蔡小艷 李雅輝 鮑正潘 陳秋萍 李勝 周宇 鄧凱 石德順 劉慶友
摘要:【目的】篩選Novel-miR-57調(diào)控靶基因,并明確其對靶基因的調(diào)控作用及生物功能,為揭示水牛乳腺上皮細胞(BMECs)的分化機理提供科學依據(jù)?!痉椒ā坷肕iRscan預測Novel-miR-57二級結構;以自編軟件Ensembl(v80)注釋的水牛mRNA截取3'-非翻譯區(qū)(3'-UTR)作為預測數(shù)據(jù)庫,采用Miranda(v3.3a)對Novel-miR-57進行靶基因預測;運用實時熒光定量PCR篩選重點靶基因。以化學合成的Novel-miR-57模擬物Mimics和抑制劑Inhibitor,分別轉染人類乳腺癌細胞(Bcap-37)及BMECs細胞,以驗證Novel-miR-57與靶基因的表達相關性。【結果】Novel-miR-57前體序列形成7個莖環(huán)結構,成熟序列位于第1、2和3個莖環(huán)結構間,其結合自由能為-53.70 kcal/mol。以結合自由能低于-20.00 kcal/mol為標準,最終篩選出34個可能的靶基因,共與42條KEGG信號通路存在關聯(lián),其富集的信號通路主要有代謝通路(ID:bta01100)、PI3K-Akt(信號通路(ID:bta04151)、MAPK信號通路(ID:bta04010)和細胞因子—細胞因子受體相互作用(ID:bta04060)等;經(jīng)實時熒光定量PCR檢測分析發(fā)現(xiàn)DLX3、CANCNG3、DOK4、NFKBID、C17orf53、RTN1和FBXO10等7個靶基因在非泌乳期的相對表達量極顯著高于泌乳期(P<0.01),二者間相差100.0倍以上,且與Novel-miR-57的相對表達量呈負相關。7個靶基因中僅DOK4基因與Novel-miR-57的表達具相關性,以200 nmol/L Inhibitor轉染B-cap37細胞能顯著提高DOK4基因表達(P<0.05,下同),添加100 nmol/L Mimics則顯著抑制DOK4基因表達。以100 nmol/L Mimics轉染BMECs細胞,Novel-miR-57和DOK4基因的相對表達量顯著提高;而以200 nmol/L Inhibitor轉染BMECs細胞,Novel-miR-57和DOK4基因的表達均受到顯著抑制?!窘Y論】Novel-miR-57含有7個莖環(huán)結構,且其成熟序列位于第1~3個莖環(huán)上。Novel-miR-57過表達可下調(diào)Bcap-37細胞DOK4基因表達或上調(diào)BMECs細胞DOK4基因表達,即Novel-miR-57對靶基因的調(diào)控作用因乳腺細胞生理狀態(tài)不同而存在差異。
關鍵詞: 水牛;Novel-miR-57;靶基因;BMECs細胞;Bcap-37細胞;調(diào)控作用
中圖分類號: S823.83? ? ? ? ? ? ? ? ? ? ? ? ? ? 文獻標志碼: A 文章編號:2095-1191(2021)02-0269-11
Abstract:【Objective】In order to provide scientific basis for revealing the differentiation mechanism of buffalo mammary epithelial cells(BMECs), the regulatory target gene of Novel-miR-57 was screened to clarify its regulatory function and biological function on target genes. 【Method】MiRscan was used to predict the secondary structure of Novel-miR-57. The target gene of Novel-miR-57 was predicted by Miranda(v3.3a) using buffalo mRNA truncated 3-untranslated region (3'-UTR) annotated by Ensembl(v80) as prediction database. Key target genes were screened by real-time fluorescence quantitative PCR. To verify the correlation between Novel-miR-57 and target gene expression, chemically synthesized mimics and inhibitor were transfected into human breast cancer cells(Bcap-37) and BMECs cells, respectively. 【Result】The precursor sequence of Novel-miR-57 formed seven stem-loops, and the mature sequence was located between the first, second and third stem-loops, and its binding free energy was -53.70 kcal/mol. With the binding free energy lower than -20.00 kcal/mol as the standard, 34 possible target genes were finally screened out, which were associated with 42 KEGG signaling pathways. The enriched signaling pathways mainly included metabolic pathway(ID:bta01100), PI3K-Akt(ID:bta04151), MAPK signaling pathway(ID:bta04010) and cytokine-cytokine receptor interaction (ID:bta04060). The real-time fluorescence quantitative PCR showed that the relative expression of seven target genes,DLX3, CANCNG3, DOK4, NFKBID, C17orf53, RTN1 and FBXO10, were significantly higher in non-lactation period than in lactation pe-riod(P<0.01), and the difference between them was more than 100.0 times, which were negatively correlated with the relative expression of Novel-miR-57. Only the expression of DOK4 gene was correlated with the expression of Novel-miR-57 among the seven target genes. Transfection of B-cap37 cells with 200 nmol/L inhibitor could significantly increase the expression of DOK4 gene(P<0.05, the same below), while addition of 100 nmol/L mimics could significantly inhibit the expression of DOK4 gene. The relative expression of Novel-miR-57 and DOK4 gene was significantly increased when BMECs cells were transfected with 100 nmol/L mimics. The expression of Novel-miR-57 and DOK4 gene were significantly inhibited when BMECs cells were transfected with 200 nmol/L inhibitor. 【Conclusion】Novel-miR-57 contains se-ven stem-loops, and its mature sequence locates on the first to the third stem rings. Overexpression of Novel-miR-57 can down-regulate DOK4 gene expression in Bcap-37 cells or up-regulate DOK4 gene expression in BMECs cells, that is, Novel-miR-57 has different regulating effects on target genes due to different physiological states of breast cells.
