孫丹丹 全玉東 王月琴 王振營 何康來
摘要 :評(píng)價(jià)轉(zhuǎn)Bt基因玉米對(duì)靶標(biāo)生物亞洲玉米螟的殺蟲作用是轉(zhuǎn)基因玉米研發(fā)的重要一環(huán)。本文采用室內(nèi)生測(cè)法對(duì)3種轉(zhuǎn)Bt基因抗蟲玉米‘瑞豐125(表達(dá)Cry1Ab/Cry2Aj殺蟲蛋白),‘DBN9936‘DBN9978(表達(dá)Cry1Ab殺蟲蛋白)對(duì)亞洲玉米螟敏感品系A(chǔ)CB-S及抗Cry1Ab品系A(chǔ)CB-AbR、抗Cry1Ac品系A(chǔ)CB-AcR、抗Cry1F品系A(chǔ)CB-FR、抗Cry1Ah品系A(chǔ)CB-AhR、抗Cry1Ie品系A(chǔ)CB-IeR的殺蟲活性進(jìn)行測(cè)定,同時(shí)采用心葉期和抽絲期人工接蟲法進(jìn)行田間抗蟲效果鑒定。結(jié)果表明,取食3種Bt玉米的ACB-S幼蟲, 3 d死亡率100%,而取食對(duì)照常規(guī)玉米3 d存活率100%。取食3種Bt玉米的5個(gè)抗性品系幼蟲除ACB-AbR和ACB-AcR有2%~6%的個(gè)體存活4~5 d, 6 d死亡率也達(dá)到了100%,其余品系均在3 d全部死亡,而取食對(duì)照玉米5~6 d的死亡率僅為4%~14%,差異顯著。田間心葉期食葉級(jí)別及穗期活蟲數(shù)、雌穗被害和莖稈被蛀等為害等級(jí)說明3種Bt玉米高抗亞洲玉米螟。明確了‘瑞豐125‘DBN9936和‘DBN9978對(duì)亞洲玉米螟有很高的殺蟲活性和田間防治效果。5個(gè)Bt蛋白抗性亞洲玉米螟品系幼蟲在常規(guī)玉米上顯示一定的適合度劣勢(shì)。
關(guān)鍵詞 :轉(zhuǎn)基因玉米; Bt殺蟲蛋白; 亞洲玉米螟; 寄主抗性
中圖分類號(hào):
S 435.132
文獻(xiàn)標(biāo)識(shí)碼: A
DOI: 10.16688/j.zwbh.2020008
Resistance of transgenic Bt maize (Ruifeng 125, DBN9936 & DBN9978) to
Asian corn borer
SUN Dandan, QUAN Yudong, WANG Yueqin, WANG Zhenying, HE Kanglai*
(State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection,Chinese Academy of Agricultural Sciences, Beijing 100193, China)
Abstract
Evaluation for resistance to the targets such as Asian corn borer (ACB), Ostrinia furnacalis, is an important step of research and development novel insect resistant transgenic Bt maize. In present research, three kinds of insect resistant transgenic Bt maize, i.e. ‘Ruifeng 125 expressing Cry1Ab/Cry2Aj protein, ‘DBN9936 and ‘DBN9978 expressing Cry1Ab protein, were evaluated in the laboratory and field. Laboratory bioassays were conducted by exposing neonates of ACB susceptible strain (ACB-S), Cry1Ab resistant strain (ACB-AbR), Cry1Ac resistant strain (ACB-AcR), Cry1F resistant strain (ACB-FR), Cry1Ah resistant strain (ACB-AhR), and Cry1Ie resistant strain (ACB-IeR) to fresh whorl leaves, respectively. Field trials were conducted by artificial infestation of ACB at whorl and silking stages. Mortalities were 100% within 3 days when ACB-S larvae fed on three Bt maize leaf tissues, whereas all larvae survived when they fed on the control of conventional maize leaf tissues. When ACB-AbR and ACB-AcR larvae fed on three Bt maize leaf tissues, 2%-6% of larvae could survival for 4-5 days, but not longer than six days. In contrast, there were 4%-14% of larval mortalities when these larvae fed on control within six days. Leaf feeding ratings from whorl stage infestation, larval survivals and ear and stalk bored and tunnels indicated that three Bt maize varieties were highly resistant to ACB. In conclusion, Bt maize ‘Ruifeng 125 ‘DBN9936 and ‘DBN9978 are highly toxic to ACB and could provide season-long protection against ACB. Laboratory selected Cry1Ab, Cry1Ac, Cry1Ah, Cry1F, and Cry1Ie resistant strains demonstrate certain fitness cost.
