• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Robust optimization design on impeller of mixed-flow pump

    2021-07-16 07:14:38,

    , , , , ,

    (1.School of Energy and Power Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; 2.School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, China)

    Abstract: To increase the robustness of the optimization solutions of the mixed-flow pump, the impeller was firstly indirectly parameterized based on the 2D blade design theory.Secondly, the robustness of the optimization solution was mathematically defined, and then calculated by Monte Carlo sampling method.Thirdly, the optimization on the mixed-flow pump′s impeller was decomposed into the optimal and robust sub-optimization problems, to maximize the pump head and efficiency and minimize the fluctuation degree of them under varying working conditions at the same time.Fourthly, using response surface model, a surrogate model was established between the optimization objectives and control variables of the shape of the impeller.Finally, based on a multi-objective genetic optimization algorithm, a two-loop iterative optimization process was designed to find the optimal solution with good robustness.Comparing the original and optimized pump, it is found that the internal flow field of the optimized pump has been improved under various operating conditions, the hydraulic performance has been improved consequently, and the range of high efficient zone has also been widened.Besides, with the changing of working conditions, the change trend of the hydraulic performance of the optimized pump becomes gentler, the flow field distribution is more uniform, and the influence degree of the varia-tion of working conditions decreases, and the operating stability of the pump is improved.It is concluded that the robust optimization method proposed in this paper is a reasonable way to optimize the mixed-flow pump, and provides references for optimization problems of other fluid machinery.

    Key words: mixed-flow pump;multi-objective genetic optimization;robust optimization;response surface method;2D blade design theory

    The mixed-flow pump is widely used in a variety of industrial fields as a good substitution of the centri-fugal pump and axial-pump.However, uncertainties such as the random fluctuation of working conditions will make the optimality and stability of the running pump worse[1-4].Therefore, it is of great engineering value and practical significance to find the optimal pump shape with strong anti-jamming capability from uncertainties.

    In existing researches, single-point and multi-point optimizations were mainly used for the mixed-flow pump.WANG, et al[5]used the surrogate model and intelligent optimization algorithm to optimize mixed-flow pumps.WANG, et al[6]optimized a mixed-flow pump under the design operating condition and studied its cavitation performance.JIN, et al[7]applied a weighted-average agent model in a mixed-flow pump optimization, considering the design and off-design operating conditions simultaneously.LIU, et al[8]optimized a mixed-flow pump to obtain the maximum weighted-average hydraulic performance under different working conditions.ZHOU[9]established a three-point hydraulic optimization method to improve pump efficiency under multiple working conditions.In these researches, environmental parameters, optimization va-riables, and objective functions were all predetermined excluding the influence of uncertainties.However, the pump′s performance and operating stability may deterio-rate greatly, once the working conditions fluctuate.

    Based on the above issues, this paper aims to develop a robust optimization method for the impeller of a mixed-flow pump to increase its hydraulic performance and working stability at the same time.

    1 Original pump

    As shown in Fig.1, the pump under investigation is a vertical mixed-flow pump with outlet guide vanes.Its main design specifications are a specific speed ofns=520.17, a flow rate ofQd=4 500 m3/h, and a head ofH=10.34 m at a rotating speed ofn=735 r/min.The main geometric parameters of its impeller are inlet diameterD1=532.58 mm, outlet diameterD2=663.10 mm, blade numberZ1=4.The main geometric parameters of its guide vanes are inlet diameterD3=706.54 mm, outlet diameterD4=641.61 mm, blade numberZ2=6.

    Fig.1 Schematic diagram of mixed-flow pump

    Numerical simulations are performed using ANSYS CFX software.From Fig.2, the computational domain consists of four parts including the inlet flow channel, impeller, guide vanes and outlet flow channel.Structured hexahedral grids are generated for the whole computational domain, and grids near the blade surface are refined with localy+less than 5.The total gird number is minimized to 3 132 042 through the grid indepen-dence test[10-13].

    Fig.2 Computational domain

    A uniform inlet flow distribution is imposed by setting the flow velocity and a turbulence density of 5%.The outlet is assumed to be a free flow outlet, and the static pressure is set to be 1.01×105Pa here.For the wall boundaries, the non-slip wall boundary condition is imposed.

    SSTk-εand standardk-εturbulence models are used for the(0.8-1.0)Qdand(1.0-1.4)Qdworking conditions respectively.The logarithmic wall function is employed to estimate the wall shear stress.The ″Frozen-Rotor-Interface″ model is used to transfer data between the rotor and stator[14-16].

    Simulated pump heads and efficiency are compa-red with the tested ones, as shown in Tab.1.It is found that they are in good agreement under all working conditions, and the maximum relative error is less than 5%.