Key words: buffalo; Novel-miR-57; target gene; BMECs cell; Bcap-37 cell; regulating effects
Foundation item: National Natural Science Foundation of China(31960680); Ningxia Key Research and Development Project(2018BEB04031)
0 引言
【研究意義】microRNAs(miRs)是一類約22 bp的非編碼小分子RNA,大量存在于哺乳動物體內(nèi)(李新云等,2017)。miRs通過與靶mRNA分子的3'-非翻譯區(qū)(3'-UTR)不完全結合以抑制或降解mRNA翻譯(Stark et al.,2005),進而調(diào)控細胞的發(fā)育、分化及增殖等重要生命活動過程(王塑天等,2013;Jiao et al.,2019)。miRs還參與乳腺發(fā)育,包括維持乳腺上皮前體細胞、促使乳腺上皮管道長出及促進乳腺上皮細胞增殖分化等(Wang et al.,2018)。因此,研究miRs對乳腺細胞基因的調(diào)控作用及其功能,可為揭示乳腺泌乳機制和提高泌乳性能奠定基礎。【前人研究進展】目前,有關miRs的研究主要集中在功能調(diào)控和作用機理等方面,如miR-103通過靶向PANK3(Pantothenate kinase 3)調(diào)控水牛乳脂代謝(蔡小艷,2016);miR-200b通過負調(diào)控靶基因Pten(Phosphatase and tensin homologue)表達而正調(diào)控奶牛乳腺泌乳(邊艷杰等,2018);miR-183通過靶向MST1(Mammalian sterile 20-like kinase 1)基因來調(diào)節(jié)山羊奶中脂肪的消化吸收、合成及分解(Chen et al.,2018);miR-3880通過與奶山羊乳腺上皮細胞OGR1(Ovarian cancer G protein-coupled receptor 1)基因3'-UTR結合而調(diào)控其mRNA和蛋白的表達(侯金星等,2019);miR-4312通過靶向PDCD4(Programmed cell death protein 4)以促進細胞增殖和抑制細胞凋亡(苑紅,2019);miR-221通過靶向STAT5a(Signal transducer and activator of transcription 5A)和IRS1(Recombinant insulin receptor substrate 1)基因調(diào)控牛乳腺上皮細胞增殖(Jiao et al.,2019);miR-92a具有調(diào)控奶山羊乳腺發(fā)育和泌乳性能的潛能(包黎娟等,2020);miR-28-3p能促進三陰性乳腺癌細胞系MDA-MB-468(人乳腺癌細胞)的增殖、侵襲和抑制其凋亡(李杰等,2020);miR-380-5p能抑制乳腺癌細胞增殖和促進乳腺癌細胞凋亡(孫云菊等,2020)。此外,有少數(shù)學者針對測序新發(fā)現(xiàn)miRs的靶基因及其功能進行研究。崔曉鋼等(2015)基于物種間序列同源比對新發(fā)現(xiàn)44條牛候選miRs,選取其中4條進行實時熒光定量PCR驗證,并預測對應的靶基因,但尚未進一步研究其調(diào)控功能。郭麗霞(2017)基于高通量技術從5頭黃牛和5頭水牛的大腦組織中測序獲得Novel-miR-25和Novel-miR-13,并證實二者均能調(diào)控大腦功能及神經(jīng)元的分化和發(fā)育。臧樹成等(2018)研究發(fā)現(xiàn),處于冷應激狀態(tài)下大鼠肝臟中的Novel-miR-133-5p異常上調(diào),可能對機體的生長發(fā)育、免疫調(diào)節(jié)及遺傳等有重要影響。練雨(2019)對經(jīng)脂多糖(LPS)處理的豬子宮內(nèi)膜上皮進行測序,結果發(fā)現(xiàn)Novel-mir-106-5p能抑制NF-tB激活,降低NF-tB磷酸化水平。Li等(2020)從96 條日本牙鲆miRs中篩選出pol-miR-novel-171,并證實其靶向負調(diào)控FAM49B(Family with sequence similarity 49,member B)的3'-UTR。張月(2020)研究表明,奶山羊乳腺中的Novel-miR-3880可通過PI3K/AKT/mTOR/S6Kl和Bcl-2/Bax通路調(diào)節(jié)乳腺上皮細胞細胞生長、乳脂合成和乳酪蛋白分泌,進而促進乳腺發(fā)育。【本研究切入點】盡管目前已有較多關于miRs調(diào)控牛和水牛乳腺基因表達的研究,但針對水牛乳腺組織新發(fā)現(xiàn)miRs的調(diào)控基因研究鮮見報道。本課題組前期基于Solexa高通量測序和實時熒光定量PCR,在創(chuàng)建的miRs文庫中發(fā)現(xiàn)并鑒定出5個新的水牛miRs表達模式(蔡小艷等,2017a,2017b),其中Novel-miR-57在水牛泌乳期和非泌乳期的表達量差異極顯著,是5個新發(fā)現(xiàn)水牛miRs中差異最明顯的miRs(Cai et al.,2017),因此深入研究Novel-miR-57對揭示水牛乳腺細胞的泌乳作用機制具有重要意義?!緮M解決的關鍵問題】通過MiRscan預測Novel-miR-57二級結構,以化學合成的Novel-miR-57模擬物Mimics和抑制劑Inhibitor分別轉染人類乳腺癌細胞(Bcap-37)及水牛乳腺上皮細胞(BMECs),篩選其調(diào)控靶基因,并明確Novel-miR-57對靶基因的調(diào)控作用及生物功能,以期為揭示BMECs細胞的分化機理提供科學依據(jù)。
1 材料與方法
1. 1 試驗材料
