• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Fabrication and characterization of all-Nb lumped-element Josephson parametric amplifiers?

    2021-06-26 03:04:50HangXue薛航ZhirongLin林志榮WenbingJiang江文兵ZhengqiNiu牛錚琦KuangLiu劉匡WeiPeng彭煒andZhenWang王鎮(zhèn)
    Chinese Physics B 2021年6期

    Hang Xue(薛航) Zhirong Lin(林志榮) Wenbing Jiang(江文兵) Zhengqi Niu(牛錚琦)Kuang Liu(劉匡) Wei Peng(彭煒) and Zhen Wang(王鎮(zhèn))

    1State Key Laboratory of Functional Materials for Informatics,Shanghai Institute of Microsystem and Information Technology(SIMIT),Chinese Academy of Sciences,Shanghai 200050,China

    2University of Chinese Academy of Sciences,Beijing 100049,China

    3CAS Center for Excellence in Superconducting Electronics(CENSE),Shanghai 200050,China

    4ShanghaiTech University,Shanghai 201210,China

    Keywords: Josephson parametric amplifier,Nb/Al-AlOx/Nb Josephson junctions,lumped-element resonator

    1. Introduction

    Superconducting parametric amplifiers based on Josephson junctions have been widely used in the past decade because of their capabilities to provide amplification with a noise performance near the quantum limit.[1–5]The unique characteristics of Josephson parametric amplifiers enable them to be applied to weak measurement,[6]quantum feedback,[7]squeezed microwave[8]and qubit readout.[9–11]In previous works, two kinds of parametric amplifiers have been developed, one based on individual resonant architecture[12–15]and the other named Josephson traveling wave parametric amplifier (JTWPA) based on Josephson junction transmission line.[16–18]JTWPA has extraordinary bandwidth and saturation power, however its fabrication process is complicated and requires thousands of Josephson junction units.On the other hand, the impedance transformed parametric amplifier (IMPA) based on lumped-element Josephson parametric amplifier (LJPA)[4]has the best performance among resonant-type JPA. LJPA includes much fewer Josephson junctions in the dc superconducting quantum interference device (SQUID), and supplies the profits of broad bandwidth of several hundred MHz and near quantum-limited performance.[19–21]The Josephson junctions were fabricated using standard Al/AlOx/Al tunnel junction with shadow evaporation.[22,23]Sandwich structures of parallel-plate capacitors in LJPA were fabricated independently of junctions.[19,20]The uniformity of the lumped-element LC resonators comprised of parallel-plate capacitors and Al Josephson junctions makes it challenging to prepare Al junction-based JTWPA device that requires thousands of units.

    In addition, Nb-based multilayer process is compatible with the existing commercial semiconductor micro-fabrication platforms. All-refractory Nb/Al-AlOx/Nb Josephson junctions are robust after several thermal cycles. The fabrication technology of Nb/Al-AlOx/Nb junctions is currently wellestablished and is usually used for the fabrication of superconducting devices such as single-flux-quantum (SFQ) logic circuits, programmable Josephson voltage standards, and dc SQUIDs.[24–26]Recently, the reliable and reproducible fabrication process for high quality Nb/Al-AlOx/Nb junctions with small leakage currents was developed.[27]The high uniformity of the properties of the Nb-based junctions has the potential to develop JTWPA.

    In this paper, we report the fabrication and characterization of LJPAs using a multilayer micro-fabrication process.[28]The LJPAs are comprised of Nb/Al-AlOx/Nb junctions and Nb/SiO2/Nb parallel-plate capacitors. The fabrication process is based on dry etching of the Nb/Al-AlOx/Nb trilayer on intrinsic silicon. In Nb trilayer junction process, we typically make a SiO2layer as an electrical isolation layer and a wiring Nb layer on top of the SiO2layer to connect part of top and bottom Nb layers. The parallel-plate capacitors are fabricated at the same time owing to the overlapped layers of the wiring Nb layer, the bottom Nb layer, and the intermediate SiO2layer. We experimentally demonstrated 190 MHz of almost 3 dB smooth bandwidth with a 20 dB gain centered around 6.848 GHz. Within the entire bandwidth of the amplifier,an average 1 dB compression point of?123 dBm with the near-quantum-limited noise performance makes it have the potential to be applied in broadband IMPA and multi-qubit readout.

