-sphere grid.By using the PV moment and VIA moment,a rational function is constructed as a spatial approximation function within a single cell instead of the non-monotonic CSL2 scheme to suppress the numerical oscillations and keep the monotonicity.In terms of multi-moment concepts,the VIA moment is cast by utilizing the flux form formulation to guarantee the exact numerical conservation.In the CSLR1 scheme,the semi-Lagrangian method is adopted to update the PV moments,which keeps good properties of the semi-Lagrangian scheme.To simplify the implementation in curvilinear (cubed-sphere) geometry,a dimension-splitting time stepping strategy is combined with the multi-moment finite volume method.In the case of a valley of the transported field,two kinds of modifications are conducted on the original CSLR1 scheme for exactly positive-definite preservation.Note that the improved CSLR1-M scheme dose not degrade the accuracy of the original CSLR1 scheme.The numerical results show that the CSLR1-M scheme is nonoscillatory and can preserve the non-linear correlations between tracers.In addition,the semi-Lagrangian approach permits a large time step,which can greatly improve computational efficiency.The quality of the present transport modelling has been demonstrated by the widely used benchmark tests on a cubed-sphere grid.The results reveal that the developed transport modelling not only can effectively remove nonphysical oscillations,but it can also preserve the non-negativity of numerical solutions,which indicates that it has the potential to simulate the various tracers accurately for real applications.When the mass sources such as evaporation,condensation,etc.are involved in real simulation,they can be added to each PV variable through a fractional step in the multi-moment model after the tracers are advected by the CSLR scheme.Furthermore,a positivity constraint is also imposed on the source terms.

