• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Entropy and Similarity Measure for T2SVNSs and Its Application

    2021-07-05 07:12:08

    (1.Foundation Department,Sichuan Institute of Industrial Technology,Deyang 618500,China;2.School of Science,Southwest Petroleum University,Chengdu 610500,China)

    Abstract:The objective of this paper is to present a new approach for solving the multi-

    Keywords:Type-2 single valued neutrosophic set;Entropy;Tangent function;Similarity measure;MCGDM

    §1.Introduction

    Neutrosophic set[32]is an important tool for dealing with problems involving uncertainty,indeterminacy and inconsistency.Wang et al.[33]developed the concept of SVNSs,which is a subclass of the neutrosophic sets(NSs)for solving scientific and engineering problems.SVNSs have been widely used in different fields,like engineering problems,[12,34]medical problems,[1,2,11]image processing problems,[10,17,18]decision-making problems,[25,29,37]social problems[22,26],conflict problems[27].Many scholars have also studied type-2 fuzzy sets,such as Yang et al.[35]introduced the similarity of type-2 fuzzy sets,they also investigated its properties,Hung et al.[13]proposed similarity methods between two type-2 fuzzy sets,at this moment,the properties of these methods were obtained.Sing[31]introduced two type-2 fuzzy sets based on the distances between Euclidean and Hamming.Zhao et al.[39]have studied type-2 intuitionistic fuzzy set(T2IFS),they gave the concept of T2IFS,and discussed the relation of T2IFS.Cuong et al.[8]introduced some operations between two T2IFSs.

    Similarity measure is becoming important in decision making problems.Some strategies[7,14]are proposed to measure the similarity between fuzzy sets,whereas these strategies can not deal with the similarity measures involving uncertainty and inconsistency.In the references,some scholars have discussed the similarity measures of NSs.[3,4]Mondal et al.[23,36]proposed sine hyperbolic similarity measure and tangent similarity measure methods to deal with MADM problems.Lu et al.[24]proposed logarithmic similarity measure and applied it in fault diagnosis strategy under interval valued fuzzy set environment[19].In addition to similarity measurement,there are other aspects of research,such as:correlation coefficient[30],TOPSIS method[5],aggregating operators[9,15,21].

    Based on the above analysis,few scholars have studied the MCGDM method using tangent similarity measure,so the main contents of this paper are:

    (1)To define a new similarity measure under T2SVNS environment and prove its basic properties.

    (2)To define a new entropy function of T2SVNSs to determine the weight of unknown attributes.

    (3)To develop a MCGDM model based on proposed entropy and similarity measures.

    (4)To present an illustrative example and comparative analysis to illustrate effectiveness and feasibility of the proposed method.

    The rest of this paper is structured as follows.In section 2,the concepts of SVNSs and T2SVNSs are given.In section 3,we define tangent similarity measure between two T2SVNSs and prove its properties.In section 4,a new entropy funtion to compute unknown attribute weights for T2SVNSs is proposed.In section 5,we propose a MCGDM method based on entropy and tangent similarity measures of T2SVNSs.In section 6,an example and comparative analysis are given to illustrate effectiveness and feasibility of the proposed method.In section 7,we come to the conclusion.

    §2.Preliminaries

    2.1.Single valued neutrosophic sets(SVNS)

    Definition 2.1.[38]Let X be a universal space of points(objects),with a generic element in X denoted by x,single valued neutrosophic set(SVNS)Q?X is characterized by truth-membership function tq(x),indeterminacy-membership function iq(x)and falsity-membership function fq(x).

    A SVNS can be expressed as

    where tq(x),iq(x),fq(x)are real standard or nonstandard subsets of[0,1],so that it means tq(x):X→[0,1],iq(x):X→[0,1],fq(x):X→[0,1],with the condition of0≤suptq(x)+supiq(x)+supfq(x)≤3,for all x∈X.

    When X is continuous,a SVNS Q can be written as

    When X is discrete,a SVNS Q can be written as

    Definition 2.2.[33]Let P and Q be two SVNSs,

    then,for all x∈X,operations can be defined as follows:

    (x)≥tp(x),iq(x)≤ip(x),fq(x)≤fp(x).

    (2)P=Q,iff,P?Q and Q?P.

    (3)The complement of a SVNS P is denoted as P c,which is defined astpc(x)=fp(x),ipc(x)=1-ip(x),fpc(x)=tp(x).

    (4)QP=〈max(tp(x),tq(x)),min(ip(x),iq(x)),min(fp(x),fq(x))〉.

    (5)QP=〈min(tp(x),tq(x)),max(ip(x),iq(x)),max(fp(x),fq(x))〉.