水牛乳腺組織采自廣西南寧市屠宰場,一般于凌晨2:00—4:00時采集;泌乳期樣本為可明顯觀察到有白色乳液一直流出的乳腺組織,非泌乳期樣本是無法從表面上看出有白色乳液流出,且用手按壓后也無乳液流出的乳腺組織。2種乳腺組織樣本各3個重復,以生理鹽水清洗干凈后,立即使用消毒眼科手術剪在所有樣本的組織內(nèi)部取樣1.0~2.0 g,裝入2 mL的EP管中,然后立即將其放進液氮罐,帶回實驗室置于-80 ℃冰箱保存。BMECs細胞為亞熱帶農(nóng)業(yè)生物資源保護與利用國家重點實驗室分離獲得;Bcap-37細胞由亞熱帶農(nóng)業(yè)生物資源保護與利用國家重點實驗室保存提供。DMEM培養(yǎng)基、FBS和Lipo2000轉染試劑購自Life Technology公司;一步快速反轉試劑盒購自TaKaRa公司;熒光定量SYBR Green Master和Mix羅氏轉染試劑購自瑞士Roche公司。儀器設備主要有CO2培養(yǎng)箱(Thermo公司)、低溫離心機(Beckman公司)及熒光定量PCR儀等(蔡小艷等,2016)。
1. 2 Novel-miR-57二級結構預測
登錄MiRscan(http://genes.mit.edu/mirscan/),輸入Novel-miR-57基因序列,單擊Submit即可獲得結果(劉長征和余佳,2012;王偉等,2019)。
1. 3 引物設計與合成
采用Primer 3.0進行PCR擴增引物設計,并委托生工生物工程(上海)股份有限公司合成。Novel-miR-57的莖環(huán)反轉錄引物為5'-GTCGTATCCAGTG CAGGGTCCGAGGTATTCGCACTGGATACGACTCGGTC-3',U6的逆轉錄引物為5'-CGCTTCACGA ATTTGCGTGTCAT-3';Novel-miR-57的實時熒光定量PCR上游引物為5'-GGAAATACCGGCACGAGA C-3',下游引物為5'-GTGCAGGGTCCGAGGT-3';內(nèi)參基因U6的實時熒光定量PCR上游引物為5'-CTC GCTTCGGCAGCACA-3',下游引物為5'-AACGCT TCACGAATTTGCGT-3'。Novel-miR-57預測靶基因的實時熒光定量PCR擴增引物見表1。
1. 4 實時熒光定量PCR
參照蔡小艷等(2016)的方法,將0.1 g乳腺組織置于研缽中,倒入液氮迅速研磨,加入TRIzol試劑進行總RNA提取;提取獲得的總RNA采用紫外分光光度計測定其濃度,并以1.0%瓊脂糖凝膠電泳進行鑒定。使用AMV試劑盒(TaKaRa)反轉合成cDNA:反應液配制均在冰上操作,依照AMV試劑盒說明加入各種試劑進行反轉錄。將反轉錄合成的cDNA稀釋至100 ng/mL,實時熒光定量PCR反應體系20.0 μL: cDNA模板1.0 μL,SYBR GreenMaster 10.0 μL,上、下游引物(10 μmol/L)各0.3 μL,無RNA酶水8.4 μL。擴增程序:95 ℃預變性10 min;95 ℃ 15 s,60~55 ℃ 1 min,進行40個循環(huán),收集熒光。每個樣品設3個重復,以U6基因為Novel-miR-57的內(nèi)參基因。
1. 5 靶基因預測
因水牛全基因組尚未公布,故以Ensembl(v80)注釋的水牛mRNA截取3'-UTR作為預測數(shù)據(jù)庫,采用Miranda(v3.3a)對Novel-miR-57進行靶基因預測,篩選出結合自由能小于-20 kcal/mol的3'-UTR,即獲得有關Novel-miR-57靶基因總數(shù)。
1. 6 化學合成Novel-miR-57的Mimics和Inhibitor轉染Bcap-37細胞和BMECs細胞Novel-miR-57 Pri序列為:CACTCAGAGATAA GAGGCTGGGTTCGACTGGGAGAGGATGCAAGTTTCAGGCTAAATACCGGCACGAGACCGATAGTCAACAAGTACCATAAGGGAAAGTTGAAAAGAACTTTGAGATGGTACGTGTGCATGCTAGAGGAACCGTTGCTGTATTAATGAAAGGGCACCTGGCACGTGGAAACACCCCTAAGATGTTCATT。
根據(jù)其成熟序列化學合成Novel-miR-57的Mi-mics(正義鏈:5'-AAAUACCGGCACGAGACCGA-3',反義鏈:5'-UCGGUCUCGUGCCGGUAUUU-3')和Inhibitor(5'-UCGGUCUCGUGCCGGUAUUU-3'),以及Mimics對照(MNC)序列(正義鏈:5'-UUUGUA CUACACAAAAGUACUG-3',反義鏈:5'-CAGUAC UUUUGUGUAGUACAAA-3')和Inhibitor對照(INC)序列(5'-CAGUACUUUUGUGUAGUACAAA-3')。參照Lipofectamine 2000(Thermo Fisher Scientific)試劑說明轉染Bcap-37細胞和BMECs細胞。于直徑60 mm的Bcap-37細胞培養(yǎng)皿中分別加入50、75和100 nmol/L Mimics及200 nmol/L Inhibitor,并設空白對照組(NC);根據(jù)Bcap-37細胞的轉染結果,分別以100 nmol/L Mimics和200 nmol/L Inhibitor轉染BMECs細胞,采用實時熒光定量PCR檢測Novel-miR-57和靶基因的表達情況。
1. 7 統(tǒng)計分析
實時熒光定量PCR檢測結果采用2-△△Ct法進行換算,然后以SPSS 19.0進行差異顯著性分析。
2 結果與分析
2. 1 Novel-miR-57二級結構預測結果
前體莖環(huán)結構是miRNA的主要特征之一,且miRNA的二級結構會影響其加工及成熟miRNA進入不同AGO(Argonaute)蛋白質(zhì),因此本研究通過MiRscan對Novel-miR-57的二級結構進行預測分析,結果如圖1所示。Novel-miR-57前體序列(黑色)形成7個不一樣的小莖環(huán),其成熟序列位于第1、2和3個莖環(huán)間的核苷酸序列(紅色)上。Novel-miR-57的結合自由能為-53.70 kcal/mol。
2. 2 Novel-miR-57靶基因預測結果
miRNA主要通過結合與調(diào)控靶基因?qū)崿F(xiàn)其生理功能,故使用Miranda(v3.3a)預測Novel-miR-57的靶基因,挑選出結合自由能低于-20.00 kcal/mol的所有靶基因,最終篩選出34個可能的靶基因(表2),經(jīng)基因資料搜索及信號通路分析,然后篩選部分代表靶基因進行實時熒光定量PCR檢測分析。