    Tab.1 Comparison of the simulated and tested data

    Fig.3 shows the simulated static pressure contour on blade surfaces.Fig.4 shows the simulated relative streamlines in the impeller and absolute streamlines in the guide vanes.It is found that with the change of working conditions, the inner flow status in the impel-ler and guide vanes changes, which may aggravate the adverse flow, and lead to unstable flow status and extra energy loss in the original pump.Thus, robust optimization is used to improve its working stability under different working conditions.

    Fig.3 Static pressure contours on blade surfaces

    Fig.4 Relative streamlines in impeller and absolute streamlines in guide vanes

    2 Blade parameterization

    In the 2D blade design theory, a blade profile equation is constructed to build the mathematical relation between the space streamline wrap angle and the meridian streamline length, as shown in Eq.(1).It is also called the motion equation of fluid particle, because it reflects the three-dimensional flow track of particles in the impeller.

    (1)

    where,θrepresents space streamlinewrap angle;srepresents the meridians treamline length;ωrefers to the rotating speed;rrefers to the radial coordinate;vmrepresents the meridian velocity;vurrefers to the velocity moment.

    Using Eq.(1), each space streamline can be decided after the corresponding meridian streamline is given.Then, the blade shape can be decided by mixing all space streamlines and changed by giving the different distribution ofvur.

    According to the working principle of the vane pump, the velocity moment difference between the inlet and outlet of the impeller can be calculated by Eq.(2).

    (2)

    where, Δ(vur)refers to the velocity moment differe-nce;vu1r1andvu2r2are the velocity moment at the inlet and outlet respectively;Hrepresents the pump head;ηhrepresents the hydraulic efficiency;gis the gravitational acceleration.

    Then, by introducing a dimensionless quartic po-lynomial functionf(x),vurcan also be described as

    vur=vu1r1+f(x)·Δ(vur),

    (3)

    f(x)=ax4+bx3+cx2+dx+e,

    (4)

    where,xrepresents the relative meridian streamline length,x=s/s0;s0represents the total meridian strea-mline length;a,b,c,d, andeare coefficients which can be determined by boundary conditions given in Eq.(5).

    (5)

    In this way, giving differentx1,x2andx3, diffe-rent quartic polynomial functionf(x)is built, and then different distribution ofvuris given, and different blade shape is obtained.

    3 Robust optimization

    The robustness of feasible solutions is defined as the size of the variable region of objective functions caused by the variation of environmental parameters.It is mathematically defined as

    X∈Ω ,i=1, 2, …,m,

    (6)

    where,mdenotes the number of objective functions;crefers to the environmental parameters;X=(x1,x2, …,xn)represents the optimization variable;nrepresents the dimension of the optimization variable; Ω represents the feasible solution space;F(X)repre-sents the objective function;δrepresents the interfere-nce vector;Bδis the neighborhood with the interference vectorδas the radius.

    Since Eq.(6)is difficult to solve, the integral is replaced by summation using Monte Carlo sampling method.Eq.(6)is changed into a new form as

    (7)

    where,Mindicates the random sampling size in the disturbing neighborhoodBδ;ξjrepresents thej-th sample; and Norm(ξj)refers to the infinite vector norm ofξj.

    3.1 Optimization objectives

    To improve the headHand hydraulic efficiencyηof the mixed-flow pump, and reduce their fluctuation ranges as far as possible when the flow rate varies between 0.8Qdand 1.4Qd, the optimization problem is divided into two sub-optimization problems, including the optimal sub-optimization problem and the robust sub-optimization problem, as expressed by Eq.(8).

    (8)

    where,rH(X)andrη(X)are the robustness corresponding to the headH(X)and hydraulic efficiencyη(X)respectively.

    Using weight factorsλ1,λ2,λ3andλ4, the two optimization objective of each sub-optimization problem can be synthesized into a single objective as

    (9)

    Finally, the optimization problem turns into a two-objective maximization problem, in a form as

    Maximize[Optimal(X),-Robust(X)].

    (10)

    To give equal treatment toH(X),η(X),rH(X)andrη(X), weight factorsλ1,λ2,λ3andλ4are all set to be 0.5 here.

    3.2 Optimization variable and value range

    Parametersx1,x2, andx3constitute a three-dimensional optimization variable as

    X=[x1,x2,x3].

    (11)

    According to the previous research results, the ranges of the optimization variable are set to be 0

    3.3 Initial sample space

    According to the value range of the optimization variableX, a uniform design table U37(373)is used to arrange a 3-factor, 37-level initial sample space.Numerical simulations are performed in the whole flow channel of the 37 different pumps under different wor-king conditions.Then,H(X)andη(X)are obtained based on the simulated results.rH(X)andrη(X)are calculated using Eq.(7).Optimal(X)and-Robust(X)are calculated according to Eq.(9).The first 10 groups of data in the initial sample space are listed in Tab.2.