    Definition 2.3.[20]Let Q and P be two SVNSs,t

    hen,?k∈R,there is

    (1)Q⊕P=〈tq(x)+tp(x)-tq(x)·tp(x),iq(x)·ip(x),fq(x)·fp(x)〉.

    (2)Q?P=〈tq(x)·tp(x),iq(x)+ip(x)-iq(x)·ip(x),fq(x)+fp(x)-fq(x)·fp(x)〉.

    (3)λQ=(1-(1-tq(x))k,iq(x)k,fq(x)k).

    (4)Qk=(tq(x)k,1-(1-iq(x))k,1-(1-fq(x))k).

    2.2.Type-2 single valued neutrosophic set(T2SVNS)

    Definition 2.4.[16]A T2SVNS~N is a set of pairs{μN(a),ηN(a),νN(a)},a∈A,μN(a),ηN(a)andνN(a)are respectively called true membership,uncertain membership and false membership,which are defined as follows:

    where uN,nN and vN are named Primary truth-membership function(Ptmf),Primary indeterminacy membership function(Pimf)and Primary falsity-membership function(Pfmf).ta(uN),ia(nN)and fa(vN)are called Secondary truth membership function(Stmf),Secondaryindeterminacy membership function(Simf)and Secondary falsity-membership function(Sfmf).,andare called as primary truth membership,primary indeterminant membership andprimary falsity membership,respectively.

    For convenience,can be abbreviated as=〈(uN,ta(uN),nN,ia(nN),vN,fa(vN))〉,which is called type-2 single valued neutrosophic number(T2SVNN).From now on,the set of all T2SVNS over the universe A will be denoted bySV2(A).

    Definition 2.5.1=〈(uN1,ta(uN1),nN1,ia(nN1),vN1,fa(vN1))〉and2=〈(uN2,ta(uN2),nN2,ia(nN2),vN2,fa(vN2))〉be two T2SVNSs,?a∈A.Then,

    (1)if and only if uN1≤uN2,ta(uN1)≤ta(uN2),nN1≥nN2,ia(nN1)≥ia(nN2),vN1≥vN2,fa(vN1)≥fa(vN2).

    12if and only ifand.

    (3)=〈vN1,fa(vN1),1-nN1,1-ia(nN1),uN1,ta(uN1)〉.

    (4)=〈max(uN1,uN2),max(ta(uN1),ta(uN2)),min(nN1,nN2),min(ia(nN1),ia(nN2)),min(vN1,vN2),min(fa(vN1),fa(vN2))〉.

    (5)=〈min(uN1,uN2),min(ta(uN1),ta(uN2)),max(nN1,nN2),max(ia(nN1),ia(nN2)),max(vN1,vN2),max(fa(vN1),fa(vN2))〉.

    §3.Tangent similarity measures for T2SVNSs

    Definition 3.1.Assume that12∈SV2(A),similarity measure based on tangent functionbetween two T2SVNSs is defined as follows:

    Theorem 3.1.The defined tangent similarity measure T(12)of two T2SVNSs,the basicoperations are satisfied as follows:

    (1)1≥T(12)≥0.

    (2)T(12)=1 if and only if1=2.

    (4)if3∈SV2(A)123,then T(13)≤T(12)and T(13)≤T(23).

    Proof.(1)Tangent function increases monotonically on the interval[0,].It also depends on the interval[0,1].Therefore,0≤T(12)≤1.

    (2)Assume that two T2SVNS,0≤λ≤1,

    soT(13)≤T(12).In the same way,

    soT(13)≤T(23).

    Definition 3.2.Assume that12∈SV2(A),weighted similarity measure based on tangentfunction between two T2SVNSs is defined as follows:

    here,0≤λ≤=1.

    Theorem 3.2.The defined tangent similarity measure T(1,2)of two T2SVNS,the basic operations are satisfied as follows::

    He remembered such days from his own childhood in the mountains, rare moments of escape when he went into the woods, his breathing amplified74 and his voice somehow muffled75 by the heavy snow that bent branches low, drifted over paths

    (1)1≥TW(1,2)≥0,

    (2)TW(1,2)=1 if and only if1=2,

    (3)TW(1,2)=TW(2,1),

    (4)if3∈SV2(A)and1?2?3,then TW(1,3)≤TW(1,2)and TW(1,3)≤TW(2,3).

    Proof.(1)Tangent function increases monotonically on the interval[0,].It also depends on the interval[0,1]and=1.So,0≤TW(1,2)≤1.