2. 3 Novel-miR-57靶基因的GO功能注釋及KEGG信號通路富集分析結果
使用GO數(shù)據(jù)庫比對分析Novel-miR-57靶基因,最終獲得729個相關類別(Term),其中有89個類別的P<0.05,有2個類別的P<0.01,分別是水解酶活性和線性酰胺中碳—氮鍵(非縮氨酸)(GO:0016811)及細胞內(nèi)信號轉導負調(diào)控(GO:1902532)。將預測篩選獲得的34個靶基因輸入KEGG數(shù)據(jù)庫,進行系統(tǒng)的KEGG信號通路富集分析,結果發(fā)現(xiàn)這些靶基因與42條KEGG信號通路存在關聯(lián),其富集的信號通路主要有代謝通路(Metabolic pathways,ID:bta01100)、PI3K-Akt(磷脂酰肌醇三激酶—蛋白激酶B或PKB)信號通路(ID:bta04151)、MAPK(Mitogen-activated protein kinase)信號通路(ID:bta04010)和細胞因子—細胞因子受體相互作用(Cytokine-cytokine receptor interaction,ID:bta04060)等。
2. 4 靶基因的實時熒光定量PCR檢測分析結果
針對34個預測靶基因進行實時熒光定量PCR檢測分析,結果發(fā)現(xiàn)在所有乳腺組織中有5個靶基因的相對表達量較低。對比各靶基因在泌乳期和非泌乳期的相對表達量,發(fā)現(xiàn)有11個靶基因(圖2)在泌乳期的相對表達量相當或顯著高于非泌乳期(P<0.05,下同),有10個靶基因(圖3)在非泌乳期的相對表達量相當或顯著高于泌乳期;而DLX3(Distal-less homeobox 3)、CACNG3(Calcium voltage-gated channel auxiliary subunit gamma 3)、DOK4(Downstream of tyrosine kinase/docking protein)、NFKBID(NFKB inhibitor delt)、C17Orf53(Chromosome 17 open reading frame 53)、RTN1(Isoform RTN1-C)和FBXO10(F-box protein 10)等7個靶基因(圖4)在非泌乳期的相對表達量極顯著高于泌乳期(P<0.01),二者間相差100.0倍以上,且與Novel-miR-57的相對表達量呈負相關,故將其列為靶向基因的重點篩選對象。
2. 5 靶基因在Bcap-37細胞上的驗證結果
實時熒光定量PCR檢測結果(圖5)表明,僅DOK4基因與Novel-miR-57的表達具相關性,添加Novel-miR-57的Inhibitor能顯著提高DOK4基因表達,加入100 nmol/L Mimics則顯著抑制DOK4基因表達。
2. 6 轉染Mimics和Inhibitor對BMECs細胞Novel-miR-57表達的影響
由圖6可知,以100 nmol/L Mimics轉染BMECs細胞,Novel-miR-57的相當表達量顯著高于其對照組(MNC);而添加200 nmol/L Inhibitor后Novel-miR-57的相對表達量顯著低于其對照組(INC),說明Novel-miR-57轉染成功,達到預期效果。
2. 7 轉染Mimics和Inhibitor對BMECs細胞DOK4基因表達的影響
由圖7可知,以100 nmol/L Mimics轉染BMECs細胞,DOK4基因的相對表達量顯著提高;而以200 nmol/L Inhibitor轉染BMECs細胞,DOK4基因的表達受到顯著抑制。綜合轉染Mimics和Inhibitor對BMECs細胞Novel-miR-57表達的影響可知,Novel-miR-57在BMECs細胞中對DOK4基因表達呈正調(diào)控作用。
3 討論
miRs對乳腺組織起重要的調(diào)控作用,可影響乳腺發(fā)育,包括維持乳腺上皮前體細胞、促使乳腺上皮管道長出及促進乳腺上皮細胞增殖分化等(Wang et al.,2018;Zheng et al.,2019),其相關研究主要集中在已知miRs的靶向基因挖掘及其功能探析等方面,如miR-27a通過靶向PPAR-γ(Peroxisome proliferato-ractivated receptor gamma)調(diào)控甘油三酰合成(Tang et al.,2017),miR-146通過靶向TRAF6(TNF receptor associated factor 6)和HMG(High mobility group)調(diào)控乳腺上皮細胞炎癥因子(Wang et al.,2017),miR-454通過靶向PPAR-γ調(diào)控牛乳腺上皮細胞甘油三酯合成(Zhang et al.,2018)。崔曉鋼等(2015)雖然從新發(fā)現(xiàn)的44條牛候選miRs中選取4條進行實時熒光定量PCR驗證,并預測對應的靶基因,但尚未深入研究靶基因的功能。Novel-miR-57是本課題組從水牛體內(nèi)新發(fā)現(xiàn)的miRs,在水牛泌乳期和非泌乳期的表達量差異極顯著,在其功能研究過程中尚存在諸多未知問題和難題。一是Novel-miR-57二級結構尚屬于預測階段,無法確定其二級結構是否會影響miRs加工及成熟miRs進入不同的AGO蛋白質(zhì)(張偉等,2020);二是在預測Novel-miR-57靶基因時,由于水牛全基因組尚未公布,因此只能使用自編軟件Ensembl(v80)注釋的水牛mRNA截取3'-UTR作為預測數(shù)據(jù)庫,而導致靶基因預測數(shù)量相對較少;三是驗證Novel-miR-57靶基因時由于缺乏相關的參考資料,只能將已篩選出的34個靶基因全部進行實時熒光定量PCR檢測分析,最后在細胞水平僅發(fā)現(xiàn)DOK4基因與Novel-miR-57存在表達相關性,而以往的研究發(fā)現(xiàn)單個miRs可調(diào)控多個靶基因表達(吳寧昭,2017;袁茂等,2019),因此對于Novel-miR-57的靶基因及功能作用尚有待進一步研究。