    2. Design and device fabrication

    The design of the LJPAs we fabricated is similar to the ones reported by Mutuset al.[19]As shown in the schematic circuit and optical micrograph in Figs. 1(a) and 1(b), the oscillating system includes of a SQUID with flux-dependence nonlinear inductance shunted by a parallel plate capacitor.The parametric amplifier resonator whose resonant frequency can be tuned in the 4–8 GHz range by adjusting the static magnetic flux threading the SQUID loop is directly coupled to a single input–output signal line. An on-chip pump line, which is realized by a 50 ? transmission line, provides an ac flux and energy of parametric amplification.[29]These amplifiers have an unbiased nonlinear junction inductanceLJ=54.9 pH, a geometric inductanceLg=13.39 pH,a capacitance ofC=5.68 pF,producing a resonant frequencyf0=1/2π((LJ+Lg)C)1/2=8.08 GHz. The coupled quality factor (Q) of the LJPA is expressed asQ=2πZ f0C=14.4,whereZis 50 ? of the environmental impedance.[19]

    The LJPAs based on Nb/Al–AlOx/Nb Josephson tunnel junctions were fabricated with multilayer processes in the Superconducting Electronics Facility (SELF) at Shanghai Institute of Microsystem and Information Technology. In the first step, Nb/Al–AlOx/Nb trilayer was deposited on an intrinsic silicon substratein-situin a combination equipment with separate chambers for dc magnetron sputtering of Nb, Al, and for AlOxformation by static oxidation. Nb base and counter electrodes were both 150 nm-thick and the Al film was 10 nmthick. The thickness of the AlOxbarrier which determines the critical current density of the Josephson junction can be controlled with the oxygen exposure. Appropriate oxygen pressure and exposure time for oxidation were adjusted to obtain the Josephson critical current density of about 100 A/cm2. In the second step,a layer of photoresist AZ703 was spin-coated above HMDS and baked. We used a Canon FPA-3030 i5+stepper with 350 nm imaging resolution for photolithography of all layers. The Nb/Al-AlOx/Nb Josephson junctions we used were designed as circular-shaped and defined by etching the top Nb layer. After that, lithography and wet etching were performed to define the AlOxbarrier whose area must be larger than junction’s so that the barrier between the Nb base and counter electrode was not damaged during the process. The Nb layer was etched via a process using inductively coupled plasma (ICP), then the AlOxbarrier was wet etched using developer. In the third step, the transmission line and Nb base electrode were defined by reactive ion etching(RIE)the bottom Nb layer. In the fourth step, a 250 nm-thick SiO2film was deposited using a plasma enhanced chemical vapor deposition(PECVD)process and etched using CHF3to form an electrical isolation layer between the bottom Nb electrode,the transmission line,and the wiring layer. The dielectric layers used for capacitors and contact holes for vias through the SiO2layer were also made. In the fifth step, a 300 nm-thick Nb film was deposited and etched to form the top electrodes of the shunt capacitors and the crossovers on the signal and pump lines. This layer was also used to form the shunt connections between the Josephson junctions and parallel plate capacitors,meanwhile, the electrical connections between the junctions and the ground.

    Fig. 1. (a) Circuit diagram of LJPA. The input signal is amplified and reflected from the resonant circuit through a circulator, which is used to separate the input signal and output signal. An external magnetic flux φdc provided by a superconducting coil and an ac magnetic flux φrf supplied by pump line tunes the resonant frequency. (b) The optical micrograph of the device. The center square indicates the parallel plate capacitor. The 50 ? coplanar waveguides in the left and right indicate the signal and pump lines, respectively. (c) Schematic of the cross-section of LJPA. A structure of 10 nm thick Al–AlOx sandwiched between two Nb layers forms a Josephson junction. A wiring layer on the top is isolated from the bottom Nb by a silicon oxide, and a parallel plate capacitor is formed as shown in the right side of the graph. The schematic diagram is not displayed to scale.(d)Cross-sectional TEM micrograph of our LJPA as shown in(c). The top layer is the protective layer used in TEM sample preparation.

    Figures 1(c) and 1(d) show a schematic of cross-section and the corresponding transmission electron microscopy(TEM) micrograph of a Nb-based junction and a part of parallel plate capacitor on a silicon substrate. These integrated LC resonators were mass fabricated using wafer-scale process, which produced hundreds of devices at the same time and could be further used to make IMPA and JTWPA.