Key words
transgenic maize; Bt insecticidal protein; Ostrinia furnacalis; host plant resistance
轉(zhuǎn)Bt基因玉米因具有特定且高效的目標(biāo)性狀而受到種植者的歡迎[13]。據(jù)國際農(nóng)業(yè)生物技術(shù)應(yīng)用服務(wù)組織(ISAAA)統(tǒng)計(jì), 2018年全球已有14個(gè)國家和地區(qū)種植轉(zhuǎn)基因玉米5 890萬hm2,其中轉(zhuǎn)Bt基因抗蟲玉米達(dá)到550萬 hm2,耐除草劑玉米560萬 hm2,聚合抗蟲/耐除草劑玉米4 780萬hm2 [4]。我國玉米種植面積穩(wěn)定在4 200萬 hm2[5],蟲害是影響玉米高產(chǎn)穩(wěn)產(chǎn)以及優(yōu)質(zhì)的重要問題之一。因此,抗蟲始終是玉米品種改良的重要研究?jī)?nèi)容,亦是利用現(xiàn)代生物技術(shù)進(jìn)行作物品種改良的首選目標(biāo)性狀之一[6]。種植轉(zhuǎn)基因抗蟲作物可顯著減少化學(xué)殺蟲劑的使用,從而降低環(huán)境污染。同時(shí)因其特異性的殺蟲特點(diǎn),對(duì)非靶標(biāo)生物安全,可保護(hù)生物多樣性[23]。
蘇云金芽胞桿菌Bacillus thuringiensis,即Bt在芽胞形成的過程中產(chǎn)生的殺蟲蛋白晶體(insecticidal crystal protein,ICP)對(duì)鱗翅目、鞘翅目、雙翅目等多種害蟲具有特異的殺蟲作用,尤其是cry基因,因其編碼的Cry殺蟲蛋白生物活性強(qiáng)而被廣泛應(yīng)用[6]。目前,全球應(yīng)用最廣泛的抗蟲作物主要為跨國公司研發(fā)的表達(dá)Cry和Vip 類殺蟲蛋白的轉(zhuǎn)基因作物[4]。大面積持續(xù)種植轉(zhuǎn)基因玉米的同時(shí),也會(huì)引發(fā)靶標(biāo)害蟲產(chǎn)生抗性。在南非, 夜蛾科昆蟲Busseola fusca 對(duì)Bt玉米‘MON810 產(chǎn)生了抗性[7],在波多黎各和巴西,草地貪夜蛾Spodoptera frugiperda 對(duì)表達(dá)Bt Cry1F的玉米產(chǎn)生了抗性[89],在巴西,草地貪夜蛾對(duì)表達(dá)Bt Cry1Ab的玉米產(chǎn)生了抗性[10],在加拿大,歐洲玉米螟Ostrinia nubilalis對(duì)表達(dá)Bt Cry1F的玉米產(chǎn)生了抗性[11]。因此,商業(yè)化種植某一轉(zhuǎn)基因抗蟲玉米的同時(shí),必須配套實(shí)施合理的抗性治理措施,以保障其長期的可持續(xù)利用。高劑量庇護(hù)所是目前應(yīng)用最廣的能有效延緩靶標(biāo)害蟲產(chǎn)生抗性的策略[1214]。然而,其有效性的條件之一就是“高劑量”,即轉(zhuǎn)基因抗蟲作物表達(dá)的目的Bt蛋白量能殺死靶標(biāo)害蟲種群中全部抗性隱性純合(rr)和雜合(Sr)個(gè)體[15]。因此,抗蟲性評(píng)價(jià)是轉(zhuǎn)基因玉米研發(fā)與應(yīng)用的重要環(huán)節(jié)。本文開展了3種國產(chǎn)轉(zhuǎn)基因玉米‘瑞豐125‘DBN9936‘DBN9978對(duì)靶標(biāo)害蟲亞洲玉米螟的殺蟲效果評(píng)價(jià),同時(shí)通過測(cè)定其對(duì)亞洲玉米螟不同Bt蛋白抗性品系的殺蟲活性,評(píng)估了其對(duì)靶標(biāo)害蟲抗性治理的潛力。