    Fig.13.Numerical result of deformational flow of slotted cylinder after one period by the CSLR1-M scheme.(a) is the exact solution,(b) is the numerical solution at half cycle,(c) is the numerical solution after one cycle.

    Fig.14.Histories of minimum values qmin of deformation of the twin slotted cylinder test case.(a) is the result of the CSLR1 scheme,(b) is the result of the modified CSLR1-M scheme.

    Fig.15.Scatter plot of nonlinearly correlated cosine bell at t=T/2.

    Acknowledgments.This work was supported by the National Key Research and Development Program of China (Grant Nos.2017YFC1501901 and 2017YFA0603901) and the Beijing Natural Science Foundation (Grant No.JQ18001).

    Open AccessThis article is distributed under the terms of the Creative Commons Attribution License which permits any use,distribution,and reproduction in any medium,provided the original author(s) and the source are credited.This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),which permits unrestricted use,distribution,and reproduction in any medium,provided you give appropriate credit to the original author(s) and the source,provide a link to the Creative Commons license,and indicate if changes were made.

    亚洲第一av免费看| 99re6热这里在线精品视频| 夫妻性生交免费视频一级片| 一区二区av电影网| 国产1区2区3区精品| 人妻系列 视频| 国产精品久久久av美女十八| 中文字幕另类日韩欧美亚洲嫩草| 日韩大片免费观看网站| 大片免费播放器 马上看| 欧美亚洲日本最大视频资源| 国产毛片在线视频| 日本与韩国留学比较| 黑人猛操日本美女一级片| 99久国产av精品国产电影| 久久久久久久大尺度免费视频| 久久av网站| 日韩av不卡免费在线播放| 国产精品人妻久久久影院| 毛片一级片免费看久久久久| 国产在线一区二区三区精| 久久久久国产网址| 香蕉国产在线看| 精品一区在线观看国产| 曰老女人黄片| 精品视频人人做人人爽| 91午夜精品亚洲一区二区三区| 啦啦啦在线观看免费高清www| 春色校园在线视频观看| 国产日韩欧美亚洲二区| 免费女性裸体啪啪无遮挡网站| 国产成人91sexporn| 