    Therefore,TW(1,2)=1 for 0≤λ≤1 and=1.Conversely,

    (3)Lets prove the third question

    §4.A new entropy measure for T2SVNSs

    Definition 4.1.The entropy function of a T2SVNS

    is defined as follows:

    Theorem 4.1.The entropy function Ej(N)satisfies the following properties:

    (1)Ej(N)=0.if uNj(ai)+tai(uNj)=1,vNj(ai)+fai(vNj)=0,

    (2)Ej(N)=1.if N=(0.5,0.5,0.5,0.5,0.5,0.5),

    (3)Ej(N)≥Ej(N′).if

    (4)Ej(N)=Ej(Nc).

    Proof.(1)uNj(ai)+tai(uNj)=1,vNj(ai)+fai(vNj)=0?Ej(N)==0.

    (2)N=(0.5,0.5,0.5,0.5,0.5,0.5)?Ej(N)==1-0=1.

    (3)Lets prove the third question

    (4)Since〈uN,ta(uN),nN,ia(nN),vN,fa(vN)〉c=〈vN,fa(vN),1-nN,1-ia(nN),uN,ta(uN)〉,we haveEj(N)=Ej(Nc).

    §5.MCGDM method based on the entropy and tangent similarity measures of T2SVNSs

    In this section,a MCGDM approach is presented by tangent similarity measures for T2SVNSs.Assume thatP={p1,p2,...,pd}be a committee of decision makers,A={A1,A2,...,Ak}be the alternatives,C={C1,C2,...,Cs}be the attributes of each alternative.Then,the following steps are described for finding the best alternative(s).

    Step 1:Determination of the T2SVN decision matrix of the decision makers(DMs).

    When an expert evaluate the given alternativesAiunder different attributesCjmade by decision makersPm(m=1,2,...,d)and represent their values in terms of T2SVNNs.Hence,decision matrixPm=can be written as follows:

    where.

    Step 2:Determination of the aggregating decision matrix.

    The aggregating matrixB=(bij)k×sis expressed as follows:

    Step 3:Determination of the ideal solution.

    T2SVN local positive ideal solution(T2SVNPIS)and the T2SVN negative ideal solution(T2SVNNIS)are defined as follows:

    Step 4:Determination the weights of attribute.

    By Equation(4.2),we can calculate the attribute weights.

    Step 5:Determination of separation measures from ideal solutions to each alternatives.

    Separation measuresandof each alternative from ideal solutions can be found by using weighted similarity distance measure formula given in Section 3.Then,

    Step 6:Calculating the closeness coefficients of alternatives.

    Step 7:Ranking the alternatives.

    The highest value of closeness coefficientsCCi,the best alternativeAiis.

    §6.Illustrative of the proposed method and comparative analysis

    In this part,we first give a numerical example of the low carbon logistics service provider selection problem provided by Chen et al.[6].There are three DMs(D1,D2,D3)to evaluate with four alternativesAi(i=1,2,3)and three attributes:C1:low-carbon technology,C2:risk factor,C3:capacity.

    6.1.Illustration of the proposed approach

    The complete MCGDM model tangent similarity measure is summarized by the following steps:

    Step 1:Evaluation of alternatives for each criteria by the linguistic terms shown in Table 1.Tables 2-4 show their evaluations matrix.

    Table 1 Evaluations of the alternatives by the linguistic variables.

    Table 2 Linguistic decision matrix by Decision maker D1.

    Table 3 Linguistic decision matrix by Decision maker D2.

    Table 4 Linguistic decision matrix by Decision maker D3.

    Step 2:Determination of the aggregating decision matrixB=(bij)k×s.

    Assume that the weights of the experts areδ1=0.36,δ2=0.29 andδ3=0.35,respectively.Bmatrix can be constructed.For example

    Using the same way,we can calculate other values in B matrix as follows:

    Step 3:Determination of the ideal solution.By using the aggregating matrix,the T2SVN local positive ideal solution(T2SVNPIS)and the T2SVN negative ideal solution(T2SVNNIS)are obtained as follows:

    Step 4:Determination of the attribute weightsωby entropy.

    By using Equation(4.2),the weights of the attribute can be calculated:ω=[ω1,ω2,ω3]=[0.7909,0.1213,0.0878]

    Step 5:Determination of separation measures from ideal solutions to each alternatives and relative closeness coefficient.

    By Equation(5.5),the separation measuresd*ianddiare indicated.Relative closeness coefficientCCiis calculated by using Equation(5.6).lets say thatλ=0.55.These results are listed in Table 5.

    Table 5 Distance measure and relative closeness coefficient of each alternative.

    Step 6:Ranking of the three alternatives.