1 材料和方法
1.1 供試亞洲玉米螟
亞洲玉米螟敏感品系(ACB-S)為在室內(nèi)無瓊脂半人工飼料[16]上連續(xù)飼養(yǎng)種群,飼養(yǎng)過程中未接觸過Bt制劑或Bt蛋白。亞洲玉米螟Cry1Ab抗性品系A(chǔ)CB-AbR(RR>190)[17]、Cry1Ac抗性品系A(chǔ)CB-AcR(RR>3 000)[17]、Cry1F抗性品系A(chǔ)CB-FR(RR>1 000)[18]、Cry1Ah抗性品系A(chǔ)CB-AhR(RR>190)[19]、Cry1Ie抗性品系A(chǔ)CB-IeR(RR>850)[20]均以敏感品系為起始蟲源,在無瓊脂半人工飼料中加入一定量的Cry1Ab、Cry1Ac、Cry1F、Cry1Ah、Cry1Ie蛋白進(jìn)行幼蟲全生育期汰選所得。所有幼蟲均在溫度(27±1)℃,相對(duì)濕度70%~80%,光周期L∥D=16 h∥8 h的條件下飼養(yǎng)。
1.2 供試玉米
試驗(yàn)所用表達(dá)Cry1Ab/Cry2Aj殺蟲蛋白轉(zhuǎn)Bt基因抗蟲玉米‘瑞豐125,由浙江大學(xué)提供;表達(dá)Cry1Ab殺蟲蛋白轉(zhuǎn)Bt基因抗蟲玉米‘DBN9936和‘DBN9978,由北京大北農(nóng)生物技術(shù)有限公司提供。同時(shí)各單位提供了相應(yīng)的非轉(zhuǎn)基因受體對(duì)照,大北農(nóng)提供了用于在田間試驗(yàn)的‘DBN567和‘Nonghua101。室內(nèi)生測(cè)試驗(yàn)用苗種植在中國農(nóng)業(yè)科學(xué)院植物保護(hù)研究所科研溫室,盆栽。田間試驗(yàn)包括在海南三亞中國農(nóng)業(yè)科學(xué)院棉花研究所大茅基地對(duì)‘瑞豐125和‘DBN9936的接蟲鑒定,以及在河北玉田對(duì)‘DBN9978的接蟲鑒定。
1.3 Bt玉米抗螟性離體組織生測(cè)
室內(nèi)生測(cè)在玉米生長至7~8葉期時(shí)進(jìn)行。從溫室取新鮮植株,將未展開的幼嫩心葉剪成2~3 cm2大小,放在24孔培養(yǎng)板中,每板1個(gè)處理,每個(gè)處理重復(fù)2次。每孔接1頭待測(cè)試亞洲玉米螟敏感或抗性品系初孵幼蟲(孵化時(shí)間<12 h),放置在溫度(27±1)℃、光周期L∥D=16 h∥8 h,相對(duì)濕度70%~80%的人工氣候培養(yǎng)箱中。每天調(diào)查一次幼蟲存活情況,根據(jù)葉片被取食消耗情況更換同一植株的新葉片,直至Bt玉米組幼蟲全部死亡。最后稱量并記錄對(duì)照組存活幼蟲體重。
1.4 田間接蟲鑒定