在线观看免费高清a一片| 久热久热在线精品观看| 成人免费观看视频高清| 日本vs欧美在线观看视频| 91精品国产国语对白视频| 女的被弄到高潮叫床怎么办| 国产免费现黄频在线看| 亚洲欧洲国产日韩| 美国免费a级毛片| 国产深夜福利视频在线观看| 中文字幕人妻丝袜制服| 久久久国产一区二区| 欧美 亚洲 国产 日韩一| 久久久a久久爽久久v久久| 夫妻性生交免费视频一级片| 在线观看三级黄色| 亚洲国产精品成人久久小说| 亚洲精品一二三| 丝袜人妻中文字幕| 黄色怎么调成土黄色| 久久人人爽人人片av| 国产av一区二区精品久久| 精品福利永久在线观看| 多毛熟女@视频| 水蜜桃什么品种好| 国产毛片在线视频| 亚洲天堂av无毛| 青青草视频在线视频观看| 麻豆乱淫一区二区| 黄色配什么色好看| 少妇人妻久久综合中文| 在线 av 中文字幕| 亚洲精品一二三| 国产黄频视频在线观看| 黄色毛片三级朝国网站| 在线观看人妻少妇| 亚洲精品乱码久久久久久按摩| 欧美另类一区| 妹子高潮喷水视频| 成人亚洲精品一区在线观看| 免费不卡的大黄色大毛片视频在线观看| 一区二区三区乱码不卡18| 国产日韩欧美亚洲二区| 欧美日韩一区二区视频在线观看视频在线| 国产精品免费大片| 在线观看www视频免费| 亚洲成av片中文字幕在线观看 | 国产成人精品久久久久久| 亚洲精品乱久久久久久| 韩国av在线不卡| 宅男免费午夜| 人人妻人人澡人人看| 精品少妇内射三级| 夜夜爽夜夜爽视频| av播播在线观看一区| 色视频在线一区二区三区| 飞空精品影院首页| 黑丝袜美女国产一区| 中国三级夫妇交换| 97精品久久久久久久久久精品| 久久毛片免费看一区二区三区| 久久99精品国语久久久| 在线观看免费高清a一片| 97在线人人人人妻| 国产精品 国内视频| 欧美精品av麻豆av| 最近的中文字幕免费完整| 欧美 日韩 精品 国产| 日本欧美视频一区| 日韩一区二区视频免费看| 日韩,欧美,国产一区二区三区| 亚洲av日韩在线播放| 成人亚洲欧美一区二区av| 日本免费在线观看一区| 亚洲激情五月婷婷啪啪| 亚洲一区二区三区欧美精品| 美女主播在线视频| 欧美人与性动交α欧美精品济南到 | 欧美成人午夜免费资源| 精品一区二区三卡| 考比视频在线观看| videosex国产| 免费高清在线观看视频在线观看| 91精品国产国语对白视频| 国产亚洲av片在线观看秒播厂| 男女免费视频国产| 啦啦啦中文免费视频观看日本| 免费黄网站久久成人精品| 一级片'在线观看视频| 国产精品久久久久成人av| 久久婷婷青草| 69精品国产乱码久久久| 在现免费观看毛片| 成年人免费黄色播放视频| 菩萨蛮人人尽说江南好唐韦庄| 春色校园在线视频观看| 久久av网站| 又大又黄又爽视频免费| 久久久久精品性色| 亚洲中文av在线| 亚洲成国产人片在线观看| 曰老女人黄片| videosex国产| 男女高潮啪啪啪动态图| 日日啪夜夜爽| 视频在线观看一区二区三区| 好男人视频免费观看在线| 男人添女人高潮全过程视频| 日本午夜av视频| 精品少妇内射三级| 日韩一区二区视频免费看| 街头女战士在线观看网站| 大片免费播放器 马上看| 精品国产一区二区三区四区第35| av免费观看日本| 成人无遮挡网站| 久久精品熟女亚洲av麻豆精品| 亚洲精品日韩在线中文字幕| 久久午夜福利片| 国产xxxxx性猛交| 久久99精品国语久久久| 亚洲婷婷狠狠爱综合网| 18禁国产床啪视频网站| 国产精品国产三级国产av玫瑰| 国产精品一区www在线观看| 欧美变态另类bdsm刘玥| 男女免费视频国产| 国产男人的电影天堂91| 日韩欧美精品免费久久| 老熟女久久久| 亚洲精品美女久久av网站| 亚洲精品乱码久久久久久按摩| 国产麻豆69| 在线观看国产h片| 日韩欧美精品免费久久| 欧美亚洲日本最大视频资源| 99久久人妻综合| 另类亚洲欧美激情| 成人亚洲精品一区在线观看| 精品人妻偷拍中文字幕| 26uuu在线亚洲综合色| 亚洲精品色激情综合| 99九九在线精品视频| 少妇精品久久久久久久| 天天躁夜夜躁狠狠久久av| 日韩制服骚丝袜av| 亚洲精品av麻豆狂野| 久久99热6这里只有精品| 国产淫语在线视频| 成人亚洲精品一区在线观看| 精品熟女少妇av免费看| 女人精品久久久久毛片| 亚洲欧美日韩卡通动漫| 久久久精品区二区三区| 人人妻人人爽人人添夜夜欢视频| 国产精品一国产av| 啦啦啦中文免费视频观看日本| 国产精品一二三区在线看| 亚洲,欧美精品.