    According to Table 5,we can get the final ranking of three alternatives,which isA1﹥A2﹥A3.Thus,A1is the best alternative.

    6.2.Comparative analysis and discussion

    From Table 5,we know thatA1is the best alternative for different values ofλ.However,the ranking results are different.For confirming the reasonableness and feasibility of the proposed method,we will compare with current methods to solve the same decision-making problem.The ranking results from other methods are shown in Table 6.Ranking results from proposed method withλ=0.10,0.25,0.40 are the same as the ranking result of Mondal,s method[23].Ranking results from proposed method withλ=0.55,0.70,0.90 are the same as the ranking result of Karaaslan,s method[16]and Sahin,s method[28],which are able to show that the proposed approach is practical and effective.

    Table 6 Comparison of other methods.

    §7.Conclusion

    In this paper,we proposed the concepts of SVNS and T2SVNS.Then,we de fined tangent similarity measure,which are also proved in T2SVN environment.We also defined a new entropy function for determining unknown attribute weights.A new approach for solving the(MCGDM)problems under T2SVNSenvironment was developed.Finally,we provided an illustrative example to illustrate the application of the proposed method.The comparative analysis with the current methods were given to confirm the rationality and feasibility of the proposed method.It enriches and develops the theory and method of MCGDM,and provides a new way to solve MCGDM problem.In future research,we will further develop the proposed similarity measures of the T2SVNS and their application.

    Acknowledgements

    The authors wish to thank the editors and referees for their valuable guidance and support in improving the quality of this paper.