田間鑒定分心葉期接蟲和穗期接蟲,對(duì)應(yīng)自然發(fā)生的心葉期世代和穗期世代。心葉期接蟲在玉米植株生長至6葉期,每株接亞洲玉米螟(ACB-S)2日齡幼蟲20~30頭,1周后再次接蟲。穗期接蟲在玉米抽絲散粉期,每株接亞洲玉米螟2日齡幼蟲20~30頭。接蟲2周后,調(diào)查為害級(jí)別。心葉期調(diào)查記錄食葉級(jí)別,穗期調(diào)查記錄活蟲數(shù)、雌穗(不包括花絲)受害/隧道長度(cm),同時(shí)剖查莖稈,記錄單株蟲孔數(shù)、隧道長度和活蟲數(shù)等計(jì)算被害級(jí)別[21]。試驗(yàn)小區(qū)為隨機(jī)區(qū)組排列,每個(gè)品種每次重復(fù)接蟲40株以上,重復(fù)3次。
1.5 數(shù)據(jù)分析
亞洲玉米螟幼蟲取食不同玉米品種心葉后的存活率、田間心葉期接蟲后不同品種的食葉級(jí)別及穗期接蟲后的被害級(jí)別的差異分別進(jìn)行單因素方差分析。處理間差異顯著時(shí),平均數(shù)采用LSD測(cè)驗(yàn)。死亡率百分?jǐn)?shù)進(jìn)行反正弦轉(zhuǎn)換。采用SAS Proc ANOVA過程進(jìn)行分析。
2 結(jié)果與分析
2.1 Bt玉米對(duì)ACB-S品系的殺蟲效果
ACB-S幼蟲取食3種Bt玉米心葉2 d后,其死亡率達(dá)到89.6%以上,顯著高于取食非轉(zhuǎn)基因?qū)φ沼衩仔娜~CK(F3,4=53.51, P=0.001)(圖1),3 d后幼蟲全部死亡。而取食非轉(zhuǎn)基因?qū)φ沼衩仔娜~3 d的幼蟲存活率仍為100%。說明轉(zhuǎn)Bt基因玉米‘瑞豐125‘DBN9936和‘DBN9978對(duì)ACB-S有很高的殺蟲效果。
2.2 Bt玉米對(duì)亞洲玉米螟Cry1A類殺蟲蛋白抗性品系的殺蟲效果
亞洲玉米螟3個(gè)Cry1A類蛋白抗性品系A(chǔ)CB-AbR,ACB-AcR,ACB-AhR初孵幼蟲分別取食3種Bt玉米心葉2 d 后大量死亡,死亡率達(dá)79%以上,隨取食時(shí)間增加,死亡率繼續(xù)升高, 3~5 d后全部死亡。而取食非轉(zhuǎn)基因玉米心葉的幼蟲在1 d即有出現(xiàn)少量死亡,死亡率約2%,且隨時(shí)間延長緩慢增加,6 d后的最高死亡率為14%,顯著低于Bt玉米處理(圖2)。同時(shí),不同抗性品系取食3種Bt玉米心葉2~5 d時(shí)的死亡率有顯著差異(ACB-AbR:2 d,F(xiàn)3,4=614.58, P<0.000 1; 3 d, F3,4=27.95, P=0.003 8;4 d, F3,4=97.65, P=0.000 3; ACB-AcR: 2 d, F3,4=101.34, P=0.003; 3 d, F3,4=54.18, P=0.001 1; 4 d F3,4=33.86, P=0002 7; 5 d, F3,4=147.19, P=0.000 2; ACB-AhR: 2 d, F3,4=224.18, P<0.000 1),因此,不同處理幼蟲全部死亡的時(shí)間也有一定差異,即幼蟲全部死亡時(shí)間為ACB-AhR在2~3 d,ACB-AbR在4~5 d,ACB-AcR在4~6 d。這些結(jié)果說明3種Bt玉米對(duì)實(shí)驗(yàn)室汰選的亞洲玉米螟3個(gè)Cry1A類殺蟲蛋白抗性品系具有很高的殺蟲活性。
2.3 Bt玉米對(duì)ACB-FR和ACB-IeR品系的殺蟲效果