    3. Measurements and results

    In LJPA characterization measurements,the sample is anchored to the sample stage of a dilution refrigerator with a base temperature around 17 mK. This paper includes two devices,labeled A and B, whose designs are identical. They were simultaneously fabricated on one substrate. Before operating the device as a parametric amplifier,we first characterized the resonator’s reflectance with a signal tone. A superconducting coil is used to supply the dc flux bias and tune the resonant frequency of LJPA by adjusting the magnetic flux penetrating the SQUID loop. Figures 2(a)and 2(b)show the resonant frequency as a function of the flux bias for the LJPA we made.The solid red line is the theoretical prediction from the designed parameters. Resonant frequency of the LJPA can be tuned from 4 GHz to 8 GHz by adjusting the bias current in the superconducting coil.The modulation curve of device A is experimentally discontinuous,but the period of flux modulation can still be observed.This phenomenon also exists in other devices fabricated at the same time. We apply the magnetic field with the external coils in the sample holder. The phenomenon we observed is that the frequency is kindly “l(fā)atched” when we change the dc current in small range of the external coils.Then it jumps to next frequency suddenly. We speculate that it is due to magnetic flux crosstalk caused by a larger loop where the SQUID loop is included. Also, this phenomenon may be caused by poor contacts between crossovers and the bottom Nb layers which are due to the inhomogeneity of etching of SiO2in the fabrication process. Poor contact leads to unequal grounding on two sides of the central conductor, resulting in parasitic modes. Furthermore, there is no grounding meshes near the SQUID. The flux trapping may also cause discontinuities. In subsequent design,we try to improve the magnetic flux jump by increasing the area of the loops around SQUIDs and placing proper crossovers. By fitting theoretical formula to the experimental modulation curve of the LJPA, the zerofield Josephson critical currentIcand shunt capacitance can be obtained. The extractedIcis about 3μA which is close to theI–Vcurve measurement result at 4.2 K.The extractedCis about 5.78 pF, which is close to the design value. The quality factor obtained by fittingS21curve under zero flux bias is approximately equal to 11,which is close to the design value.

    The LJPA we fabricated can be operated in either a threewave mixing mode or a four-wave mixing mode. We characterized our devices as a three-wave mixing amplifier by driving RF flux via the SQUID loop with the inductively coupled pump line.[4]The appropriate pump frequency and pump power are optimized to realize large gain at different dc flux biases. The data in Figs.3(a)and 3(b)display bandwidths of devices A and B with a 20 dB gain at three flux biases. In device A,a gain of 20 dB in the bandwidth of 190 MHz(centered around 6.848 GHz)was observed,as shown in Fig.3(a). The pump frequency is around 13.696 GHz. The pump power is around?25.8 dBm at the pump port. The flux bias is around 0.276φ0, whereφ0is the flux quantum. The large bandwidth in the LJPA is expected to be further improved by engineering the impedance transformer.

    Fig. 2. DC flux modulation. Experimental data of resonant frequency vs. flux bias is plotted by fitting the measured phase of the reflected microwave. The theoretical line is plotted by fitting the experimental data.(a)Modulation curve of device A.The modulation curve is discontinuous,but the resonant frequency of the LJPA can still be tuned from 4 GHz to 8 GHz. (b)Modulation curve of device B.The resonant frequency of device B changes continuously when adjusting the flux bias. The calculated line fits well with the experimental data. The extracted critical current of the Josephson junction is about 3μA,the extracted capacitance of the parallel-plate capacitor is about 5.78 pF,and the quality factor measured by fitting S21 curve under zero flux bias is about 11. These data are close to the designed values.

    At each working point, we also measured the saturation power and noise temperature of our LJPA. When the signal power is high enough, the gain of the amplifier will decrease under the same pump condition. The saturation power is generally described by 1 dB compression point, which refers to the signal power when the gain decreases by 1 dB.The 1 dB compression power is characterized by recording the change of the nondegenerate signal gain with signal input power for a range of pump power[see Fig.4(a)].

    Fig.3.Signal gain of device A(a)and device B(b)as a function of the signal frequency,for different flux biases and working frequencies. The maximum gain at each working frequency is adjusted to 20 dB. The arrow symbols indicate the positions of the resonant frequency in the absence of parametric pumping.

    The noise temperature of LJPA[Fig.4(b)]was then estimated by comparing the variation of the noise powers when turning on and off the LJPA without the input signal. We have calibrated every amplification and attenuation, such as,HEMT, room temperature amplifier, the circulators, various kinds of filters,and the cable loss between the microwave devices. We infer a lower limit of the noise temperature,around 215.7 mK,from the 9.3 dB increase of the noise power when turning on the LJPA with a 20 dB gain.The noise performance was near quantum-limited, i.e., with a noise temperature ofTN=hfR/2kB≈164 mK,in the full 190 MHz band.[1,30]The bottom panel of Fig. 4(b) shows that the 1 dB compression point has an average value of about?123 dBm for the whole band.