    国产精品一区二区免费欧美 | 一区二区三区激情视频| 国产xxxxx性猛交| 午夜福利,免费看| 欧美xxⅹ黑人| 亚洲中文av在线| 欧美精品人与动牲交sv欧美| 日韩大码丰满熟妇| 国产成人a∨麻豆精品| 老司机在亚洲福利影院| 午夜福利一区二区在线看| 天堂中文最新版在线下载| 精品一区二区三区四区五区乱码 | 欧美在线黄色| 国产亚洲精品久久久久5区| 日本wwww免费看| 久久影院123| 欧美日韩av久久| 国产在线观看jvid| 99精国产麻豆久久婷婷| 菩萨蛮人人尽说江南好唐韦庄| 黄色怎么调成土黄色| 激情视频va一区二区三区| 久久久欧美国产精品| 99国产精品一区二区蜜桃av | 蜜桃在线观看..| 久久久久久久久久久久大奶| av一本久久久久| 黄色视频在线播放观看不卡| 蜜桃在线观看..| 1024视频免费在线观看| 一级片'在线观看视频| 在线av久久热| 国产亚洲欧美在线一区二区| 国产精品九九99| 高清黄色对白视频在线免费看| 欧美精品一区二区免费开放| 日本wwww免费看| 国产精品一区二区免费欧美 | 日日夜夜操网爽| 国产亚洲av高清不卡| 老熟女久久久| 午夜福利,免费看| 亚洲国产精品一区二区三区在线| 麻豆国产av国片精品| 欧美日韩亚洲国产一区二区在线观看 | 国产在线视频一区二区| 一级a爱视频在线免费观看| 一级毛片我不卡| 欧美国产精品va在线观看不卡| 黄色视频在线播放观看不卡| 一级黄片播放器| 国产日韩欧美视频二区| 午夜两性在线视频| 一边摸一边做爽爽视频免费| 中文字幕亚洲精品专区| 亚洲 国产 在线| 亚洲国产精品国产精品| 亚洲欧美色中文字幕在线| 一区二区日韩欧美中文字幕| 看免费成人av毛片| 99国产精品一区二区蜜桃av | 欧美少妇被猛烈插入视频| 色综合欧美亚洲国产小说| 日本猛色少妇xxxxx猛交久久| 色视频在线一区二区三区| 91九色精品人成在线观看| 亚洲午夜精品一区,二区,三区| 亚洲熟女毛片儿| 亚洲专区中文字幕在线| 国产日韩欧美亚洲二区| 人妻 亚洲 视频| 亚洲精品乱久久久久久| 国产97色在线日韩免费| 美女扒开内裤让男人捅视频| 日日夜夜操网爽| av不卡在线播放| 热re99久久精品国产66热6| 丁香六月天网| 成年动漫av网址| 男女床上黄色一级片免费看| 成人亚洲欧美一区二区av| 久久久久久久久久久久大奶| 少妇人妻 视频| 黑人猛操日本美女一级片| 男男h啪啪无遮挡| 婷婷色综合www| 亚洲av综合色区一区| 天天影视国产精品| 亚洲精品美女久久久久99蜜臀 | 黄色a级毛片大全视频| 亚洲精品av麻豆狂野| 一边摸一边抽搐一进一出视频| 亚洲精品在线美女| 国产又爽黄色视频| 国产欧美亚洲国产| 永久免费av网站大全| 欧美日韩视频精品一区| 中文字幕色久视频| 啦啦啦在线免费观看视频4| 我要看黄色一级片免费的| 亚洲精品成人av观看孕妇| 亚洲精品一区蜜桃| 欧美老熟妇乱子伦牲交| 夫妻性生交免费视频一级片| 只有这里有精品99| 99久久精品国产亚洲精品| 久久久久精品国产欧美久久久 | 性少妇av在线| 激情五月婷婷亚洲| 国产免费一区二区三区四区乱码| 97精品久久久久久久久久精品| 自线自在国产av| 男女无遮挡免费网站观看| 在线精品无人区一区二区三| 久久人妻熟女aⅴ| 一区在线观看完整版| 2018国产大陆天天弄谢| av国产精品久久久久影院| 2021少妇久久久久久久久久久| 丝袜在线中文字幕| 一个人免费看片子| 国产欧美日韩精品亚洲av| 欧美精品一区二区大全| 又大又黄又爽视频免费| 亚洲精品国产一区二区精华液| 亚洲 欧美一区二区三区| 老司机影院成人| www.自偷自拍.com| 蜜桃在线观看..| 黄频高清免费视频| 观看av在线不卡| 亚洲国产中文字幕在线视频| 亚洲色图综合在线观看| 777久久人妻少妇嫩草av网站| 十八禁高潮呻吟视频| 老汉色av国产亚洲站长工具| 久久女婷五月综合色啪小说| 视频在线观看一区二区三区| 在线av久久热| 91精品伊人久久大香线蕉| 一级黄色大片毛片| 国产精品免费视频内射| 国产野战对白在线观看| 国产三级黄色录像| 中文欧美无线码| 多毛熟女@视频| 国产精品久久久久久精品电影小说| 午夜精品国产一区二区电影| 国产日韩欧美在线精品| 十八禁网站网址无遮挡| 日韩人妻精品一区2区三区| 亚洲成国产人片在线观看| 99久久综合免费| 欧美日韩黄片免| 