本研究結果表明,僅DOK4基因與Novel-miR-57的表達具相關性,且Novel-miR-57在BMECs細胞中對DOK4基因表達呈正調(diào)控作用,即Novel-miR-57的靶基因是DOK4基因。DOK4為酪氨酸激酶下游分子(Win et al.,2018),是細胞膜中的適配器及支架蛋白的組成成分,由15406個氨基酸殘基組成,定位于反義鏈上,同時是胰島素受體底物(Cai et al.,2003;Hooker et al.,2012),涉及多個信號通路,包括GDNF-家族配體和受體互作等。已有學者在靈長類動物和牛的乳腺細胞中預測到DOK4b基因,被視為酪氨酸激酶發(fā)送信號的抑制劑(Zhang et al.,2020)。此外,DOK4的mRNA和蛋白大量存在于多種上皮細胞中,對上皮細胞的分化有一定影響,由此推測DOK4基因受Novel-miR-57表達調(diào)控,進而影響上皮細胞分化。DOK4還可能與下游效應分子一起作用,然后與Ret(RET proto-oncogene)的1062Tyr結合,且Shc(Generic shell script compiler)及其他效應器分子也會競爭性與Ret的1062Tyr結合,并根據(jù)細胞環(huán)境不同而改變對Elk/Elk-1的激活作用。在Caco-2細胞系中,DOK4基因的作用是防止Ret介導的Elk-1信號通路被激活,但該作用在293T細胞中較弱(Grimm et al.,2001;Itoh et al.,2005;Guittard et al.,2018),具體作用機制還需進一步探究。
大部分動物的miRs與靶基因結合后會下調(diào)基因表達(汪劼,2016),但在近年來的相關報道中發(fā)現(xiàn)動物miRs呈正調(diào)控或去抑制作用,即在少數(shù)動物中miRs能促進靶基因上調(diào)表達。Vasudevan等(2007)研究發(fā)現(xiàn),miRs既可降低靶基因表達,又能促使靶基因執(zhí)行活化功能。當細胞處于休眠期時,miRs能上調(diào)基因表達;當細胞處于循環(huán)/增殖期時,miRs則抑制基因表達(Vasudevan et al.,2008),且這種作用與ARE(AU rich element)(富含腺嘌呤/尿嘧啶原件)相關。ARE是一種活化miRs翻譯的信號,能與AGO、FXRP(Fragile X retardation-1 protein)等miRISC復合物結合,而影響miRs翻譯及上調(diào)基因表達。von Roretz和Gallouzi(2008)研究表明,ARE對miRs介導的mRNA衰減調(diào)控有一定影響。此外,miRs的表達具有細胞特異性,當miR-24在抑制胃癌的BCL2L11細胞中表達時,能促進細胞生長,減少細胞凋亡(Zhang et al.,2016);而在下調(diào)肝癌的Bcl-2細胞內(nèi),miR-24表現(xiàn)為促進細胞凋亡(楊鵬等,2019)。因此,Novel-miR-57是否通過類似機制對DOK4基因進行調(diào)控有待進一步探究。Guittard等(2018)研究表明,通過引入外源性siRNA干擾,可同時抑制Caco-2細胞中的DOK4基因和DOK4b基因表達,但對α-管蛋白無任何影響。本研究也發(fā)現(xiàn),內(nèi)源性Novel-miR-57可下調(diào)DOK4基因表達,為后期揭示Novel-miR-57在其他細胞系中的功能作用提供了參考依據(jù)。
4 結論
Novel-miR-57含有7個莖環(huán)結構,且其成熟序列位于第1~3個莖環(huán)上。Novel-miR-57過表達可下調(diào)Bcap-37細胞DOK4基因表達或上調(diào)BMECs細胞DOK4基因表達,即Novel-miR-57對靶基因的調(diào)控作用還因細胞生理狀態(tài)不同而存在差異。
參考文獻:
包黎娟,劉育含,馬毅,安小鵬,張月,張夢,王建剛,堵斌,李廣,曹斌云. 2020. miR-92a對奶山羊乳腺上皮細胞增殖及凋亡的調(diào)控分析[J]. 畜牧獸醫(yī)學報,51(1):137-149. doi:10.11843/j.issn.0366-6964.2020.01.016. [Bao L J,Liu Y H,Ma Y,An X P,Zhang Y,Zhang M,Wang J G,Du B,Li G,Cao B Y. 2020. The regulation of mir-92a on proliferation and apoptosis of dairy goats mammary epithelial cells[J]. Acta Veterinaria et Zootechnica Sinica,51(1):137-149.]
邊艷杰,韓金汾,段江燕. 2018. miR-200b對奶牛乳腺上皮細胞泌乳功能的影響[J]. 河南農(nóng)業(yè)科學,47(7):124-131. doi:10.15933/j.cnki.1004-3268.2018.07.020. [Bian Y J,Han J F,Duan J Y. 2018. Effect of miR-200b on lactation ability of bovinemammary epithelial cells[J]. Journal of Henan Agricultural Sciences,47(7):124-131.]
蔡小艷,鮑正攀,古景開,鄧凱,張曉溪,任艷萍,沈朋雷,石德順,劉慶友. 2017a. 水牛泌乳期與非泌乳期乳腺組織miRNAs表達譜鑒定及差異表達分析[J]. 畜牧獸醫(yī)學報,48(9):1635-1647. doi:10.11843/j.issn.0366-6964. 2017. 09.008. [Cai X Y,Bao Z P,Gu J K,Deng K,Zhang X X,Ren Y P,Shen P L,Shi D S,Liu Q Y. 2017a. Identify and analyze the expression profile and mechanism of bu-ffalo mammary gland miRNAs in the lactation and non-lactation periods[J]. Acta Veterinaria et Zootechnica Sinica,48(9):1635-1647.]
