• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effects of substitution of group-V atoms for carbon or silicon atoms on optical properties of silicon carbide nanotubes?

    2021-06-26 03:04:42YingYingYang楊瑩瑩PeiGong龔裴WanDuoMa馬婉鐸RuiHao郝銳andXiaoYongFang房曉勇
    Chinese Physics B 2021年6期

    Ying-Ying Yang(楊瑩瑩), Pei Gong(龔裴), Wan-Duo Ma(馬婉鐸),Rui Hao(郝銳), and Xiao-Yong Fang(房曉勇)

    Key Laboratory for Microstructural Material Physics of Hebei Province,School of Science,Yanshan University,Qinhuangdao 066004,China

    Keywords: silicon carbide nanotubes,group-V doped,optical properties,first-principles theory

    1. Introduction

    The silicon carbide (SiC) nanomaterials have excellent mechanical, thermal, electrical, and optical properties,[1–4]and they have been widely used in electronic devices, optical devices, and other fields.[5–7]Therefore, they have attracted much attention of many scholars.[8–12]SiCNT is an important low-dimensional material, which not only has the excellent characteristics of SiC crystal, but also shows some unique characteristics of nanotubes.[13–17]The unique optical characteristics of semiconductor SiCNT provide the possibility for its applications in optoelectronic devices.[18–20]Therefore,since SiCNT was synthesized experimentally,[21,22]it has been widely used as a nano-optoelectronic device material with broad application prospects, and has been widely concerned by the researchers.[23,24]

    As an important method to adjust material properties,the dopant effects on electronic and optical properties of semiconductors have been studied.[25–28]For SiCNTs, group-V elements are the donor dopants, so studying the optical properties of group-V elements-doped SiCNTs is of great significance in the applications of SiC nano-optoelectronic devices.In recent years, there have been many reports on the influence of dopants on the properties of SiCNTs. For example, In 2009, Baoet al.studied the effects of N-doping on the optical properties of zigzag SiCNTs. The studies showed that N-doping reduces the value of absorption peak and produces many new absorption peaks.[29]In 2014, Behzadet al. studied the effects of Ga-doping on the optical properties of zigzag SiCNTs. The optical studies based on dielectric function indicated that new transition peaks and a blue shift are observed after Ga-doping.[30]Khodadadet al.investigated the structural and electronic properties of Li-doped SiCNTs.The calculations demonstrated that the doping of Li atom changes some physical properties of pure bundled NT.Owing to charges transferring from Li to SiCNTs, the most significant effect of Li intercalation on the electronic band structure is the shift of Fermi energy.[31]In 2018, Gonget al. studied the effect of group-III doping on the optical properties of SiCNTs. The study results showed that group-III element doping increases the minimum dielectric constant value, thereby increasing the transmittance;at the same time,it also introduces weaker absorption and dispersion in the near-mid-infrared region, and as the diameter of the doped atoms increases, the response peak is blue shifted.[32]In 2001,Huuet al.used the shape memory synthesis method,and achieved the first reproducible synthesis of SiCNTs of different internal and external diameters.[33]In 2002, one-dimensional silicon carbon nanotubes and nanowires of various shapes and structures were synthesized via the reaction of silicon(produced by disproportionation reaction of SiO)with multiwalled carbon nanotubes(as templates) at different temperatures.[21]In 2013, Romainet al.fabricated SiCNTs by carburization in silicon nanowires.It was found that the TO peak and LO peak of SiCNTs are at 796 cm?1and 972 cm?1respectively, and the peak of LO is higher than that of TO peak, indicating that the sp2and sp3bonding configurations exist in SiCNTs.[22]

    So far, most of the researches on the SiCNTs doped by group-III elements and group-V elements have focused on structural stabilities, electrical, magnetic or optical aspects.However, most of these studies focus mainly on monatomic doping, and there are few reports on systematically studying the effect of a group of doping elements on the optical properties of SiCNTs. In this paper,the optical properties of SiCNTs doped by group-V elements(N,P,As,and Sb)are systematically studied by using the first-principles, and the optical differences and their effects caused by different substitutions are elaborated theoretically. These studies are of important significance in developing SiCNT nanodevices and putting them into practical applications.

    2. Methods and models

    Optimization of SiCNTs using CASTEP code was based on first-principles of density functional theory, and the optimization parameters were selected to be the same as those in Ref. [34]. The exchange correlation effect of the interaction between electrons were described by the Perdew–Burke–Ernzerhof(PBE)functional under the generalized gradient approximation(GGA),the plane wave cut-off energy was set to be 330 eV.[35]All the geometries were optimized by using the ultrasoft pseudopotentials until the force on each atom was less than 0.03 eV/?A.All atomic geometry optimizations were performed in the first Brillouin zone,kgrid points were 1×1×6.