    Fig.4. The saturation power and noise temperature as a function of signal frequency at the working point of Fig.3(a) with a 0.276φ0 flux bias of device A.(a)Signal gain as a function of the input signal power indicates the saturation at the different pumping powers.(b)The noise temperature of our LJPA and the 1 dB compression point within the 190 MHz bandwidth range.

    4. Conclusion and perspectives

    In summary, we have designed, fabricated, and characterized the LJPA based on Nb/Al-AlOx/Nb Josephson tunnel junctions. The fabrication process of Nb-based trilayer junctions we developed yields the parallel-plate capacitors while making the Josephson junctions,which has an ease of use for scalability. We have demonstrated a paramp with a flat gain of 20 dB in the bandwidth of 190 MHz, a saturation power greater than?123 dBm,and near quantum limited noise performance. Our devices fabricated with Nb trilayer process have center frequency tunability and could be used for various superconducting quantum information experiments.In our process, the wiring layers of the devices could be etched and connected with the bottom layers to form crossovers which can be designed to transform the environmental impedance.[19]The process we developed can be further used to fabricate JTWPA that requires thousands of Josephson junctions.

    Acknowledgments

    The authors would like to thank Liliang Ying, Maezawa Masaaki and all staff at the SELF for the help during the fabrications. The authors appreciate the Chinese medical staff for keeping us away from COVID-19 to write this paper.