| 亚洲一区二区三区欧美精品| 搡老乐熟女国产| 秋霞在线观看毛片| 男女无遮挡免费网站观看| 免费女性裸体啪啪无遮挡网站| 成人国语在线视频| 最近手机中文字幕大全| av线在线观看网站| 久热这里只有精品99| 精品人妻熟女毛片av久久网站| 久久久亚洲精品成人影院| 亚洲精品自拍成人| 亚洲av福利一区| 午夜免费鲁丝| 午夜激情av网站| av黄色大香蕉| 黄色配什么色好看| 日本av免费视频播放| 亚洲av福利一区| 热re99久久国产66热| 中文字幕亚洲精品专区| 国产福利在线免费观看视频| 亚洲高清免费不卡视频| 乱人伦中国视频| 蜜桃在线观看..| 美女国产高潮福利片在线看| 国产精品一区www在线观看| 十八禁高潮呻吟视频| 成人免费观看视频高清| 久久精品国产自在天天线| 久久人人爽av亚洲精品天堂| 麻豆精品久久久久久蜜桃| 成年女人在线观看亚洲视频| 国产白丝娇喘喷水9色精品| 波多野结衣一区麻豆| 两个人看的免费小视频| 一边摸一边做爽爽视频免费| 久久亚洲国产成人精品v| 新久久久久国产一级毛片| 国产精品麻豆人妻色哟哟久久| 精品熟女少妇av免费看| 国产亚洲午夜精品一区二区久久| a 毛片基地| 两个人免费观看高清视频| 久久人妻熟女aⅴ| 亚洲综合色惰| 婷婷色综合www| 下体分泌物呈黄色| 中文字幕人妻熟女乱码| 视频区图区小说| 日本猛色少妇xxxxx猛交久久| 午夜福利影视在线免费观看| 亚洲国产欧美日韩在线播放| 一区二区日韩欧美中文字幕 | 一级,二级,三级黄色视频| 免费不卡的大黄色大毛片视频在线观看| 一二三四中文在线观看免费高清| 亚洲国产成人一精品久久久| 成人免费观看视频高清| 免费大片18禁| 久久久久网色| 国产在线一区二区三区精| 成人免费观看视频高清| 一本色道久久久久久精品综合| 国产精品嫩草影院av在线观看| 日本黄色日本黄色录像| 精品一区在线观看国产| 亚洲精品久久成人aⅴ小说| 一区二区av电影网| 中文字幕免费在线视频6| 18在线观看网站| 亚洲成人手机| 黄色一级大片看看| 综合色丁香网| 亚洲,欧美精品.| 午夜激情久久久久久久| 在线观看人妻少妇| 亚洲综合色惰| 亚洲伊人色综图| 在线观看免费日韩欧美大片| 亚洲欧美一区二区三区国产| 男女免费视频国产| 99久国产av精品国产电影| av有码第一页| 亚洲,一卡二卡三卡| kizo精华| 97在线视频观看| 国产一区有黄有色的免费视频| 少妇被粗大猛烈的视频| 香蕉精品网在线| 国产精品国产三级专区第一集| 色婷婷久久久亚洲欧美| 午夜福利在线观看免费完整高清在| 亚洲精品av麻豆狂野| 日韩成人伦理影院| 伦理电影免费视频| 国产av一区二区精品久久| 最近最新中文字幕免费大全7| 黄色 视频免费看| 最新的欧美精品一区二区| 国内精品宾馆在线| 香蕉丝袜av| 中文字幕av电影在线播放| 97超碰精品成人国产| 国产国拍精品亚洲av在线观看| 国产乱人偷精品视频| 国产熟女午夜一区二区三区| 啦啦啦啦在线视频资源| 亚洲精品日韩在线中文字幕| 免费黄色在线免费观看| 亚洲av国产av综合av卡| 少妇人妻精品综合一区二区| 日韩人妻精品一区2区三区| 亚洲精品国产av成人精品| 赤兔流量卡办理| 亚洲欧美成人综合另类久久久| 2021少妇久久久久久久久久久| 在线观看免费视频网站a站| 蜜臀久久99精品久久宅男| www.