蔡小艷,李勝,陳秋萍,王萍,鄧凱,劉慶友,石德順. 2016. 水牛bbu-miR-103-1在泌乳期與非泌乳期表達模式及靶向基因的初步研究[J]. 畜牧獸醫(yī)學報,47(11):2191-2201. doi:10.11843/j.issn.0366-6964.2016.11.006. [Cai X Y,Li S,Chen Q P,Wang P,Deng K,Liu Q Y,Shi D S. 2016. Expression pattern and target regulation gene of bbu-miR-103-1 from lactation and non-lactation periods in B. bubalis[J]. Acta Veterinaria et Zootechnica Sinica,47(11):2191-2201.]
蔡小艷,王鵬程,鄧凱,王萍,馮萬有,張曉溪,任艷萍,劉慶友,石德順. 2017b. 水牛泌乳期與非泌乳期乳腺組織差異miRNAs的表達模式鑒定及分析[J]. 中國畜牧獸醫(yī),44(11):3220-3228. doi:10.16431/j.cnki.1671-7236.2017. 11.016. [Cai X Y,Wang P C,Deng K,Wang P,F(xiàn)eng W Y,Zhang X X,Ren Y P,Liu Q Y,Shi D S. 2017b. Identification and analysis of differential expression miRNAs in the lactation and non-lactation of buffalo mammary gland[J]. China Animal Husbandry & Veterinary Medicine,44(11):3220-3228.]
蔡小艷. 2016. 水牛泌乳期和非泌乳期miRNAs表達譜分析及miR-103和Novel-miR-57的靶向基因研究[D]. 南寧:廣西大學. doi:10.7666/d.Y3277300. [Cai X Y. 2016. Research on miRNA expression profiles in lactation and non-lactation and the target genes of miR-103 and Novel-miR-57 in buffalo[D]. Nanning:Guangxi University.]
崔曉鋼,楊少華,謝巖,張勝利,張勤,孫東曉. 2015. 應用生物信息學預測牛新microRNA及驗證[J]. 畜牧獸醫(yī)學報,46(8):1317-1324. doi:10.11843/j.issn.0366-6964.2015.08. 006. [Cui X G,Yang S H,Xie Y,Zhang S L,Zhang Q,Sun D X. 2015. Computational and experimental identification of novel microRNAs in bovine by bioinforma-tics[J]. Acta Veterinaria et Zootechnica Sinica,46(8):1317-1324.]
郭麗霞. 2017. 高通量測序鑒定黃牛和水牛大腦組織中的microRNAs[D]. 昆明:云南大學. [Guo L X. 2017. Identification microRNAs in brain of cattle and buffalo by high
throughput sequencing[D]. Kunming:Yunnan University.]
侯金星,安小鵬,杜曉巖,曹斌云,沈文正,李云甫. 2019. MiR-3880對奶山羊乳腺上皮細胞OGR1基因的靶向調(diào)控作用[J]. 家畜生態(tài)學報,40(5):13-17. doi:10.3969/j.issn.1673-1182.2019.05.003. [Hou J X,An X P,Du X Y,Cao B Y,Shen W Z,Li Y F. 2019. MiR-3880 regulates the expression of OGR1 gene in mammary epithelial cells of dairy goats[J]. Acta Ecologiae Animalis Domastici,40(5):13-17.]
李杰,劉天旭,呂微,張評梅,段玉青,王郁,劉麗華. 2020. miR-28-3p通過抑制BIN1表達促進三陰性乳腺癌MDA-MB-468細胞的惡性生物學行為[J]. 中國腫瘤生物治療雜志,27(1):55-61. doi:10.3872/j.issn.1007-385x.2020. 01.009. [Li J,Liu T X,Lü W,Zhang P M,Duan Y Q,Wang Y,Liu L H. 2020. miR-28-3p promotes the malignant biological behaviors of triple negative breast cancer MDA-MB-468 cells via inhibiting BIN1[J]. Chinese Journal of Cancer Biotherapy,27(1):55-61.]
李新云,付亮亮,程會軍,趙書紅. 2017. microRNA調(diào)控哺乳動物骨骼肌發(fā)育[J]. 遺傳,39(11):1046-1053. doi:10. 16288/j.yczz.17-112. [Li X Y,F(xiàn)u L L,Cheng H J,Zhao S H. 2017. Advances on microRNA in regulating mammalian skeletal muscle development[J]. Hereditas(Beijing),39(11):1046-1053.]
練雨. 2019. Ssc-novel-mir-106-5p在LPS誘導的母豬子宮內(nèi)膜上皮細胞炎癥反應中的作用[D]. 重慶:西南大學. [Lian Y. 2019. Effects of ssc-nove1-miR-106-5p on LPS-induced inflammatory response in porcine endometrial epi-thelial cells[D]. Chongqing:Southwest University.]
劉長征,余佳. 2012. microRNA鑒定與功能分析技術[M]. 北京:化學工業(yè)出版社. [Liu C Z,Yu J. 2012. microRNA identification and function analysis technology[M]. Beijing:Chemical Industry Press.]
孫云菊,張星,陸幼波,董建蘭. 2020. miRNA-380-5p在乳腺癌細胞增殖和凋亡中的作用機制[J]. 中國婦幼保健,35(11):2097-2100. doi:10.19829/j.zgfybj.issn.1001-4411. 2020.11.044. [Sun Y J,Zhang X,Lu Y B,Dong J L. 2020. Mechanism of miRNA-380-5p in proliferation and apoptosis of breast cancer cells[J]. Maternal and Child Health Care of China,35(11):2097-2100.]