    Note that, data in Tab.2 are normalized using Eq.(12)to make them vary between 0 and 1.

    Tab.2 The first 10 groups of data in the initial sample space

    (12)

    where,iandjrefers to the index of row and columnyjminandyjmaxrefers to the minimal and maximum sample inj-column, andyjiindicates the sample ini-row andj-column.

    3.4 Optimization strategy

    Based on the first 32 groups of data in the initial sample space, response surface methodology(RSM)is used to construct surrogate models between the optimization variable and objective function.

    On the Matlab platform, a double-loop iterative optimization process is designed using a multi-objective genetic algorithm, as shown in Fig.5.

    Fig.5 Flow chart of the robust optimization

    The first generation of the population is generated randomly and has 200 individuals which are encoded and decoded by the binary encoding and decoding method.Then, the crossover probability, mutation probability and the Pareto-Fraction are set to be 0.8, 0.2 and 0.3, to produce the new generation of the po-pulation by selection, mutation and crossover operations.Thirdly, based on the pre-established RSM surrogate model, the fitness value of each new individual is assigned, and the individuals with high fitness value is selected out and manipulated to produce the next generation of the population by genetic operators.This step will be repeated until the preset maximum iteration number is reached or convergence conditions are satisfied.Finally, the optimal solution is chosen from the last generation of population.Comparisons are made between the RSM predicted and CFD calculated values.If the relative error between them is larger than 3%, the optimal solution will be re-added into the sample space, the surrogate model will be retrained, and the whole optimization process will repeat until the error requirements are met.

    4 Results and discussion

    The optimization is run on the Matlab platform with a 12 core 2.1 GHz workstation, and the convergence conditions are satisfied after 118 steps of iteration which costs about 48 hours.From the Pareto frontier, one optimal solutionX=[x1,x2,x3]=[0.313 1, 0.287 9, 0.001 9]is chosen.Then, nume-rical simulations are carried out on the optimized pump.Finally, based on simulation results, compari-sons are made between the original and optimized pumps.

    4.1 Comparison of hydraulic performance

    Fig.6 shows the simulatedH-Qandη-Qcurves of the original and optimized pump.

    Fig.6 Hydraulic performances before and after optimization

    It is observed that after optimization the efficiency under all working conditions is generally improved,the flow rate corresponding to the highest efficiency point shifts to the left about 0.1Qdand the highest efficiency point changes from 74.11% to 77.07%, with an increase of 2.96%.From theH-Qcurves, it is found that after optimization the head is slightly decreased under the small flow rate, and obviously increased after the flow rate reaches 1.25Qd.

    To make further comparisons, the width of the high efficiency zoneHEis defined as

    HE=(Q1-Q2)/QHE,

    (13)

    where,QHEis the flow rate corresponding toη=ηmax;Q1andQ2represent the upper and lower flow rate corresponding toη=0.95ηmax.

    It is found that theHEof the original pump is about 0.265, while theHEof the optimized one is 0.289, with a relative increase of 8.88%.Thus, it can be concluded that the high efficiency area of the mixed-flow pump is widened after optimization.

    4.2 Comparison of inner flow field

    Fig.7 shows the simulated static pressure contour on blade surfaces of the optimized pump.

    Fig.7 Static pressure contours on the blade surface after optimization

    Comparing it with Fig.3, it is found that, on the pressure side of the blade surfaces, the area of high pressure zone near the rim decreases after optimization, and the maximum pressure value decreases for the same condition.The small area of low pressure zone near the hub at the inlet also disappears under the 0.8Qdand 1.0Qdconditions, which indicates that the cavitation is weakened at the blade inlet side under the condition of small flow rate.With the increase of flow rate, the static pressure distribution on the optimized blade changes more uniformly, but a local low-pressure zone appears again at the inlet side of the blade when the flow rate reaches 1.4Qd.

    On the suction side of the blade surfaces, the small area of low pressure zone near the hub at the blade inlet edge disappears after optimization, and the local high pressure zone at the outlet edge is also wea-kened under the flow rate of 0.8Qd, 1.0Qdand 1.2Qd.With the increase of flow rate, although a local low-pressure zone still exists at approximately a third of the blade length near the blade inlet edge, the area of the low-pressure zone is significantly smaller than that be-fore optimization.It indicates that the possibility of ca-vitation is weakened.Based on the above analysis, it can be concluded that the static pressure distribution on the blade surface after robust optimization changes more uniformly with operating parameters.

    Fig.8 shows the simulated relative streamlines in the impeller and absolute streamlines in the guide vanes of the optimized pump.