亞洲玉米螟ACB-FR和ACB-IeR品系初孵幼蟲分別取食3種Bt玉米心葉,2~3 d全部死亡,而取食非轉(zhuǎn)基因玉米的初孵幼蟲3 d后的死亡率約2%,差異顯著(ACB-FR: 2 d, F3,4=62.04, P=0.000 8; ACB-IeR: 2 d, F3,4=108.98, P=0.000 3)說明3種Bt玉米對(duì)亞洲玉米螟ACB-FR和ACB-IeR品系具有很好的殺蟲效果(圖3)。
2.4 Bt玉米田間抗蟲性
心葉期接蟲鑒定結(jié)果表明,Bt玉米與常規(guī)玉米對(duì)照及當(dāng)?shù)爻R?guī)玉米品種‘Nonghua101相比,被害級(jí)別差異顯著(表1)。Bt玉米葉片僅有針孔狀為害狀,平均食葉級(jí)別≤1.3,即高抗亞洲玉米螟。而常規(guī)玉米對(duì)照葉片被取食嚴(yán)重,平均食葉級(jí)別≥8.5,即高感。
穗期接蟲鑒定結(jié)果表明,Bt玉米與常規(guī)玉米對(duì)照及當(dāng)?shù)爻R?guī)玉米品種‘Nonghua101相比,存活蟲數(shù)、被害級(jí)別差異顯著(表1)。Bt玉米個(gè)別植株上有1頭發(fā)育不良的低齡幼蟲,雌穗僅少數(shù)花絲被害,籽粒、穗軸等都沒有被害,平均被害級(jí)別為1.6,即高抗。而常規(guī)玉米對(duì)照除花絲嚴(yán)重被害外,籽粒、穗軸等都嚴(yán)重被取食,莖稈被蛀,平均被害級(jí)別達(dá)到7.9以上,即高感。
3 討論
高劑量表達(dá)目標(biāo)殺蟲蛋白的轉(zhuǎn)Bt基因抗蟲玉米能夠全生育期抵抗歐洲玉米螟和亞洲玉米螟等害蟲的為害[2224]。與使用化學(xué)殺蟲劑一樣,大面積長期種植轉(zhuǎn)Bt基因抗蟲玉米將不可避免地引起靶標(biāo)害蟲對(duì)目標(biāo)殺蟲蛋白產(chǎn)生抗性[2526]。靶標(biāo)害蟲易產(chǎn)生抗性的主要原因之一是轉(zhuǎn)Bt基因抗蟲玉米表達(dá)的目標(biāo)Bt殺蟲蛋白量低。有報(bào)道,由于表達(dá)Cry1Ab殺蟲蛋白的轉(zhuǎn)基因抗蟲玉米‘MON810對(duì)草地貪夜蛾表現(xiàn)中等殺蟲效果,導(dǎo)致田間很快產(chǎn)生抗性[89];表達(dá)Cry1F轉(zhuǎn)基因抗蟲玉米防治Striacosta albicosta[27]及表達(dá)Cry3Bb1和mCry3A轉(zhuǎn)基因抗蟲玉米防治玉米根葉甲Diabrotica virgifera virgifera[28]殺蟲效果沒有達(dá)到高劑量,田間很快產(chǎn)生了抗性。本研究結(jié)果明確了表達(dá)Cry1Ab的3種轉(zhuǎn)Bt基因抗蟲玉米‘瑞豐125‘DBN9936和‘DBN9978對(duì)亞洲玉米螟具有高效殺蟲活性,田間抗蟲性水平達(dá)到高抗,殺蟲效果達(dá)到98%以上。這對(duì)于今后商業(yè)化種植這些品種時(shí),制定實(shí)施高劑量庇護(hù)所抗性治理策略,以延緩抗性產(chǎn)生,保障產(chǎn)品長期可持續(xù)利用提供了重要的科學(xué)依據(jù)。