    国产精品 国内视频| 国产精品国产三级专区第一集| 日日摸夜夜添夜夜爱| 女人久久www免费人成看片| 美女视频免费永久观看网站| www日本在线高清视频| 99九九在线精品视频| 亚洲欧美成人综合另类久久久| 日韩av在线免费看完整版不卡| 国产女主播在线喷水免费视频网站| 久久久国产精品麻豆| 成人漫画全彩无遮挡| 少妇被粗大猛烈的视频| 亚洲av日韩精品久久久久久密 | videosex国产| 久久久精品免费免费高清| 亚洲欧美中文字幕日韩二区| av电影中文网址| 女性被躁到高潮视频| 国产精品免费视频内射| 一本大道久久a久久精品| 欧美精品亚洲一区二区| 999久久久国产精品视频| 欧美变态另类bdsm刘玥| 黄色视频不卡| 亚洲av日韩精品久久久久久密 | 成人手机av| 美女国产高潮福利片在线看| 久久久久久久久免费视频了| 伦理电影免费视频| 女人精品久久久久毛片| 免费观看a级毛片全部| 中文字幕人妻熟女乱码| 色视频在线一区二区三区| 日韩 亚洲 欧美在线| 天天影视国产精品| 国产男女超爽视频在线观看| 精品一区二区免费观看| 女人爽到高潮嗷嗷叫在线视频| 天天躁夜夜躁狠狠躁躁| 老司机影院毛片| 午夜av观看不卡| 成年女人毛片免费观看观看9 | 一二三四中文在线观看免费高清| 女的被弄到高潮叫床怎么办| 人人妻人人爽人人添夜夜欢视频| 男女边摸边吃奶| 日本午夜av视频| 亚洲综合色网址| 爱豆传媒免费全集在线观看| 亚洲天堂av无毛| 色94色欧美一区二区| 国产又爽黄色视频| 免费黄网站久久成人精品| 亚洲精品国产区一区二| 97在线人人人人妻| 1024香蕉在线观看| av在线观看视频网站免费| 免费av中文字幕在线| 五月天丁香电影| 免费黄频网站在线观看国产| 亚洲一码二码三码区别大吗| 欧美另类一区| 久久久久网色| 国产午夜精品一二区理论片| 男女边摸边吃奶| 国产亚洲午夜精品一区二区久久| 亚洲精品成人av观看孕妇| 熟妇人妻不卡中文字幕| 18禁观看日本| 日日摸夜夜添夜夜爱| 午夜福利影视在线免费观看| www日本在线高清视频| 婷婷成人精品国产| 男女无遮挡免费网站观看| 在线观看免费视频网站a站| 亚洲欧洲精品一区二区精品久久久 | 大片电影免费在线观看免费| 久久这里只有精品19| 亚洲av成人精品一二三区| 亚洲欧洲国产日韩| 亚洲成国产人片在线观看| av一本久久久久| 观看美女的网站| 老司机亚洲免费影院| 久久精品国产a三级三级三级| 看免费成人av毛片| 七月丁香在线播放| 欧美乱码精品一区二区三区| 一边摸一边做爽爽视频免费| 老司机靠b影院| 性色av一级| 久久久久久免费高清国产稀缺| 一区二区三区激情视频| 免费看不卡的av| 午夜日本视频在线| 国产亚洲午夜精品一区二区久久| 日韩一区二区三区影片| 亚洲精品美女久久久久99蜜臀 | 国产一区二区在线观看av| 亚洲精品av麻豆狂野| 黄色 视频免费看| 中文字幕人妻丝袜一区二区 | 亚洲成人一二三区av| 亚洲欧美成人精品一区二区| 中文欧美无线码| www.熟女人妻精品国产| 热re99久久精品国产66热6| 国产精品国产av在线观看| 亚洲精品自拍成人| 成人漫画全彩无遮挡| 建设人人有责人人尽责人人享有的| 少妇被粗大的猛进出69影院| 香蕉国产在线看| 欧美另类一区| 日韩欧美精品免费久久| 亚洲一区中文字幕在线| 日本av手机在线免费观看| 成年女人毛片免费观看观看9 | 国产高清国产精品国产三级| 黑人欧美特级aaaaaa片| 韩国高清视频一区二区三区| 国产精品.久久久| 亚洲美女视频黄频| 免费在线观看视频国产中文字幕亚洲 | 国产激情久久老熟女| 久久久久精品性色| 久久国产精品男人的天堂亚洲| 亚洲七黄色美女视频| 久久久国产一区二区| 亚洲伊人色综图| 在线天堂最新版资源| 久久久国产一区二区| 97精品久久久久久久久久精品| 欧美老熟妇乱子伦牲交| 哪个播放器可以免费观看大片| 啦啦啦中文免费视频观看日本| 天天躁夜夜躁狠狠躁躁| 男女免费视频国产| 综合色丁香网| 蜜桃国产av成人99| 久久久精品免费免费高清| 午夜福利免费观看在线| 国产成人精品久久二区二区91 | 免费高清在线观看视频在线观看| 在线观看免费日韩欧美大片| 国产麻豆69| 中文精品一卡2卡3卡4更新| 精品一区二区三区av网在线观看 | av卡一久久| 在线观看www视频免费| 午夜精品国产一区二区电影| 