熟女人妻精品国产 | 免费女性裸体啪啪无遮挡网站| 一级毛片电影观看| 久久人人爽人人片av| 欧美激情极品国产一区二区三区 | 久久久久久人人人人人| 色94色欧美一区二区| 一本色道久久久久久精品综合| 亚洲精品av麻豆狂野| 日韩制服丝袜自拍偷拍| 国产高清不卡午夜福利| √禁漫天堂资源中文www| 乱码一卡2卡4卡精品| 久久精品久久久久久噜噜老黄| 久久久精品区二区三区| 国产精品 国内视频| 婷婷色综合www| 免费av不卡在线播放| av国产精品久久久久影院| 深夜精品福利| 国产成人av激情在线播放| 国产又色又爽无遮挡免| 有码 亚洲区| 亚洲第一av免费看| 一级片'在线观看视频| 国产精品久久久av美女十八| 午夜激情久久久久久久| 久久这里有精品视频免费| 国产一区亚洲一区在线观看| 午夜福利视频在线观看免费| 中国三级夫妇交换| 国产色婷婷99| 有码 亚洲区| 久久精品熟女亚洲av麻豆精品| 在线观看三级黄色| 在线观看免费视频网站a站| 久久人人爽人人爽人人片va| 日韩电影二区| 国产精品三级大全| 久久毛片免费看一区二区三区| 男女边吃奶边做爰视频| 蜜桃在线观看..| 成人影院久久| 人妻一区二区av| 欧美精品av麻豆av| 伦精品一区二区三区| 人人澡人人妻人| 亚洲成av片中文字幕在线观看 | 永久网站在线| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 校园人妻丝袜中文字幕| av黄色大香蕉| 91国产中文字幕| 男人爽女人下面视频在线观看| 午夜免费男女啪啪视频观看| 少妇人妻 视频| 欧美人与性动交α欧美软件 | 亚洲精品乱久久久久久| 国产黄色视频一区二区在线观看| 亚洲精华国产精华液的使用体验| 观看av在线不卡| 高清欧美精品videossex| 国产淫语在线视频| 黄片无遮挡物在线观看| 女性被躁到高潮视频| 日韩电影二区| 久久精品国产自在天天线| 国产精品一区www在线观看| 日韩,欧美,国产一区二区三区| 日韩大片免费观看网站| 久久久久网色| 深夜精品福利| 亚洲国产欧美在线一区| 美女视频免费永久观看网站| 熟女电影av网| 黄片播放在线免费| av在线app专区| 久久99蜜桃精品久久| xxxhd国产人妻xxx| 黄色怎么调成土黄色| av黄色大香蕉| 纵有疾风起免费观看全集完整版| 国产成人av激情在线播放| 国产色婷婷99| 亚洲精品自拍成人| 亚洲成人手机| 国产伦理片在线播放av一区| 欧美bdsm另类| 午夜老司机福利剧场| 赤兔流量卡办理| 最新中文字幕久久久久| 97人妻天天添夜夜摸| 五月开心婷婷网| 久久久久人妻精品一区果冻| 欧美精品高潮呻吟av久久| 69精品国产乱码久久久| 一级黄片播放器| 免费观看av网站的网址| 亚洲精品av麻豆狂野| 18+在线观看网站| 欧美日韩国产mv在线观看视频| 成人亚洲精品一区在线观看| 最近手机中文字幕大全| 22中文网久久字幕| 国产亚洲一区二区精品| 亚洲熟女精品中文字幕| 亚洲精品一区蜜桃| 国产精品人妻久久久影院| 成年动漫av网址| 一级毛片电影观看| 国产在线视频一区二区| 亚洲婷婷狠狠爱综合网| 国产免费一级a男人的天堂| 狂野欧美激情性bbbbbb| 哪个播放器可以免费观看大片| 成年av动漫网址| 日韩大片免费观看网站| 两个人免费观看高清视频| 欧美性感艳星| 精品酒店卫生间| 人妻人人澡人人爽人人| 精品人妻偷拍中文字幕| 亚洲精品中文字幕在线视频| 极品人妻少妇av视频| 午夜影院在线不卡| 精品一区在线观看国产| 成年人免费黄色播放视频| 久久午夜福利片| 亚洲国产精品一区二区三区在线| 国产黄色视频一区二区在线观看| 国产精品无大码| 女的被弄到高潮叫床怎么办| 国产成人免费观看mmmm| 午夜福利乱码中文字幕| 欧美日韩视频高清一区二区三区二| 精品人妻熟女毛片av久久网站| 91精品伊人久久大香线蕉| 最近中文字幕2019免费版| 亚洲av免费高清在线观看| 男女啪啪激烈高潮av片| 亚洲av综合色区一区| 亚洲国产av新网站| 日韩视频在线欧美| 国产日韩一区二区三区精品不卡| 大香蕉久久网| 老司机影院成人| 亚洲激情五月婷婷啪啪| 中文字幕制服av| 亚洲av男天堂| 亚洲人成网站在线观看播放| 久久 成人 亚洲| 狠狠婷婷综合久久久久久88av| av女优亚洲男人天堂| 欧美日韩成人在线一区二区| 欧美成人午夜免费资源| 色网站视频免费| 老司机影院成人| 免费人妻精品一区二区三区视频| 高清毛片免费看| 大片电影免费在线观看免费| 亚洲,欧美精品.