本研究表明,實(shí)驗(yàn)室汰選的亞洲玉米螟Cry1Ab抗性品系A(chǔ)CB-AbR對(duì)3種表達(dá)Cry1Ab殺蟲蛋白的Bt玉米有一定的抗性,表現(xiàn)在比敏感品系生存時(shí)間長1~3 d,然而最終存活時(shí)間沒有超過7 d。一方面說明Bt玉米的抗蟲性狀屬功能性顯性;另一方面玉米本身的內(nèi)在抗蟲性物質(zhì)可能與Bt殺蟲蛋白互作提高了殺蟲效果。這一現(xiàn)象在小菜蛾、歐洲玉米螟等都有報(bào)道[2930]。
交互抗性,即由于害蟲對(duì)某一種脅迫因子(如某一種Bt殺蟲蛋白)的汰選產(chǎn)生抗性的同時(shí),對(duì)其他脅迫因子(其他Bt殺蟲蛋白)也產(chǎn)生了抗性。有報(bào)道,對(duì)Cry1Ac殺蟲蛋白產(chǎn)生抗性的煙芽夜蛾Heliothis virescens (F.)對(duì)Cry1Aa, Cry1Ab, Cry1F, Cry1B, Cry1C和Cry1A亦產(chǎn)生了交互抗性[31],對(duì)Cry1Ab產(chǎn)生抗性的歐洲玉米螟,對(duì)Cry1Ac有高水平的交互抗性,對(duì)Cry1F有低水平的交互抗性[32]。前期研究表明,室內(nèi)用Cry1Ac, Cry1Ah, Cry1F殺蟲蛋白汰選的亞洲玉米螟抗性品系,對(duì)Cry1Ab蛋白存在一定的交互抗性[1719],Cry1Ie殺蟲蛋白汰選的亞洲玉米螟抗性品系, 對(duì)Cry1Ab蛋白沒有交互抗性[20]。本研究結(jié)果顯示,ACB-AcR品系取食3種Bt玉米心葉的生存力顯著增加,比敏感品系生存時(shí)間增加1~4 d,顯著長于ACB-Ah, ACB-FR, ACB-Ie品系。說明ACB-AcR品系對(duì)3種Bt玉米具有一定交互抗性。
靶標(biāo)害蟲對(duì)Bt殺蟲蛋白產(chǎn)生抗性是其適應(yīng)脅迫(選擇)的結(jié)果??剐云废担ɑ蛐停┡c敏感品系往往在形態(tài)、生物學(xué)特征和生理生化反應(yīng)演化出顯著差異。暴露于Bt殺蟲蛋白脅迫下,抗性品系適合度通常高于敏感品系。去除脅迫,則抗性品系的適合度會(huì)顯示一定的劣勢(shì)。如對(duì)Cry1Ac殺蟲蛋白產(chǎn)生抗性的棉鈴蟲Helicoverpa armigera在常規(guī)棉花和不添加Cry1Ac蛋白的飼料上幼蟲的發(fā)育歷期延長,凈增殖率降低[3]。本研究結(jié)果表明,與敏感品系相比,抗性品系在常規(guī)玉米對(duì)照上的存活率有一定的下降,且下降幅度與抗性倍數(shù)高低相關(guān)。說明抗性品系適合度下降,即表現(xiàn)出適合度劣勢(shì)。此外適合度劣勢(shì)還表現(xiàn)在幼蟲體重下降(圖4),體重降低幅度與抗性倍數(shù)成正相關(guān)。在實(shí)施高劑量庇護(hù)所抗性治理策略條件下,適合度劣勢(shì)有利于抗性治理,因?yàn)榭剐詡€(gè)體在庇護(hù)所的存活率降低。
參考文獻(xiàn)
[1] MILNE A E, BELL J R, HUTCHISON W D, et al. The effect of farmers decisions on pest control with Bt crops: A billion dollar game of strategy [J/OL]. PLoS Computational Biology, 2015, 11(12): e1004483. DOI: 10.1371/journal.pcbi.1004483.