国产精品久久久久久久久免| 97在线人人人人妻| 久久毛片免费看一区二区三区| av有码第一页| 国产熟女午夜一区二区三区| 桃花免费在线播放| 黑人猛操日本美女一级片| 日日爽夜夜爽网站| 日韩 亚洲 欧美在线| 一本一本久久a久久精品综合妖精| 69精品国产乱码久久久| 一区二区三区乱码不卡18| 精品国产一区二区三区四区第35| 91aial.com中文字幕在线观看| 久久 成人 亚洲| 涩涩av久久男人的天堂| 亚洲人成电影观看| 亚洲国产最新在线播放| 免费看不卡的av| 欧美日韩一级在线毛片| 国产老妇伦熟女老妇高清| 国产又色又爽无遮挡免| 亚洲国产av影院在线观看| 免费日韩欧美在线观看| 不卡视频在线观看欧美| 一级,二级,三级黄色视频| 亚洲天堂av无毛| 国产高清不卡午夜福利| 亚洲精品日韩在线中文字幕| 在线观看免费午夜福利视频| 国产精品 欧美亚洲| 亚洲婷婷狠狠爱综合网| 久久久精品区二区三区| 亚洲图色成人| 人人澡人人妻人| 久久ye,这里只有精品| 嫩草影院入口| av不卡在线播放| 久久精品亚洲熟妇少妇任你| 如何舔出高潮| h视频一区二区三区| 亚洲成色77777| 又大又爽又粗| 少妇人妻久久综合中文| 免费久久久久久久精品成人欧美视频| 伊人亚洲综合成人网| 国产精品秋霞免费鲁丝片| 午夜久久久在线观看| 色婷婷久久久亚洲欧美| 国产亚洲av片在线观看秒播厂| 国产免费福利视频在线观看| 国产视频首页在线观看| 久久人人97超碰香蕉20202| 久久99一区二区三区| 久久综合国产亚洲精品| 久久狼人影院| 一区二区av电影网| 老司机影院成人| 高清视频免费观看一区二区| 色综合欧美亚洲国产小说| 久久久久久免费高清国产稀缺| 久久女婷五月综合色啪小说| 成人18禁高潮啪啪吃奶动态图| 中文字幕制服av| 大话2 男鬼变身卡| 激情五月婷婷亚洲| 日韩一区二区三区影片| 捣出白浆h1v1| 日韩av不卡免费在线播放| 国产一区二区三区综合在线观看| 肉色欧美久久久久久久蜜桃| 亚洲美女视频黄频| 人人妻人人添人人爽欧美一区卜| 亚洲熟女毛片儿| 国产精品久久久人人做人人爽| 在线天堂最新版资源| 菩萨蛮人人尽说江南好唐韦庄| 在线观看免费高清a一片| 自线自在国产av| 老司机影院毛片| 免费在线观看黄色视频的| 精品久久蜜臀av无| 国产片特级美女逼逼视频| 国产精品久久久av美女十八| 在线天堂最新版资源| 男人操女人黄网站| 国产日韩一区二区三区精品不卡| 中文乱码字字幕精品一区二区三区| 老熟女久久久| 一级毛片黄色毛片免费观看视频| 亚洲av男天堂| 美女福利国产在线| 蜜桃国产av成人99| 欧美精品一区二区大全| 黄色怎么调成土黄色| 巨乳人妻的诱惑在线观看| 如日韩欧美国产精品一区二区三区| 不卡av一区二区三区| 亚洲精品美女久久av网站| 国产成人啪精品午夜网站| 久久久久久人妻| 大话2 男鬼变身卡| 成人影院久久| 91成人精品电影| 久久天堂一区二区三区四区| 永久免费av网站大全| 久久久精品国产亚洲av高清涩受| 久久综合国产亚洲精品| 国产精品蜜桃在线观看| 亚洲成色77777| 日本vs欧美在线观看视频| xxxhd国产人妻xxx| 国产成人欧美| 国产在线视频一区二区| 69精品国产乱码久久久| 高清不卡的av网站| 在线观看www视频免费| 美女高潮到喷水免费观看| 久久久精品国产亚洲av高清涩受| 国产日韩欧美视频二区| 一级片免费观看大全| 精品久久久精品久久久| 国产精品.久久久| 亚洲av电影在线观看一区二区三区| 亚洲伊人色综图| 亚洲色图 男人天堂 中文字幕| 中文乱码字字幕精品一区二区三区| 久久久国产精品麻豆| 国产日韩一区二区三区精品不卡| 亚洲人成网站在线观看播放| 又粗又硬又长又爽又黄的视频| 亚洲图色成人| 成人国产麻豆网| 黄网站色视频无遮挡免费观看| 制服丝袜香蕉在线| 高清欧美精品videossex| av有码第一页| 亚洲色图综合在线观看| 男女床上黄色一级片免费看| 国产一区二区 视频在线| 男人添女人高潮全过程视频| 一本色道久久久久久精品综合| 久久久久久久国产电影| 欧美日韩一级在线毛片| 欧美 日韩 精品 国产| 老鸭窝网址在线观看| 99久久综合免费| 99re6热这里在线精品视频| √禁漫天堂资源中文www| 丝袜喷水一区| 国产欧美日韩综合在线一区二区| 亚洲成人一二三区av| 一级,二级,三级黄色视频| av天堂久久9| 