    Fig.8 Relative streamlines in impeller and absolute streamlines in guide vanes after optimization

    Comparing it with Fig.4, it is found that, under the flow rate of 0.8Qdand 1.0Qd, the stability of flow in the mixed-flow pump has been greatly improved after optimization.The phenomenon of streamline staggering at the outlet of the impeller and inside the guide vane has been weakened.In addition, the number of vortices at the blade inlet decreases, and the vortices size becomes smaller.Under the flow rate of 1.0Qd, the vortex at the trailing edge of the guide vane disappears after optimization.With the increase of flow rate, stream-lines in the impeller and guide vane changes more uniformly after optimization, which indicates that the influence of flow rate fluctuation on adverse flow is weakened.

    5 Conclusions

    1)To improve hydraulic performances of the mixed-flow pump and minimize their fluctuation range in case of variations under working conditions, the robust optimization on the impeller of the pump can be decomposed into two sub-optimization problems including the optimal sub-optimization and the robust sub-optimization problem.

    2)The uniform test design is a good method to guarantee the reasonable distribution of the initial trai-ning samples for the establishment of the surrogate model.The RSM surrogate model has the smallest overall error and is more suitable for the optimization problem of the mixed-flow pump.

    3)Multi-objective genetic optimization algorithm is found to be an efficient way to solve the robust optimization model built for the impeller of the mixed-flow pump.A two-loop iterative optimization method is specially designed to upgrade the sample space and surrogate model with the optimization process, which ensures the rationality of the optimization direction, as well as the acquisition of the global optimal solutions.

    4)By comparing the hydraulic performance and internal flow field of the original and optimized pump, it is found that the hydraulic performance, the optimality and stability of the internal flow field of the pump under variable operating conditions are impro-ved, and influence the degree of the variation of ope-rating parameters is weakened.The robust optimization method proposed in this paper proves to be a reasonable way to optimize the mixed-flow pump, and provides references for optimization problems of other fluid machinery.