[2] HUTCHISON W D, BURKNESS E C, MITCHELL P D, et al. Areawide suppression of European corn borer with Bt maize reaps savings to non-Bt maize growers [J]. Science, 2010, 330(6001): 222225.
[3] TABASHNIK B E. Communal benefits of transgenic corn [J]. Science, 2010, 330(6001): 189190.
[4] ISAAA. Global status of commercialized biotech/GM crops in 2018: Biotech crops continue to help meet the challenges of increased population and climate change [M]. NY: The International Service for the Acquisition of Agri-biotech Applications. 2018: 75.
[5] 國家統(tǒng)計(jì)局. 中國統(tǒng)計(jì)年鑒[M]. 北京: 國家統(tǒng)計(jì)出版社, 2019.
[6] 黎裕,王天宇. 玉米轉(zhuǎn)基因技術(shù)研發(fā)與應(yīng)用現(xiàn)狀及展望[J]. 玉米科學(xué), 2018, 26(2): 115.
[7] VAN RENSBURG J B J. First report of field resistance by the stem borer, Busseola fusca (Fuller) to Bt-transgenic maize [J]. South African Journal of Plant and Soil, 2007, 24(3): 147151.
[8] STORER N P, BABCOCK J M, SCHLENZ M, et al. Discovery and characterization of field resistance to Bt maize: Spodoptera frugiperda (Lepidoptera: Noctuidae) in Puerto Rico [J]. Journal of Economic Entomology, 2010, 103(4): 10311038.
[9] FARIAS J R, ANDOW D A, HORIKOSHI R J, et al. Field-evolved resistance to Cry1F maize by Spodoptera frugiperda (Lepidoptera: Noctuidae) in Brazil [J]. Crop Protection, 2014, 64: 150158.
[10]OMOTO C, BERNARDI O, SALMERON E, et al. Field-evolved resistance to Cry1Ab maize by Spodoptera frugiperda in Brazil [J]. Pest Management Science, 2015, 72(9): 17271736.
[11]SCHAAFSMA A, FARHAN Y, SMITH J. The first case of field failure of Bt corn to control European corn borer Ostrinia nubilalis (Lepidoptera: Crambidae) discovered in Nova Scotia, Canada [C]∥27th IWGO Conference Abstract. 2019, Engelberg, Switzerland.
[12]GOULD F. Sustainability of transgenic insecticidal cultivars: integrating pest genetics and ecology [J]. Annual Review of Entomology, 1998, 43: 701726.
[13]TABASHNIK B E, GASSMANN A J, CROWDER D W. Insect resistance to Bt-crops: evidence versus theory [J]. Nature Biotechnology, 2008, 26(2): 199202.
[14]SANAHUJA G, BANAKAR R, TWYMAN R. Bacillus thuringiensis: a century of research, development and commercial applications [J]. Plant Biotechnology Journal, 2011, 9(3): 283300.
[15]ALSTAD D N, ANDOW D A. Managing the evolution of insect resistance to transgenic plants [J]. Science, 1995, 268(5219): 18941896.
[16]宋彥英, 周大榮, 何康來. 亞洲玉米螟無瓊脂半人工飼料的研究與應(yīng)用[J]. 植物保護(hù)學(xué)報(bào), 1999, 26(4): 324328.
[17]ZHANG Tiantao, HE Mingxia, GATEHOUSE A, et al. Inheritance patterns, dominance and cross-resistance of Cry1Ab-and Cry1Ac-selected Ostrinia furnacalis (Guenée) [J]. Toxins, 2014, 6(9): 26942707.
[18]WANG Yueqin, WANG Yidong, WANG Zhenying, et al. Genetic basis of Cry1F-resistance in a laboratory selected Asian corn borer strain and its cross-resistance to other Bacillus thuringiensis toxins [J/OL]. PLoS ONE, 2016,11(8): e0161189. DOI: 10.1371/journal.pone.0161189.