91麻豆精品激情在线观看国产 | 国产一卡二卡三卡精品| 中文字幕人妻丝袜制服| 少妇人妻 视频| 色视频在线一区二区三区| 免费在线观看影片大全网站 | 黑人欧美特级aaaaaa片| 男人舔女人的私密视频| 老鸭窝网址在线观看| 激情五月婷婷亚洲| av天堂在线播放| 亚洲国产欧美一区二区综合| 国产成人a∨麻豆精品| 国产免费又黄又爽又色| 久久性视频一级片| 欧美性长视频在线观看| 国产亚洲午夜精品一区二区久久| 成人国产一区最新在线观看 | 在线观看www视频免费| 午夜福利免费观看在线| 久久影院123| 国产深夜福利视频在线观看| 嫁个100分男人电影在线观看 | 伊人亚洲综合成人网| 黄色a级毛片大全视频| 十八禁高潮呻吟视频| 色精品久久人妻99蜜桃| 久久 成人 亚洲| 国产真人三级小视频在线观看| 只有这里有精品99| 在现免费观看毛片| 女人久久www免费人成看片| 国产成人欧美在线观看 | 男人操女人黄网站| 丝袜脚勾引网站| 一本一本久久a久久精品综合妖精| 亚洲欧洲国产日韩| 午夜两性在线视频| 大话2 男鬼变身卡| 91精品国产国语对白视频| 国产又爽黄色视频| 国产熟女午夜一区二区三区| 精品福利观看| 岛国毛片在线播放| svipshipincom国产片| 女人被躁到高潮嗷嗷叫费观| 国产精品 国内视频| xxxhd国产人妻xxx| 少妇被粗大的猛进出69影院| 又大又黄又爽视频免费| 亚洲成人免费电影在线观看 | 国产精品99久久99久久久不卡| 老汉色av国产亚洲站长工具| 少妇的丰满在线观看| 国产亚洲一区二区精品| 大型av网站在线播放| xxxhd国产人妻xxx| 1024香蕉在线观看| 国产亚洲欧美精品永久| 精品人妻一区二区三区麻豆| 欧美成狂野欧美在线观看| 欧美日韩国产mv在线观看视频| 赤兔流量卡办理| 男人操女人黄网站| 黄色怎么调成土黄色| 婷婷色av中文字幕| 美女中出高潮动态图| 免费观看av网站的网址| 国产麻豆69| 亚洲精品久久午夜乱码| 国产精品一二三区在线看| 欧美激情 高清一区二区三区| 欧美精品一区二区大全| xxx大片免费视频| 国产在视频线精品| 亚洲少妇的诱惑av| 大香蕉久久网| 青草久久国产| 亚洲国产中文字幕在线视频| 高清欧美精品videossex| 国产爽快片一区二区三区| 免费在线观看完整版高清| 久久免费观看电影| 国产亚洲午夜精品一区二区久久| 婷婷色综合www| 精品亚洲成国产av| 色网站视频免费| 国产极品粉嫩免费观看在线| 亚洲精品av麻豆狂野| 久久久久久久大尺度免费视频| 中文字幕人妻丝袜一区二区| 久久99精品国语久久久| av天堂久久9| 亚洲精品第二区| 午夜免费观看性视频| 亚洲国产精品一区二区三区在线| 亚洲成国产人片在线观看| 欧美乱码精品一区二区三区| 999久久久国产精品视频| 国产在线免费精品| 视频区图区小说| 9色porny在线观看| 国产精品一二三区在线看| 一个人免费看片子| 男女下面插进去视频免费观看| 大片电影免费在线观看免费| 不卡av一区二区三区| 精品一区二区三卡| 日韩一本色道免费dvd| 大片电影免费在线观看免费| 亚洲精品日本国产第一区| 天天躁狠狠躁夜夜躁狠狠躁| 丝袜美腿诱惑在线| 99热国产这里只有精品6| 校园人妻丝袜中文字幕| 老司机靠b影院| 亚洲精品美女久久av网站| 18禁黄网站禁片午夜丰满| 日日夜夜操网爽| 自线自在国产av| 99国产综合亚洲精品| 一区二区av电影网| 女人爽到高潮嗷嗷叫在线视频| 精品人妻1区二区| 99国产综合亚洲精品| 极品人妻少妇av视频| 久久精品久久精品一区二区三区| 丰满饥渴人妻一区二区三| 大香蕉久久网| 极品人妻少妇av视频| 精品国产国语对白av| 人人妻,人人澡人人爽秒播 | 成人手机av| 亚洲精品久久午夜乱码| 亚洲精品国产av蜜桃| 丝袜美腿诱惑在线| 亚洲成国产人片在线观看| 亚洲自偷自拍图片 自拍| 国产深夜福利视频在线观看| 深夜精品福利| a级毛片在线看网站| 免费久久久久久久精品成人欧美视频| 超碰成人久久| 日本欧美视频一区| 欧美xxⅹ黑人| av网站在线播放免费| 一二三四在线观看免费中文在| 久久毛片免费看一区二区三区| 汤姆久久久久久久影院中文字幕| 两个人看的免费小视频| 免费看av在线观看网站| 19禁男女啪啪无遮挡网站| 国产精品香港三级国产av潘金莲 | www.