    The supercell was constructed with twice the minimum unit of the armchair-type(6,6)SiCNTs. In order to reduce the influence of other SiCNTs, a vacuum layer thicker than 10 ?A was added outside the supercell, and the optimized model is shown in Fig.1(a).

    Based on this model, the C atoms (marked as NC-, PC-,AsC-, and SbC-SiCNTs) and Si atoms (marked as NSi-, PSi-,AsSi-,and SbSi-SiCNTs)at the same site of SiCNTs were replaced with group-V elements(N,P,As,Sb). Their optimized models are shown in Figs.1(b)and 1(c).

    Fig. 1. SiCNTs and their doped SiCNTs structure models, showing (a)undoped SiCNTs, and [(b), (c)] SiCNTs where C atoms and Si atoms are replaced with group-V elements, with X representing group-V elements(X =N, P, As, and Sb), dC denoting diameter between the C atoms, and dSia referring to diameter between the Si atoms all in unit of ?A.

    3. Results and discussion

    3.1. Structural stability

    The optimized results are shown in Tables 1 and 2,wheredSianddCare the diameters of Si tube and C tube respectively, and the difference between their values is denoted by?d=dC?dSias shown in Fig. 1. It can be seen that in the optimized SiCNTs,Si atoms are on the inside and C atoms are on the outside, and the tube wall thickness of SiCNT is not equal to zero(The wall thickness is about 0.1 ?A).Obviously,unlike CNTs,in addition to sp2bonding configuration,SiCNT also has an sp3bonding configuration. In this paper,although the SiCNT model is sp2bonding configuration during modeling,there are both sp2bonding configuration and sp3bonding configuration after optimization, which is consistent with the experimental results.[22]

    Table 1. Optimized structural parameters of SiCNTs with group-V atoms substituting for C atoms.

    Table 2. Optimized structural parameters of SiCNTs with group-V atoms substituting for Si atoms.

    The stability of doped SiCNT structure can be evaluated by the binding energy (or cohesive energy),[36]which is expressed as

    whereETrepresents the total energy of doped SiCNT,NSi,NC,NXdenote the atom numbers of Si, C, and dopant (N, P, As,and Sb), andμSi,μC,μXrefer to the chemical potentials of Si, C, and doping atoms, where the values ofμSiandμCare?101.52 (Si),?145.84 (C), respectively. When C (or Si) in SiCNT is replaced,the formation energy can be expressed as

    3.2. Optical absorption and photo-induced carriers

    Figures 2(a)and 2(b)show the absorption spectra of SiCNTs in the band range of 60 nm–1500 nm after group-V atoms have replaced C and Si atoms, respectively. showing obviously that the differences among effects on optical absorption of SiCNTs in the band range of 60 nm–600 nm by doping different elements are almost negligible. In the frequency band between 600 nm and 1500 nm, there are obvious differences among the optical absorptions of the SiCNTs doped by different elements. From Figs.2(c)and 2(d),the absorption coefficient of NC-, PC-, AsC-, and SbC-SiCNT increase slowly, on the contrary,the absorption coefficient of NSi-,PSi-,AsSi-,and SbSi-SiCNT decrease.Especially for N-and P-doped SiCNTs,the absorption coefficient of NSi-SiCNT is about 5000 cm?1,larger than that of NC-SiCNT.

    Fig. 2. Optical absorption spectra of SiCNTs where (a) C atom and (b) Si atom are replaced with group-V elements, and [(c), (d)] part of them in a range of 500 nm–1500 nm are magnified.

    According to the Tauc equation,the optical absorptionαof SiCNT and its energy band structure satisfy the following relationship:[39]

    whereAis a constant andhνis the photon energy. For a direct band gap semiconductor,r=0.5;for indirect band gap,r=2.Since group-V element-doped SiCNT is still of indirect band gap,r=2. The impurity concentration of doped SiCNT is denoted byNd,and the values for different SiCNTs are shown in Tables 1 and 2. The volume of SiCNT changes little for different doping elements and their displacements, so the impurity concentration does not change much, of them, the impurity concentration of AsC-SiCNTs is the lowest.Figure 2(a)shows that AsC-SiCNT has a minimum absorption peak, which is caused by the lowest impurity concentration of AsC-SiCNT.According to Fig. 2 and Eq. (3), Tauc fitting was performed for the doped SiCNT photoelectron energy level transition,the process and results are shown in Fig.3 and Table 3.

    Figure 4 shows the band structure of doped SiCNTs,calculated based on the first-principles, whereEcis the conduction band bottom,EV1andEV2are the top and bottom of the upper valence band, respectively,EV3is the top of the lower valence band, andED1,ED2, andED3are the impurity levels.Their data are shown in Table 3.

    Fig. 3. Tauc fitting of doped SiCNTs, with [(a), (b), (c), and (d)] N, P, As, and Sb substituting for C atoms, and [(e), (f), (g), and (h)] N, P, As and Sb substituting for Si atoms.

    Table 3. Electronic(characteristic)parameters of the doped SiCNTs.