汪劼. 2016. 闖入動物王國的植物miRNA[J]. 生命的化學,36(3):404-408. doi:10.13488/j.smhx.20160323. [Wang J. 2016. Plant miRNA breaking into animal kingdom[J]. Chemistry of Life,36(3):404-408.]
王塑天,李敏霞,婁娟,左二偉,陸陽清,盧克煥,楊小淦. 2013. miRNA-145、Oct4和Sox2基因在小鼠早期胚胎發(fā)育分化中的表達情況[J]. 南方農(nóng)業(yè)學報,44(12):2075-2079. doi:10.3969/j:issn.2095-1191.2013.12.2075. [Wang S T,Li M X,Lou J,Zuo E W,Lu Y Q,Lu K H,Yang X G. 2013. Expression of miRNA-145,Oct4 and Sox2 in early embryonic development and differentiation in mouse[J]. Journal of Southern Agriculture,44(12):2075-2079.]
王偉,黃曉宇,閆尊強,馬曉文,王鵬飛,謝開會,雒瑞瑞,高小莉,馬艷萍,滾雙寶. 2019. 豬miR-339-3p靶基因預測分析及部分靶基因驗證[J]. 農(nóng)業(yè)生物技術學報,27(5):885-896. doi:10.3969/j.issn.1674-7968.2019.05.012. [Wang W,Huang X Y,Yan Z Q,Ma X W,Wang P F,Xie K H,Luo R R,Gao X L,Ma Y P,Gun S B. 2019. Target gene prediction analysis and partial target gene verification of pig(Sus scrofa) miR-339-3p[J]. Journal of Agricultural Biotechnology,27(5):885-896.]
吳寧昭. 2017. miRNA-1和miRNA-133在鴨骨骼肌發(fā)育中的表達及功能初步研究[D]. 揚州:揚州大學. [Wu N Z. 2017. The expression of miRNA-1 and miRNA-133 and its function on duck skeletal cell proliferation and diffe-rentiation[D]. Yangzhou:Yangzhou University.]
楊鵬,滕紅麗,羅雪蘭,李丹,顏鴛淵,歐和生,覃裕旺. 2019. miR-24對肝癌MHCC97H細胞增殖、凋亡及遷移能力的影響[J]. 廣西醫(yī)科大學學報,36(9):1397-1402.doi:10.16190/j.cnki.45-1211/r.2019.09.002. [Yang P,Teng H L,Luo X L,Li D,Yan Y Y,Ou H S,Qin Y W. 2019. Effect of miR-24 on cell proliferation,apoptosis and migration of liver cancer MHCC97H cellline[J]. Journal of Guangxi Medical University,36(9):1397-1402.]
袁茂,江明鋒,徐亞歐,林亞秋,蔣小松,楊朝武,余春林,李志雄. 2019. 藏雞不同發(fā)育階段腿部肌肉組織轉錄組及microRNA聯(lián)合分析[J]. 畜牧獸醫(yī)學報,50(12):2400-2412. doi:10.11843/j.issn.0366-6964.2019.12.004. [Yuan M,Jiang M F,Xu Y O,Lin Y Q,Jiang X S,Yang C W,Yu C L,Li Z X. 2019. Analysis of transcriptome and microRNA in leg muscle of Tibetan chicken at different developmental stages[J]. Acta Veterinaria et Zootechnica Sinica,50(12):2400-2412.]
苑紅. 2019. miR-4312促進乳腺上皮細胞增殖并抑制其凋亡[D]. 呼和浩特:內(nèi)蒙古大學. doi:10.27224/d.cnki.gnmdu.2019.000076. [Yuan H. 2019. miRNA-4312 promotes poliferation and inhibits apoptosis in mammary epithelial cell[D]. Huhhot:Inner Mongolia University.]
臧樹成,郭文晉,甄莉,連帥,王立鵬,袁建彬,李文杰,楊煥民. 2018. 急性冷應激大鼠肝臟中novel-miR-133-5p生物學功能預測[J]. 中國獸醫(yī)學報,38(8):1585-1591. doi:10.16303/j.cnki.1005-4545.2018.08.21.[Zang S C,Guo W J,Zhen L,Lian S,Wang L P,Yuan J B,Li W J,Yang H M. 2018. Biological function prediction of novel-miR-133-5p in the liver of acute cold stress rat[J]. Chinese Journal of Veterinary Science,38(8):1585-1591.]
張偉,王世銀,石國慶,鄧雙義,劉曉娜,楊力偉. 2020. 巴什拜羊miR-486多態(tài)性及其表達規(guī)律研究[J]. 農(nóng)業(yè)生物技術學報,28(1):92-100. doi:10.3969/j.issn.1674-7968.2020. 01.009. [Zhang W,Wang S Y,Shi G Q,Deng S Y,Liu X N,Yang L W. 2020. Polymorphism of miR-486 and its expression pattern in Bashby sheep(Ovis aries)[J]. Journal of Agricultural Biotechnology,28(1):92-100.]
張月. 2020. Novel-miR-3880對奶山羊乳腺上皮細胞功能和乳腺發(fā)育的調(diào)控作用研究[D]. 楊凌:西北農(nóng)林科技大學. doi:10.27409/d.cnki.gxbnu.2020.000123. [Zhang Y. 2020. The regulatory effects of novel-miR-3880 on mammary epithelial cell function and mammary gland deve-lopment in dairy goats[D]. Yangling:Northwest A & F University.]
Cai D S,Dhe-Paganon S,Melendez P A,Lee J,Shoelson S E. 2003. Two new substrates in insulin signaling,IRS5/DOK4 and IRS6/DOK5[J]. The Journal of Biological Chemistry,278(28):25323-25330. doi:10.1074/jbc.M21 2430200.
Cai X Y,Li S,Chen Q P,Wang P,Deng K,Liu Q Y,Shi D S. 2017. Expression pattern and target gene of bbu-miR-103-1 in buffalo(Bubalus bubalis) at lactation and non-lactation periods[J]. Animal Husbandry and Feed Science,9(3):157-164. doi:10.19578/j.cnki.ahfs.2017.03. 007.