亚洲精品国产区一区二| 精品人妻在线不人妻| 麻豆乱淫一区二区| 亚洲国产精品国产精品| 黄片小视频在线播放| 欧美精品一区二区免费开放| √禁漫天堂资源中文www| 天堂俺去俺来也www色官网| 久久国产精品男人的天堂亚洲| 国产在线视频一区二区| 亚洲美女黄色视频免费看| 最近最新中文字幕免费大全7| 久久精品久久精品一区二区三区| 国产欧美日韩一区二区三区在线| 男人舔女人的私密视频| 性高湖久久久久久久久免费观看| 18禁动态无遮挡网站| 国产色婷婷99| 欧美黄色片欧美黄色片| av片东京热男人的天堂| 亚洲,一卡二卡三卡| 少妇 在线观看| 亚洲专区中文字幕在线 | 曰老女人黄片| 一级片'在线观看视频| av福利片在线| 一本—道久久a久久精品蜜桃钙片| 中文精品一卡2卡3卡4更新| 午夜久久久在线观看| 天堂8中文在线网| 久久热在线av| 别揉我奶头~嗯~啊~动态视频 | 日日摸夜夜添夜夜爱| 欧美精品av麻豆av| 亚洲情色 制服丝袜| 一边摸一边做爽爽视频免费| 久久精品aⅴ一区二区三区四区| av视频免费观看在线观看| 日韩av在线免费看完整版不卡| 男女高潮啪啪啪动态图| 一区二区三区四区激情视频| 亚洲三区欧美一区| 男女床上黄色一级片免费看| 国产成人欧美在线观看 | 久久天躁狠狠躁夜夜2o2o | 纵有疾风起免费观看全集完整版| 亚洲人成电影观看| 国产一区亚洲一区在线观看| 久久久精品94久久精品| 中文字幕精品免费在线观看视频| 性色av一级| 久久狼人影院| 91精品三级在线观看| 精品福利永久在线观看| 观看av在线不卡| 精品第一国产精品| 亚洲欧美一区二区三区久久| 韩国av在线不卡| 天天躁狠狠躁夜夜躁狠狠躁| h视频一区二区三区| 国产免费现黄频在线看| 成年人免费黄色播放视频| 五月天丁香电影| 日韩大码丰满熟妇| av在线播放精品| 老司机在亚洲福利影院| 极品少妇高潮喷水抽搐| 国产福利在线免费观看视频| 欧美国产精品一级二级三级| 亚洲精品国产区一区二| 久久性视频一级片| 一区二区三区四区激情视频| 久久精品熟女亚洲av麻豆精品| 女性生殖器流出的白浆| 久久 成人 亚洲| 青春草视频在线免费观看| 免费高清在线观看视频在线观看| 久久 成人 亚洲| 啦啦啦 在线观看视频| 最黄视频免费看| 亚洲国产欧美在线一区| 国产视频首页在线观看| 18禁观看日本| av.在线天堂| 性少妇av在线| 一边摸一边做爽爽视频免费| 麻豆av在线久日| 国产亚洲欧美精品永久| 最近2019中文字幕mv第一页| 美女高潮到喷水免费观看| 人成视频在线观看免费观看| 激情五月婷婷亚洲| 国产亚洲av高清不卡| 女人久久www免费人成看片| 国产精品国产三级专区第一集| 少妇 在线观看| 国产一区二区三区综合在线观看| 啦啦啦在线观看免费高清www| 国产精品久久久久久精品古装| av在线观看视频网站免费| 欧美乱码精品一区二区三区| 国产成人一区二区在线| 国产成人免费观看mmmm| 亚洲熟女毛片儿| 国产成人精品在线电影| www.精华液| 日韩电影二区| 国产国语露脸激情在线看| 五月天丁香电影| 蜜桃在线观看..| 久久这里只有精品19| 男男h啪啪无遮挡| 丁香六月天网| 日本av免费视频播放| 日韩免费高清中文字幕av| 国产精品蜜桃在线观看| 男的添女的下面高潮视频| 久久精品久久精品一区二区三区| 成年动漫av网址| 青草久久国产| 亚洲欧美激情在线| 欧美日韩综合久久久久久| 中国国产av一级| 国产欧美日韩一区二区三区在线| 亚洲人成电影观看| 免费在线观看视频国产中文字幕亚洲 | 久久久久久久大尺度免费视频| 午夜福利免费观看在线| 搡老乐熟女国产| 亚洲少妇的诱惑av| 黄频高清免费视频| 亚洲一区中文字幕在线| 国产一区二区激情短视频 | 成人亚洲欧美一区二区av| 精品一区在线观看国产| 国产精品久久久av美女十八| 高清av免费在线| 国产无遮挡羞羞视频在线观看| 国产成人精品久久久久久| xxxhd国产人妻xxx| 青草久久国产| 9191精品国产免费久久| 欧美老熟妇乱子伦牲交| 免费观看性生交大片5| 久久久精品免费免费高清| 国产人伦9x9x在线观看| 欧美在线黄色| 久久ye,这里只有精品| 亚洲欧美日韩另类电影网站| 青草久久国产| 久久精品国产综合久久久| 精品一区二区免费观看| 亚洲成人免费av在线播放| 18禁裸乳无遮挡动漫免费视频| 国产免费又黄又爽又色| 亚洲精品国产色婷婷电影| 国产xxxxx性猛交| 亚洲国产中文字幕在线视频| 伊人久久大香线蕉亚洲五| 黑人巨大精品欧美一区二区蜜桃| 久久久精品国产亚洲av高清涩受| 国产成人系列免费观看| www.