    国产亚洲午夜精品一区二区久久| 日本91视频免费播放| 在线免费观看不下载黄p国产| 国产精品亚洲av一区麻豆 | 国产成人91sexporn| 又粗又硬又长又爽又黄的视频| 校园人妻丝袜中文字幕| 亚洲精品久久午夜乱码| 亚洲av电影在线观看一区二区三区| 天美传媒精品一区二区| 婷婷色综合www| 五月天丁香电影| 久久久久国产精品人妻一区二区| 亚洲精品第二区| 麻豆乱淫一区二区| 婷婷成人精品国产| 啦啦啦中文免费视频观看日本| 午夜免费鲁丝| 国精品久久久久久国模美| 午夜日韩欧美国产| 日韩免费高清中文字幕av| 国产精品熟女久久久久浪| 久久精品亚洲熟妇少妇任你| 水蜜桃什么品种好| 丰满饥渴人妻一区二区三| 国产成人欧美| 女人被躁到高潮嗷嗷叫费观| 九九爱精品视频在线观看| 久久国产精品男人的天堂亚洲| 成人午夜精彩视频在线观看| 亚洲av中文av极速乱| 一边亲一边摸免费视频| 久热爱精品视频在线9| 国产淫语在线视频| 麻豆av在线久日| 欧美日韩亚洲国产一区二区在线观看 | 国产av码专区亚洲av| 成人国产麻豆网| 中文字幕av电影在线播放| 亚洲国产欧美日韩在线播放| 女人高潮潮喷娇喘18禁视频| 中文字幕人妻丝袜一区二区 | 狠狠精品人妻久久久久久综合| 国产毛片在线视频| 观看av在线不卡| 日韩成人av中文字幕在线观看| 亚洲五月色婷婷综合| 日韩一区二区视频免费看| 永久免费av网站大全| av网站在线播放免费| 2021少妇久久久久久久久久久| 国产日韩欧美亚洲二区| 在线看a的网站| 久久久久视频综合| 亚洲欧美精品综合一区二区三区| 黄片小视频在线播放| 这个男人来自地球电影免费观看 | 欧美激情极品国产一区二区三区| 一区二区av电影网| 又黄又粗又硬又大视频| 青春草视频在线免费观看| 国产成人精品久久久久久| 中文字幕色久视频| 9热在线视频观看99| 精品国产一区二区三区四区第35| 男女边摸边吃奶| 国产精品三级大全| 日韩一区二区三区影片| 伦理电影大哥的女人| 久久久久精品久久久久真实原创| 欧美日韩国产mv在线观看视频| 乱人伦中国视频| 久久久久精品人妻al黑| 菩萨蛮人人尽说江南好唐韦庄| 亚洲婷婷狠狠爱综合网| 在线观看人妻少妇| 亚洲av欧美aⅴ国产| 午夜久久久在线观看| 曰老女人黄片| 亚洲,欧美,日韩| 欧美日韩视频精品一区| 大片免费播放器 马上看| 男人舔女人的私密视频| 香蕉丝袜av| 一级毛片 在线播放| 精品久久久精品久久久| tube8黄色片| 最近最新中文字幕大全免费视频 | 成年人午夜在线观看视频| 国产又爽黄色视频| 日韩大码丰满熟妇| 久久 成人 亚洲| 韩国精品一区二区三区| 欧美日韩综合久久久久久| av片东京热男人的天堂| 亚洲欧美中文字幕日韩二区| 国产毛片在线视频| 久久久久精品久久久久真实原创| 不卡av一区二区三区| 欧美97在线视频| 国产女主播在线喷水免费视频网站| 国产激情久久老熟女| 午夜激情av网站| 久久天堂一区二区三区四区| 视频区图区小说| netflix在线观看网站| 一个人免费看片子| 十八禁人妻一区二区| 9色porny在线观看| 99久久人妻综合| 国产精品av久久久久免费| 一本色道久久久久久精品综合| 久久精品亚洲熟妇少妇任你| 午夜免费观看性视频| 午夜日本视频在线| 国产免费视频播放在线视频| 国产日韩欧美在线精品| 久久精品亚洲av国产电影网| 毛片一级片免费看久久久久| 精品国产一区二区三区四区第35| 波多野结衣一区麻豆| 日日爽夜夜爽网站| 欧美97在线视频| 天天躁夜夜躁狠狠久久av| 欧美精品av麻豆av| 久久精品国产a三级三级三级| 久久人妻熟女aⅴ| 国产激情久久老熟女| 一边摸一边做爽爽视频免费| 久久精品人人爽人人爽视色| 2018国产大陆天天弄谢| 欧美亚洲日本最大视频资源| 久久精品国产亚洲av高清一级| 亚洲国产中文字幕在线视频| 亚洲精品在线美女| 精品国产露脸久久av麻豆| 国产亚洲欧美精品永久| 天堂俺去俺来也www色官网| 亚洲精品美女久久久久99蜜臀 | av国产精品久久久久影院| 成年av动漫网址| 国产精品av久久久久免费| 熟女少妇亚洲综合色aaa.