Chen Z,Shi H P,Sun S,Luo J,Zhang W,Hou Y,Loor JJ. 2018. MiR-183 regulates milk fat metabolism via MST1 in goat mammary epithelial cells[J]. Gene,646:12-19. doi:10.1016/j.gene.2017.12.052.
Grimm J,Sachs M,Britsch S,Di Cesare S,Schwarz-Romond T,Alitalo K,Birchmeier W. 2001. Novel p62dok family members,dok-4 and dok-5,are substrates of the c-Ret receptor tyrosine kinase and mediate neuronal differentiation[J]. The Journal of Cell Biology,154(2):345-354.doi:10.1083/jcb.200102032.
Guittard G,Pontarotti P,Granjeaud S,Rodrigues M,Abi-Rached L,Nunès J A. 2018. Evolutionary and expression analyses reveal a pattern of ancient duplications and functional specializations in the diversification of the Downstream of Kinase(DOK) genes[J]. Developmental and Comparative Immunology,84:193-198. doi:10.1016/j.dci. 2018.02.011.
Hooker E,Baldwin C,Lemay S. 2012. New insights into Dok-4 PTB domain structure and function[J]. Biochemical and Biophysical Research Communications, 427(1):67-72. doi:10.1016/j.bbrc.2012.08.148.
Itoh S,Lemay S,Osawa M,Che W Y,Duan Y T,Tompkins A,Brookes P S,Sheu S S,Abe J I. 2005. Mitochondrial Dok-4 recruits Src kinase and regulates NF-κB activation in endothelial cells[J]. The Journal of Biological Chemistry,280(28):26383-26396. doi:10.1074/jbc.M410262200.
Jiao B L,Zhang X L,Wang S H,Wang L X,Luo Z X,Zhao H B,Khatib H,Wang X. 2019. MicroRNA-221 regulates proliferation of bovine mammary gland epithelial cells by targeting the STAT5a and IRS1 genes[J]. Journal of Dairy Science,102(1):426-435. doi:10.3168/jds.2018-15108.
Li W R,Guan X L,Jiang S,Sun L. 2020. The novel fish miRNA pol-miR-novel_171 and its target gene FAM49B play a critical role in apoptosis and bacterial infection[J]. Developmental and Comparative Immunology,106:103616.doi:10.1016/j.dci.2020.103616.
Stark A,Brennecke J,Bushati N,Russell R B,Cohen S M. 2005. Animal microRNAs confer robustness to gene expression and have a significant impact on 3'UTR evolution[J]. Cell,123(6):1133-1146. doi:10.1016/j.cell.2005. 11.023.
Tang K Q,Wang Y N,Zan L S,Yang W C. 2017. miR-27a controls triacylglycerol synthesis in bovine mammary epithelial cells by targeting peroxisome proliferator-activated receptor gamma[J]. Journal of Dairy Science,100(5):4102-4112. doi:10.3168/jds.2016-12264.
Vasudevan S,Tong Y C,Steitz J A. 2007. Switching from repression to activation:MicroRNAs can up-regulate translation[J]. Science,318(5858):1931-1934.doi:10.1126/science.1149460.
Vasudevan S,Tong Y C,Steitz J A. 2008. Cell cycle control of microRNA-mediated translation regulation[J]. Cell Cycle,7(11):1545-1549. doi:10.4161/cc.7.11.6018.
von Roretz C,Gallouzi I E. 2008. Decoding ARE-mediated decay:Is microRNA part of the equation?[J]. The Journal of Cell Biology,181(2):189-194. doi:10.1083/jcb. 200712054.
Wang X P,Luoreng Z M,Zan L S,Li F,Li N. 2017. Bovine miR-146a regulates inflammatory cytokines of bovine mammary epithelial cells via targeting the TRAF6 gene[J]. Journal of Dairy Science,100(9):7648-7658. doi:10. 3168/jds.2017-12630.
Wang X H,Zhang L,Jin J,Xia A T,Wang C M,Cui Y J,Qu B,Li Q Z,Sheng C Y. 2018. Comparative transcriptome analysis to investigate the potential role of miRNAs in milk protein/fat quality[J]. Scientific Reports,8(1):6250. doi:10.1038/s41598-018-24727-y.
Win S,Than T A,Kaplowitz N. 2018. The regulation of JNK signaling pathways in cell death through the interplay with mitochondrial SAB and upstream post-translational effects[J]. International Journal of Molecular Sciences,19(11):3657. doi:10.3390/ijms19113657.
Zhang H Y,Duan J J,Qu Y J,Deng T,Liu R,Zhang L,Bai M,Li J L,Ning T,Ge S H,Wang X,Wang Z Z,F(xiàn)an Q,Li H L,Ying G G,Huang D Z,Ba Y. 2016. Onco-mir-24 regulates cell growth and apoptosis by targeting BCL2l11 in gastric cancer[J]. Protein and Cell,7(2):141-151. doi:10.1007/s13238-015-0234-5.
Zhang J,Padarti A,Jiang X T,Abou-Fadel J. 2020. Redefining PTB domain into independently functional dual cores[J]. Biochemical and Biophysical Research Communications,524(3):595-607. doi:10.1016/j.bbrc.2020.01.114.
Zhang M Q,Gao J L,Liao X D,Huang T H,Zhang M N,Wang M Q,Tian Y,Bai J,Zhou C H. 2018. miR-454 re-gulates triglyceride synthesis in bovine mammary epithe-lial cells by targeting PPAR-γ[J]. Gene,691:1-7. doi:10. 1016/j.gene.2018.12.048.
Zheng C Y,Zou X,Zhao B C,Zhang M L,Lin H J,Luo C H,Xu Z M,Shao L Y,F(xiàn)u S X. 2019. miRNA-185 regulates retained fetal membranes of cattle by targeting STIM1[J]. Theriogenology,126:166-171. doi:10.1016/j.theriogenology.2018.11.030.
(責任編輯 蘭宗寶)