精华液| 国产亚洲av高清不卡| 欧美日本中文国产一区发布| 亚洲伊人久久精品综合| 五月天丁香电影| 久久av网站| 亚洲伊人久久精品综合| 九色亚洲精品在线播放| 欧美日本中文国产一区发布| 一本色道久久久久久精品综合| 国产精品免费视频内射| 久久鲁丝午夜福利片| 各种免费的搞黄视频| 精品少妇一区二区三区视频日本电影| 成年人免费黄色播放视频| 大码成人一级视频| 老司机在亚洲福利影院| 亚洲国产精品999| 亚洲一卡2卡3卡4卡5卡精品中文| 精品高清国产在线一区| 美女午夜性视频免费| 只有这里有精品99| av国产久精品久网站免费入址| 无遮挡黄片免费观看| 99国产精品一区二区蜜桃av | 午夜激情av网站| 亚洲,欧美,日韩| 国产麻豆69| 色播在线永久视频| 少妇精品久久久久久久| 婷婷色麻豆天堂久久| 少妇猛男粗大的猛烈进出视频| 久久国产精品男人的天堂亚洲| 大香蕉久久成人网| 91精品伊人久久大香线蕉| 久久久国产欧美日韩av| 亚洲一区二区三区欧美精品| av在线播放精品| 亚洲少妇的诱惑av| 天堂中文最新版在线下载| av一本久久久久| 婷婷成人精品国产| 国产高清不卡午夜福利| 亚洲国产中文字幕在线视频| 秋霞在线观看毛片| 亚洲成色77777| 高清av免费在线| 亚洲成人免费电影在线观看 | www.精华液| netflix在线观看网站| 97在线人人人人妻| 十八禁网站网址无遮挡| 免费在线观看黄色视频的| 婷婷色综合www| 两个人免费观看高清视频| 大香蕉久久成人网| 91精品伊人久久大香线蕉| 精品国产一区二区三区四区第35| 免费看十八禁软件| 久久99热这里只频精品6学生| 91成人精品电影| 母亲3免费完整高清在线观看| 日本av手机在线免费观看| 97在线人人人人妻| 久久精品成人免费网站| 看免费av毛片| 91成人精品电影| 国产黄色免费在线视频| 日日夜夜操网爽| 精品国产一区二区三区四区第35| 日韩大码丰满熟妇| 久久精品国产综合久久久| 日韩电影二区| 亚洲天堂av无毛| 国产片特级美女逼逼视频| 国产伦理片在线播放av一区| 日韩一卡2卡3卡4卡2021年| 97人妻天天添夜夜摸| 国产欧美亚洲国产| 免费久久久久久久精品成人欧美视频| 秋霞在线观看毛片| 久久鲁丝午夜福利片| 久久久久视频综合| 欧美 日韩 精品 国产| 国产男女超爽视频在线观看| 男女边吃奶边做爰视频| 天天躁夜夜躁狠狠躁躁| 亚洲一码二码三码区别大吗| 高潮久久久久久久久久久不卡| 国产免费又黄又爽又色| 欧美成狂野欧美在线观看| 国产在视频线精品| 亚洲人成网站在线观看播放| 后天国语完整版免费观看| 咕卡用的链子| 1024香蕉在线观看| 亚洲av男天堂| 亚洲熟女毛片儿| 免费女性裸体啪啪无遮挡网站| 精品一区二区三区av网在线观看 | 一级片免费观看大全| 91精品国产国语对白视频| 国产主播在线观看一区二区 | av天堂在线播放| 两性夫妻黄色片| 亚洲一区中文字幕在线| 久久精品人人爽人人爽视色| 欧美少妇被猛烈插入视频| 精品亚洲乱码少妇综合久久| 国产成人91sexporn| 97在线人人人人妻| 91麻豆av在线| 赤兔流量卡办理| 人人澡人人妻人| 亚洲成av片中文字幕在线观看| 校园人妻丝袜中文字幕| 19禁男女啪啪无遮挡网站| 国产成人a∨麻豆精品| 大陆偷拍与自拍| 色婷婷久久久亚洲欧美| 婷婷色麻豆天堂久久| 久久精品久久久久久久性| 亚洲天堂av无毛| 天天躁夜夜躁狠狠躁躁| 欧美黄色淫秽网站| 午夜免费观看性视频| 青春草亚洲视频在线观看| 99re6热这里在线精品视频| 久久 成人 亚洲| 亚洲人成77777在线视频| 夜夜骑夜夜射夜夜干| 亚洲欧美精品自产自拍| 亚洲欧美日韩另类电影网站| 中文字幕人妻熟女乱码| 在线观看人妻少妇| 夫妻午夜视频| 亚洲,欧美精品.