| 国产精品免费视频内射| 夫妻性生交免费视频一级片| 国产片内射在线| 99热全是精品| www.av在线官网国产| 99精品久久久久人妻精品| 啦啦啦视频在线资源免费观看| 嫩草影视91久久| 国产伦人伦偷精品视频| 国产男女内射视频| 妹子高潮喷水视频| 精品国产露脸久久av麻豆| 啦啦啦在线观看免费高清www| 成年人免费黄色播放视频| 69精品国产乱码久久久| 欧美乱码精品一区二区三区| 在线观看一区二区三区激情| 又大又爽又粗| 久久久久久久精品精品| 老司机靠b影院| 人人妻人人澡人人爽人人夜夜| 精品一区二区三区四区五区乱码 | 在线观看国产h片| 韩国av在线不卡| 欧美激情 高清一区二区三区| 麻豆av在线久日| 久久综合国产亚洲精品| 久久精品国产a三级三级三级| 免费观看人在逋| 色综合欧美亚洲国产小说| 最近2019中文字幕mv第一页| 久久久久久久久久久免费av| 中文字幕高清在线视频| 亚洲少妇的诱惑av| 久久精品国产亚洲av高清一级| 男女边吃奶边做爰视频| 国产精品国产三级国产专区5o| 国产成人一区二区在线| 亚洲免费av在线视频| 97精品久久久久久久久久精品| 国产在线视频一区二区| 亚洲欧洲日产国产| 女人被躁到高潮嗷嗷叫费观| 亚洲精品自拍成人| 欧美人与性动交α欧美软件| 捣出白浆h1v1| 中文字幕色久视频| 久久人人97超碰香蕉20202| 制服丝袜香蕉在线| 最近中文字幕高清免费大全6| 在线观看人妻少妇| 看非洲黑人一级黄片| 欧美国产精品va在线观看不卡| 欧美激情 高清一区二区三区| 精品久久久久久电影网| 啦啦啦啦在线视频资源| 精品免费久久久久久久清纯 | 国产精品一二三区在线看| 90打野战视频偷拍视频| 成人18禁高潮啪啪吃奶动态图| 国产乱人偷精品视频| 久久久久久久久久久久大奶| 一区二区三区乱码不卡18| 久久久欧美国产精品| 菩萨蛮人人尽说江南好唐韦庄| 国产黄色视频一区二区在线观看| 亚洲成人av在线免费| 多毛熟女@视频| 亚洲精品国产av蜜桃| 亚洲国产精品一区二区三区在线| 亚洲成人手机| 国产成人午夜福利电影在线观看| 精品午夜福利在线看| 黄色 视频免费看| 制服丝袜香蕉在线| 99久久综合免费| netflix在线观看网站| 一个人免费看片子| 操出白浆在线播放| 亚洲熟女毛片儿| 国产高清不卡午夜福利| 黄色怎么调成土黄色| 国产又爽黄色视频| 看非洲黑人一级黄片| 久久久久精品性色| 精品国产一区二区三区久久久樱花| 伦理电影免费视频| 男人添女人高潮全过程视频| 日本vs欧美在线观看视频| 久热爱精品视频在线9| 黑丝袜美女国产一区| 久久午夜综合久久蜜桃| 国产精品香港三级国产av潘金莲 | 国产1区2区3区精品| 男女无遮挡免费网站观看| 在线观看免费午夜福利视频| 黄网站色视频无遮挡免费观看| 叶爱在线成人免费视频播放| av在线播放精品| 精品一区二区三卡| 亚洲免费av在线视频| 国产无遮挡羞羞视频在线观看| 天堂中文最新版在线下载| 日本爱情动作片www.在线观看| 免费少妇av软件| 日本午夜av视频| 亚洲国产精品成人久久小说| 久久久久久久久久久免费av| 亚洲精品久久午夜乱码| 欧美老熟妇乱子伦牲交| www.精华液| 日韩制服丝袜自拍偷拍| 欧美人与性动交α欧美精品济南到| 老司机影院成人| 九草在线视频观看| 男女高潮啪啪啪动态图| 欧美97在线视频| 一区二区av电影网| 老司机靠b影院| a级毛片在线看网站| 美国免费a级毛片| 欧美黑人欧美精品刺激| 国产亚洲最大av| 亚洲少妇的诱惑av| 日韩精品有码人妻一区| 丝袜在线中文字幕| 大香蕉久久成人网| 久热爱精品视频在线9| 一级毛片黄色毛片免费观看视频| 国产成人免费无遮挡视频| 80岁老熟妇乱子伦牲交| av网站在线播放免费| 久久精品国产a三级三级三级| 街头女战士在线观看网站| a级毛片黄视频| 国产精品一区二区在线观看99| 久久影院123| 美女中出高潮动态图| 亚洲国产av新网站| 中文字幕亚洲精品专区| 这个男人来自地球电影免费观看 | 一区二区三区精品91| 国产精品嫩草影院av在线观看| 美女高潮到喷水免费观看| 国产亚洲最大av| 国产精品久久久av美女十八| 免费在线观看黄色视频的| 欧美精品亚洲一区二区| 亚洲七黄色美女视频| 中文字幕高清在线视频| 五月开心婷婷网| 久久热在线av| 在线观看免费视频网站a站| 女人精品久久久久毛片| 97在线人人人人妻| 久久久久精品久久久久真实原创| 久久久久久人人人人人| 国产 一区精品| 国产精品一区二区精品视频观看| 国产精品久久久久久人妻精品电影 | 国产精品久久久人人做人人爽| 国产成人免费观看mmmm| 另类精品久久| 99精国产麻豆久久婷婷| www.