[19]SHABBIR M Z, QUAN Yudong, WANG Zhenying, et al. Characterization of the Cry1Ah resistance in Asian corn borer and its cross-resistance to other Bacillus thuringiensis toxins [J/OL]. Scientific Reports, 2018, 8: 234. DOI: 10.1038/s41598-017-18586-2.
[20]WANG Yueqin, YANG Jing, QUAN Yudong, et al. Characterization of Asian corn borer resistance to Bt toxin Cry1Ie [J/OL]. Toxins, 2017, 9(6): 186. DOI: 10.3390/toxins9060186.
[21]何康來, 王振營, 周大榮, 等. 玉米抗螟性鑒定方法與評(píng)價(jià)標(biāo)準(zhǔn)[J]. 沈陽農(nóng)業(yè)大學(xué)學(xué)報(bào), 2000, 31(5): 5155.
[22]ARCHER T L, SCHUSTER G, PATRICK C, et al. Whorl and stalk damage by European and Southwestern corn borers to four events of Bacillus thuringiensis transgenic maize [J]. Crop Protection, 2000, 19(3): 181190.
[23]ARCHER T L, PATRICK C, SCHUSTER G, et al. Ear and shank damage by corn borers and corn earworms to four events of Bacillus thuringiensis transgenic maize [J]. Crop Protection, 2001, 20(2): 139144.
[24]HE Kanglai, WANG Zhenying, ZHOU Darong, et al. Evaluation of transgenic Bt corn for resistance to the Asian corn borer (Lepidoptera: Pyralidae) [J]. Journal of Economic Entomology, 2003, 96(3): 935940.
[25]MCGAUGHEY W H. Insect resistance to the biological insecticide Bacillus thuringiensis [J]. Science, 1985, 229(4709): 193195.
[26]TABASHNIK B E. Evolution of resistance to Bacillus thuringiensis [J]. Annual Review of Entomology, 1994, 39: 4779.
[27]SMITH J L, LEPPING M D, RULE D M, et al. Evidence for field-evolved resistance of Striacosta albicosta (Lepidoptera: Noctuidae) to Cry1F Bacillus thuringiensis protein and transgenic corn hybrids in Ontario, Canada [J]. Journal of Economic Entomology, 2017, 110(5): 22172228.
[28]GASSMANN A J, PETZOLD-MAXWELL J L, KEWESHAN R S, et al. Field-evolved resistance to Bt maize by western corn rootworm [J/OL]. PLoS ONE, 2011, 6(7): e22629. DOI: 10.1371/journal.pone.022629.
[29]TABASHNIK B E, CARRIERE Y, DENNEHY T J, et al. Insect resistance to transgenic Bt crops: lessons from the laboratory and field [J]. Journal of Economic Entomology, 2003, 96(4): 10311038.
[30]HUANG Fangneng, BUSCHMAN L L, HIGGINS R A, et al. Survival of Kansas Dipel-resistant European corn borer (Lepidoptera: Crambidae) on Bt and non-Bt corn hybirds [J]. Journal of Economic Entomology, 2002, 95(3): 614621.
[31]GOULD F, ANDERSON A, REYNOLDS R, et al. Selection and genetic analysis of a Heliothis virescens (Lepidoptera: Noctuidae) strain with high levels of resistance to Bacillus thuringiensis toxins [J]. Journal of Economic Entomology, 1995, 88(6): 15451559.
[32]SIQUEIRA H A A, MOELLENBECK D, SPENCER T, et al. Cross-resistance of Cry1Ab-selected Ostrinia nubilalis (Lepidoptera: Crambidae) to Bacillus thuringiensis δ-endotoxins [J]. Journal of Economic Entomology, 2004, 97(3): 10491057.
[33]LIANG Gemei, WU Kongming, YU Hongkun, et al. Changes of inheritance mode and fitness in Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) along with its resistance evolution to Cry1Ac toxin [J]. Journal of Invertebrate Pathology, 2008, 97(2): 142149.
(責(zé)任編輯:田 喆)