| 99久久综合免费| 国产女主播在线喷水免费视频网站| 少妇熟女欧美另类| 免费播放大片免费观看视频在线观看| 成人综合一区亚洲| 校园人妻丝袜中文字幕| 日本免费在线观看一区| 青春草国产在线视频| 亚洲色图 男人天堂 中文字幕 | 天堂中文最新版在线下载| 亚洲五月色婷婷综合| 69精品国产乱码久久久| 天天影视国产精品| 观看美女的网站| 99视频精品全部免费 在线| 欧美xxxx性猛交bbbb| 久久99精品国语久久久| 极品少妇高潮喷水抽搐| 狂野欧美激情性xxxx在线观看| 国产成人精品福利久久| a级毛片黄视频| 久久99蜜桃精品久久| 日日啪夜夜爽| 久久ye,这里只有精品| 国产白丝娇喘喷水9色精品| 国产老妇伦熟女老妇高清| 男女边摸边吃奶| 天天躁夜夜躁狠狠躁躁| 国产成人精品婷婷| 国产一区二区三区综合在线观看 | 亚洲精品乱码久久久久久按摩| 女的被弄到高潮叫床怎么办| 久久人人爽人人爽人人片va| 日本黄色日本黄色录像| 老司机影院成人| 午夜av观看不卡| 午夜福利视频在线观看免费| 国产精品女同一区二区软件| 国产精品久久久久久久电影| 国产日韩欧美视频二区| 极品人妻少妇av视频| 少妇被粗大的猛进出69影院 | 在线精品无人区一区二区三| 欧美 亚洲 国产 日韩一| 91国产中文字幕| 免费黄频网站在线观看国产| av天堂久久9| 成人亚洲欧美一区二区av| 少妇 在线观看| 在线观看免费日韩欧美大片| 免费黄频网站在线观看国产| 青青草视频在线视频观看| 欧美日韩一区二区视频在线观看视频在线| 久久久精品区二区三区| 爱豆传媒免费全集在线观看| 亚洲久久久国产精品| 国产在视频线精品| 在线观看免费日韩欧美大片| tube8黄色片| 欧美日韩视频高清一区二区三区二| 日本免费在线观看一区| 亚洲成人一二三区av| 日韩中文字幕视频在线看片| 欧美人与善性xxx| 日本欧美国产在线视频| 婷婷色综合大香蕉| 精品一品国产午夜福利视频| 国产成人a∨麻豆精品| 欧美精品人与动牲交sv欧美| 丝瓜视频免费看黄片| 国产视频首页在线观看| 99国产综合亚洲精品| 国产 精品1| 国产麻豆69| 亚洲精品一二三| 夜夜骑夜夜射夜夜干| 日本av免费视频播放| 国产又爽黄色视频| 免费观看无遮挡的男女| 男女啪啪激烈高潮av片| 97在线人人人人妻| 黄片播放在线免费| 高清黄色对白视频在线免费看| 亚洲国产成人一精品久久久| 国产精品欧美亚洲77777| 波野结衣二区三区在线| a级毛色黄片| 爱豆传媒免费全集在线观看| 国产一区二区三区综合在线观看 | 一区在线观看完整版| 久久狼人影院| 大片免费播放器 马上看| 亚洲精品久久久久久婷婷小说| 精品亚洲成国产av| 久久99热这里只频精品6学生| 亚洲av日韩在线播放| 精品99又大又爽又粗少妇毛片| 亚洲欧洲日产国产| 最近中文字幕2019免费版| 欧美丝袜亚洲另类| av又黄又爽大尺度在线免费看| 免费大片黄手机在线观看| 日韩 亚洲 欧美在线| 久久久久久伊人网av| 亚洲成av片中文字幕在线观看 | 国产一级毛片在线| 午夜激情久久久久久久| 色94色欧美一区二区| 青春草国产在线视频| 亚洲av福利一区| 久久久国产精品麻豆| 青春草国产在线视频| 亚洲国产欧美在线一区| 成人免费观看视频高清| 黄网站色视频无遮挡免费观看| xxx大片免费视频| 成人免费观看视频高清| 麻豆精品久久久久久蜜桃| 亚洲av福利一区| 国产免费现黄频在线看| 丰满饥渴人妻一区二区三| 久久久国产一区二区| 亚洲人成77777在线视频| 国产日韩欧美视频二区| 中文精品一卡2卡3卡4更新| 亚洲中文av在线| a级毛色黄片| 欧美精品国产亚洲| 免费高清在线观看日韩| 婷婷成人精品国产| 男女高潮啪啪啪动态图| 免费观看在线日韩| 纯流量卡能插随身wifi吗| 搡老乐熟女国产| 久久99一区二区三区| 内地一区二区视频在线| 人人澡人人妻人| 日韩人妻精品一区2区三区| 丝袜喷水一区| 久久97久久精品| 欧美日韩成人在线一区二区| 男人添女人高潮全过程视频| 久久精品国产综合久久久 | 亚洲国产毛片av蜜桃av|