精华液| 亚洲国产成人一精品久久久| 国产熟女欧美一区二区| 国产亚洲午夜精品一区二区久久| 国产精品久久久久久久久免| 欧美精品一区二区大全| 不卡av一区二区三区| 天天添夜夜摸| 毛片一级片免费看久久久久| 女性生殖器流出的白浆| 国产成人免费无遮挡视频| 欧美人与善性xxx| 激情五月婷婷亚洲| 久久久精品免费免费高清| 自拍欧美九色日韩亚洲蝌蚪91| 中文字幕制服av| 国产精品成人在线| 亚洲熟女毛片儿| 久久久亚洲精品成人影院| 女性被躁到高潮视频| 亚洲av电影在线进入| 久久精品久久精品一区二区三区| 国产一区二区三区综合在线观看| 人人妻人人添人人爽欧美一区卜| 国产成人一区二区在线| 精品一区二区三区av网在线观看 | 极品人妻少妇av视频| 国产人伦9x9x在线观看| 在线观看免费视频网站a站| 爱豆传媒免费全集在线观看| 一级爰片在线观看| 久久久久国产一级毛片高清牌| 亚洲国产精品国产精品| 精品一区二区免费观看| 新久久久久国产一级毛片| 久久久精品国产亚洲av高清涩受| 天天躁夜夜躁狠狠躁躁| 免费人妻精品一区二区三区视频| 黄网站色视频无遮挡免费观看| 亚洲精品自拍成人| 国产亚洲av高清不卡| 久久久亚洲精品成人影院| 曰老女人黄片| 色精品久久人妻99蜜桃| 一二三四在线观看免费中文在| 国产成人精品无人区| 久久精品亚洲熟妇少妇任你| 国产女主播在线喷水免费视频网站| 99久国产av精品国产电影| 精品国产露脸久久av麻豆| 精品国产国语对白av| 伦理电影大哥的女人| 一区二区三区四区激情视频| 看免费成人av毛片| 啦啦啦视频在线资源免费观看| 成年人免费黄色播放视频| 校园人妻丝袜中文字幕| 国产成人精品福利久久| 91精品国产国语对白视频| 日本黄色日本黄色录像| 日日摸夜夜添夜夜爱| 看免费成人av毛片| 丝袜美足系列| 国产高清不卡午夜福利| 亚洲综合精品二区| 国产伦人伦偷精品视频| 亚洲国产精品成人久久小说| 一级,二级,三级黄色视频| 国产精品免费视频内射| 大香蕉久久成人网| 如何舔出高潮| 亚洲欧美成人综合另类久久久| 熟妇人妻不卡中文字幕| 操美女的视频在线观看| 嫩草影视91久久| 成人国产麻豆网| 韩国精品一区二区三区| 十分钟在线观看高清视频www| 伊人久久大香线蕉亚洲五| 一区在线观看完整版| 如何舔出高潮| 亚洲国产av新网站| 国产精品麻豆人妻色哟哟久久| 国产精品秋霞免费鲁丝片| 中文字幕亚洲精品专区| 少妇人妻久久综合中文| 亚洲av在线观看美女高潮| 久久这里只有精品19| 人人妻,人人澡人人爽秒播 | 伦理电影免费视频| 中文字幕人妻丝袜一区二区 | av.在线天堂| 无限看片的www在线观看| 狠狠婷婷综合久久久久久88av| 2021少妇久久久久久久久久久| 亚洲七黄色美女视频| 亚洲一区中文字幕在线| 日韩av不卡免费在线播放| 亚洲精品成人av观看孕妇| 亚洲人成电影观看| 女人被躁到高潮嗷嗷叫费观| 久久久久精品久久久久真实原创| 91成人精品电影| 国产精品人妻久久久影院| 精品一区二区三卡| 国产人伦9x9x在线观看| 国产一区二区三区综合在线观看| 午夜日韩欧美国产| 国产免费福利视频在线观看| 日韩 亚洲 欧美在线| 最新的欧美精品一区二区| 国产精品一二三区在线看| 男人操女人黄网站| 韩国精品一区二区三区| 国产精品人妻久久久影院| avwww免费| 国产视频首页在线观看| 老汉色av国产亚洲站长工具| 精品国产国语对白av| 肉色欧美久久久久久久蜜桃| 黄色视频在线播放观看不卡| 色精品久久人妻99蜜桃| 国产一级毛片在线| 日韩制服骚丝袜av| 国产免费又黄又爽又色| av一本久久久久| 亚洲精品一二三| 精品少妇久久久久久888优播| 亚洲中文av在线| 精品久久久精品久久久| 欧美精品人与动牲交sv欧美| 热re99久久精品国产66热6| 男人操女人黄网站| 女人高潮潮喷娇喘18禁视频| 高清av免费在线| 亚洲视频免费观看视频| 午夜免费鲁丝| 欧美日韩综合久久久久久| 热99国产精品久久久久久7| 极品人妻少妇av视频| 国产亚洲精品第一综合不卡| 国产激情久久老熟女| 宅男免费午夜| 多毛熟女@视频| 午夜福利视频在线观看免费| www.