| 亚洲 欧美一区二区三区| 国产高清不卡午夜福利| 国产老妇伦熟女老妇高清| 伊人亚洲综合成人网| 一边摸一边做爽爽视频免费| 精品熟女少妇八av免费久了| 丝袜喷水一区| 成人影院久久| 岛国毛片在线播放| 一本大道久久a久久精品| 欧美在线一区亚洲| 午夜两性在线视频| 美女主播在线视频| 新久久久久国产一级毛片| av网站在线播放免费| 午夜免费男女啪啪视频观看| 大香蕉久久成人网| 亚洲欧美中文字幕日韩二区| 汤姆久久久久久久影院中文字幕| 女人被躁到高潮嗷嗷叫费观| 亚洲成国产人片在线观看| 午夜福利一区二区在线看| 久久综合国产亚洲精品| 人人妻人人澡人人爽人人夜夜| 又黄又粗又硬又大视频| 1024视频免费在线观看| 午夜精品国产一区二区电影| 777米奇影视久久| 午夜免费男女啪啪视频观看| 日日夜夜操网爽| 人体艺术视频欧美日本| 男人爽女人下面视频在线观看| 超色免费av| 午夜精品国产一区二区电影| 久久久久国产一级毛片高清牌| 亚洲人成网站在线观看播放| 一级毛片女人18水好多 | 夜夜骑夜夜射夜夜干| 精品国产乱码久久久久久男人| 曰老女人黄片| 国产精品一国产av| 亚洲 国产 在线| 可以免费在线观看a视频的电影网站| 精品人妻在线不人妻| 高潮久久久久久久久久久不卡| 国产精品一区二区在线观看99| 色婷婷久久久亚洲欧美| 日本av免费视频播放| 亚洲av成人不卡在线观看播放网 | 在现免费观看毛片| 青草久久国产| videos熟女内射| svipshipincom国产片| 国产一区二区三区综合在线观看| 久久精品亚洲熟妇少妇任你| 国产色视频综合| 97在线人人人人妻| 国产精品一区二区在线不卡| 亚洲av日韩精品久久久久久密 | 亚洲av日韩精品久久久久久密 | 亚洲九九香蕉| 久久人人爽人人片av| 99热国产这里只有精品6| 国产免费又黄又爽又色| 色视频在线一区二区三区| 中文字幕另类日韩欧美亚洲嫩草| 一边摸一边做爽爽视频免费| 日本vs欧美在线观看视频| 久热这里只有精品99| 久久精品久久精品一区二区三区| 欧美xxⅹ黑人| 国产一级毛片在线| 一本—道久久a久久精品蜜桃钙片| 少妇被粗大的猛进出69影院| 午夜日韩欧美国产| 国产精品久久久久久人妻精品电影 | 免费久久久久久久精品成人欧美视频| 老汉色av国产亚洲站长工具| 亚洲精品日本国产第一区| 国产精品一国产av| 午夜影院在线不卡| 天堂8中文在线网| 国产熟女欧美一区二区| 天堂俺去俺来也www色官网| 亚洲av成人精品一二三区| avwww免费| 高清不卡的av网站| 亚洲国产欧美一区二区综合| 国产爽快片一区二区三区| 国产成人欧美在线观看 | 操美女的视频在线观看| av天堂在线播放| 亚洲成国产人片在线观看| 国产成人一区二区在线| 热99国产精品久久久久久7| 视频在线观看一区二区三区| 新久久久久国产一级毛片| 亚洲av电影在线观看一区二区三区| 大陆偷拍与自拍| 黄网站色视频无遮挡免费观看| 欧美黄色淫秽网站| 亚洲精品美女久久久久99蜜臀 | 如日韩欧美国产精品一区二区三区| 亚洲国产毛片av蜜桃av| 一级毛片女人18水好多 | 丝袜在线中文字幕| 一边亲一边摸免费视频| 国产精品.久久久| 97精品久久久久久久久久精品| 菩萨蛮人人尽说江南好唐韦庄| kizo精华| 亚洲欧美清纯卡通| 一区在线观看完整版| 久久精品熟女亚洲av麻豆精品| 啦啦啦视频在线资源免费观看| 天天躁夜夜躁狠狠久久av| 人人妻,人人澡人人爽秒播 | 欧美黑人精品巨大| 国产免费一区二区三区四区乱码| 亚洲五月婷婷丁香| 在线观看一区二区三区激情| 亚洲 欧美一区二区三区| 伊人亚洲综合成人网| 亚洲av在线观看美女高潮| 欧美精品av麻豆av| 国产熟女欧美一区二区| 亚洲精品中文字幕在线视频| 一级片'在线观看视频| 黄色视频不卡| 欧美日韩精品网址| 日本vs欧美在线观看视频| 尾随美女入室| 免费日韩欧美在线观看| 黄色片一级片一级黄色片| 热99久久久久精品小说推荐| 一本大道久久a久久精品| 日本色播在线视频| 午夜福利乱码中文字幕| 91九色精品人成在线观看| 久久九九热精品免费| 男女无遮挡免费网站观看| 亚洲中文日韩欧美视频| 亚洲精品日韩在线中文字幕| 无遮挡黄片免费观看| 国产99久久九九免费精品| 高清黄色对白视频在线免费看| 国产爽快片一区二区三区| 国产视频首页在线观看| 成年美女黄网站色视频大全免费| 晚上一个人看的免费电影| 激情五月婷婷亚洲| 中文字幕另类日韩欧美亚洲嫩草| 黄色 视频免费看| 久久久精品94久久精品| 丝袜美腿诱惑在线| 国产高清视频在线播放一区 | 建设人人有责人人尽责人人享有的| 成年女人毛片免费观看观看9 | 日本av手机在线免费观看| 男的添女的下面高潮视频| videos熟女内射| 国产99久久九九免费精品| 免费看十八禁软件| av在线app专区| 校园人妻丝袜中文字幕| 男女边摸边吃奶| 一个人免费看片子| 99国产精品99久久久久| 在线观看免费日韩欧美大片| 男女无遮挡免费网站观看|