精华液| 亚洲男人天堂网一区| 久久青草综合色| 国产成人精品在线电影| 在线 av 中文字幕| a级毛片在线看网站| 天堂俺去俺来也www色官网| 日本色播在线视频| 性高湖久久久久久久久免费观看| 女人爽到高潮嗷嗷叫在线视频| 国产成人精品久久久久久| 少妇 在线观看| 哪个播放器可以免费观看大片| 国产爽快片一区二区三区| 日本wwww免费看| 一级爰片在线观看| 欧美少妇被猛烈插入视频| 午夜福利一区二区在线看| 91老司机精品| 免费高清在线观看日韩| a 毛片基地| 如日韩欧美国产精品一区二区三区| 最近2019中文字幕mv第一页| 99香蕉大伊视频| 亚洲国产精品国产精品| 高清av免费在线| 深夜精品福利| 亚洲婷婷狠狠爱综合网| 交换朋友夫妻互换小说| 国产亚洲一区二区精品| 日韩精品有码人妻一区| 国产亚洲av片在线观看秒播厂| 男女边吃奶边做爰视频| 亚洲久久久国产精品| av卡一久久| 51午夜福利影视在线观看| 国产精品免费视频内射| 69精品国产乱码久久久| 精品亚洲成a人片在线观看| 国产精品免费大片| 一本一本久久a久久精品综合妖精| xxxhd国产人妻xxx| 久久人妻熟女aⅴ| 国产乱来视频区| av福利片在线| 一个人免费看片子| 久久ye,这里只有精品| 女人久久www免费人成看片| 在现免费观看毛片| 超色免费av| 18禁观看日本| 一边亲一边摸免费视频| 男女床上黄色一级片免费看| 丝袜美足系列| 国产成人精品久久二区二区91 | 人人妻人人爽人人添夜夜欢视频| av卡一久久| 伊人亚洲综合成人网| 国产无遮挡羞羞视频在线观看| 亚洲av男天堂| 80岁老熟妇乱子伦牲交| 啦啦啦视频在线资源免费观看| 中文字幕人妻丝袜制服| 久久人人爽人人片av| 日韩伦理黄色片| 国产成人系列免费观看| 精品一区二区三区av网在线观看 | av一本久久久久| 在线天堂中文资源库| 最近手机中文字幕大全| 日韩av在线免费看完整版不卡| 悠悠久久av| 亚洲精品乱久久久久久| 少妇被粗大的猛进出69影院| 91精品国产国语对白视频| 制服丝袜香蕉在线| 国产精品一二三区在线看| 午夜老司机福利片| 人妻 亚洲 视频| 亚洲 欧美一区二区三区| 中文字幕人妻丝袜制服| 丰满饥渴人妻一区二区三| 精品一区二区三区四区五区乱码 | 一本一本久久a久久精品综合妖精| 亚洲国产最新在线播放| 国产精品 国内视频| 天天躁夜夜躁狠狠躁躁| 免费久久久久久久精品成人欧美视频| 99国产精品免费福利视频| 美国免费a级毛片| 国产精品国产三级专区第一集| 日日啪夜夜爽| 搡老乐熟女国产| 欧美日韩综合久久久久久| 秋霞在线观看毛片| 亚洲伊人久久精品综合| 午夜福利一区二区在线看| 丝袜美足系列| 亚洲av国产av综合av卡| 黑人巨大精品欧美一区二区蜜桃| 免费av中文字幕在线| 亚洲,欧美,日韩| 一本大道久久a久久精品| 亚洲精品,欧美精品| av在线app专区| 9色porny在线观看| 最近中文字幕2019免费版| 亚洲精品成人av观看孕妇| 少妇人妻 视频| 久热这里只有精品99| 亚洲,一卡二卡三卡| 天天操日日干夜夜撸| 亚洲美女搞黄在线观看| √禁漫天堂资源中文www| av有码第一页| 欧美日韩av久久| 又大又黄又爽视频免费| 欧美97在线视频| xxxhd国产人妻xxx| 精品福利永久在线观看| 中文字幕亚洲精品专区| av网站在线播放免费| 不卡视频在线观看欧美| 女性被躁到高潮视频| 亚洲天堂av无毛| 巨乳人妻的诱惑在线观看| 精品少妇久久久久久888优播| 欧美在线一区亚洲| 悠悠久久av| svipshipincom国产片| 色网站视频免费| 国产无遮挡羞羞视频在线观看| 午夜激情久久久久久久| 美女高潮到喷水免费观看| 好男人视频免费观看在线| 十八禁人妻一区二区| 国产亚洲精品第一综合不卡| 青青草视频在线视频观看| 成人毛片60女人毛片免费| 天天躁夜夜躁狠狠躁躁| 国产人伦9x9x在线观看| 免费女性裸体啪啪无遮挡网站| 老汉色∧v一级毛片| 大片电影免费在线观看免费| 19禁男女啪啪无遮挡网站| 最近2019中文字幕mv第一页| e午夜精品久久久久久久|