精华液| kizo精华| 一二三四中文在线观看免费高清| 欧美激情高清一区二区三区 | 国产 一区精品| 国产深夜福利视频在线观看| 啦啦啦在线观看免费高清www| 另类亚洲欧美激情| 综合色丁香网| 午夜福利在线免费观看网站| 国产老妇伦熟女老妇高清| 亚洲激情五月婷婷啪啪| 欧美日韩亚洲高清精品| 桃花免费在线播放| 日韩一区二区视频免费看| 人人澡人人妻人| 国产精品一区二区在线观看99| 久久精品亚洲熟妇少妇任你| 一区二区三区精品91| 狠狠精品人妻久久久久久综合| 成人国语在线视频| 国产不卡av网站在线观看| 日本av手机在线免费观看| 成人亚洲精品一区在线观看| 亚洲一区中文字幕在线| 黄片无遮挡物在线观看| 十八禁高潮呻吟视频| 免费久久久久久久精品成人欧美视频| 99国产精品免费福利视频| 亚洲婷婷狠狠爱综合网| 老鸭窝网址在线观看| 蜜桃国产av成人99| 免费不卡黄色视频| 赤兔流量卡办理| 亚洲色图综合在线观看| 欧美激情高清一区二区三区 | 成人国产麻豆网| 免费少妇av软件| 国产日韩一区二区三区精品不卡| 人人妻人人澡人人爽人人夜夜| www日本在线高清视频| 婷婷色麻豆天堂久久| 飞空精品影院首页| 大码成人一级视频| 国产毛片在线视频| av电影中文网址| 视频在线观看一区二区三区| 三上悠亚av全集在线观看| 日韩中文字幕视频在线看片| 尾随美女入室| 亚洲国产最新在线播放| 亚洲av国产av综合av卡| 亚洲专区中文字幕在线 | 久久av网站| av卡一久久| 久久99一区二区三区| 亚洲精品在线美女| 日韩大片免费观看网站| a级片在线免费高清观看视频| 久久韩国三级中文字幕| 天天操日日干夜夜撸| 性色av一级| 免费不卡黄色视频| 亚洲精品一二三| 亚洲婷婷狠狠爱综合网| 亚洲激情五月婷婷啪啪| 国产深夜福利视频在线观看| svipshipincom国产片| 日韩,欧美,国产一区二区三区| 国语对白做爰xxxⅹ性视频网站| 母亲3免费完整高清在线观看| 国产一级毛片在线| 777米奇影视久久| 高清视频免费观看一区二区| 国产在视频线精品| 18在线观看网站| 亚洲图色成人| 夫妻午夜视频| 90打野战视频偷拍视频| 最近的中文字幕免费完整| 亚洲av成人精品一二三区| h视频一区二区三区| 久久精品久久精品一区二区三区| 满18在线观看网站| 亚洲精品中文字幕在线视频| 大码成人一级视频| 日本黄色日本黄色录像| 亚洲精品日本国产第一区| 一区在线观看完整版| 国产免费又黄又爽又色| 亚洲欧美一区二区三区黑人| 亚洲精品在线美女| 国产精品人妻久久久影院| 亚洲久久久国产精品| 高清欧美精品videossex| 久久精品亚洲av国产电影网| av在线老鸭窝| 久久久久久久精品精品| 国产成人精品久久二区二区91 | 这个男人来自地球电影免费观看 | 欧美国产精品一级二级三级| 色94色欧美一区二区| 久久久久国产精品人妻一区二区| 久久这里只有精品19| 久久久精品免费免费高清| 青春草亚洲视频在线观看| 久久av网站| 中文字幕高清在线视频| 国产熟女欧美一区二区| 99久国产av精品国产电影| 欧美精品人与动牲交sv欧美| 在线免费观看不下载黄p国产| 国产黄频视频在线观看| 亚洲成人一二三区av| 久久久精品国产亚洲av高清涩受| 考比视频在线观看| 日韩欧美精品免费久久| 街头女战士在线观看网站| 在线观看一区二区三区激情| 啦啦啦中文免费视频观看日本| 欧美精品一区二区大全| 国产深夜福利视频在线观看| 在线观看国产h片| 免费观看av网站的网址| 如何舔出高潮| 欧美国产精品一级二级三级| 成人亚洲欧美一区二区av| 久久人人爽人人片av| 国产精品亚洲av一区麻豆 | 一本久久精品| 国产精品一国产av| 国产xxxxx性猛交| 一二三四中文在线观看免费高清| 亚洲激情五月婷婷啪啪| 精品亚洲成国产av| 91老司机精品| 最近最新中文字幕大全免费视频 | 久久久久久久久久久免费av| 亚洲精品成人av观看孕妇| 亚洲一级一片aⅴ在线观看| 国产在线视频一区二区| 亚洲欧美一区二区三区国产| 精品久久久久久电影网| 国产成人一区二区在线| 男人爽女人下面视频在线观看| 国产精品秋霞免费鲁丝片| 亚洲国产精品999| 中文乱码字字幕精品一区二区三区| 国产一区二区三区av在线| 国产精品香港三级国产av潘金莲 | 女人高潮潮喷娇喘18禁视频| 久久久久久久久免费视频了| 欧美xxⅹ黑人| 九九爱精品视频在线观看| 精品第一国产精品| 午夜福利网站1000一区二区三区| 国产深夜福利视频在线观看| 两个人看的免费小视频| 亚洲精品aⅴ在线观看| 亚洲国产精品国产精品| 观看美女的网站| 欧美在线一区亚洲| 亚洲少妇的诱惑av|