    Fig.4. Energy band structure of SiCNTs with C atoms replaced by(a)N,(b)P,(c)As,and(d)Sb,and Si atoms replaced by(e)N,(f)P,(g)As,and(h)Sb substituting for Si atoms,respectively,and the Fermi level EF=0.

    As can be seen from Fig. 4 and Table 3, when group-V element replaces a C atom, two impurity levels appear in the band-gap of SiCNT: the impurity near the bottom of the conduction band has smaller ionization energy,which belongs to the donor level, and the impurity is easy to form ionized donors; the other impurity level is near the Fermi level, because the ionization energy is larger, the number of electrons provided for the conduction band are much smaller than for the donor level. Most of the unionized impurities are in deep impurity level,and they can be regarded as a recombination center(or trap). When group-V element replaces a Si atom,only one impurity level appears near the Fermi level,the ionization energy is large,and it can also be regarded as a recombination center.

    Fig. 5. Photoconductivity spectra of (a) N-, (b) P-, (c) As-, and (d) Sb-SiCNTs,respectively,with dotted line representing substitution of group-V element for C atom,and solid line denoting substitution of group-V element for Si atom.

    Figure 5 shows the photoelectric spectra of SiCNTs after C and Si atoms have been replaced by group-V elements,which are mainly composed of three spectral regions A, B,and C. Among them, in the frequency band between 248 nm and 620 nm (B region), doped SiCNTs show a greater photoconductivity. This is because the valence band electrons absorb photons with energy greater thanEg(frequencyv >Eg/h)and then transfer to the conduction band, thereby generating photo-generated electrons and holes(non-equilibrium carriers). For group-V element-doped SiCNT, the lifetime of photo-generated carriers is on the order of ns, which is much longer than the photon period (corresponding to a frequency of about 1014Hz). Therefore, the photoconductivity generated by the intrinsic excitation of doped SiCNT presents a spectrum width corresponding to a frequency of about 2×1014Hz. In the case where group-V element substitutes for C atom, the conductivity of AsC-SiCNT is the smallest because of its lowest impurity concentration and smallest carrier concentration.[36]Similarly, in the case where group-V element replaces Si atom,because the carrier concentration is the lowest,the conductivity of NSi-SiCNT is also the smallest.

    It can be seen from Fig.4 that the valence band of SiCNT is composed of high part and low part, and the band gap between the two valence bands is about 3 eV.[40]According to the energy band fitting in Fig. 3, it can be judged that the photoconductivity of the 155 nm–248 nm band (C region) is derived from the electronic transition of SiCNTs in the high valence band and the low valence band. When Si atom is replaced, the group-V atom has little effect on the SiCNT valence band. Therefore, the photoconductivity in the C region is almost unchanged; while when C atom is replaced, the pelectron effect of P, As, Sb are enhanced,[36]resulting in a closer relationship between the B spectral band and C spectral band.

    The differences among photoconductivities caused by different elements are mainly reflected within the wavelength band above 620 nm (A region), and their spectra are derived from electronic transitions in the conduction band of the impurity level. Among them,the electrons in the shallow impurity level will present the photogenerated carriers in the midinfrared region of 6.8μm–16.2μm. Therefore,the photoconductivity of the A region in Fig. 5 comes from the electrons in the impurity level at the Fermi level. Because the impurity level when C atom is replaced is split into deep part and shallow part, the electron concentration on the impurity level at the Fermi level is less than that in the substitution for Si atom, resulting in a slightly larger conductivity of NSi- and PSi-SiCNTs as shown in Figs. 5(a) and 5(b). In addition, because the ionization energy of Sb atom replacing Si atom is much larger than that of Sb atom replacing C atom, the conductivity of SbC-SiCNT is larger than that of SbSi-SiCNTs as shown in Fig.5(d).

    3.3. Optical refractive index and electron displacement polarization

    Figure 6 shows the dielectric spectra of SiCNTs doped with different elements. It can be seen that when the group-V element replaces C atom,the real peak and imaginary peak of the dielectric function of AsC-SiCNTs are the smallest.Within the band less than 600 nm, the dielectric function value of AsC-SiCNT is the smallest, and none of the dielectric functions of NC-,PC-,and SbC-SiCNTs are significantly different.Within the band above 600 nm, the imaginary part of the dielectric function increases with the doped atomic number increasing, and the real part of the dielectric function increases with the doped atomic number increasing except for the smallest AsC-SiCNT.When group-V element replaces Si atom,the peak value of the dielectric function real part increases with the the number of doped atoms increasing,and the peak shows a significant red-shift phenomenon.The peak value of the NSi-SiCNTs dielectric function imaginary part is the smallest,and the values of other doping conditions are similar. In a frequency band of 500 nm–870 nm,the real part of the dielectric function gradually increases as the doped atomic number increases,while when it is above 870 nm,the real part of the dielectric function gradually decreases with the atomic number increasing. Within the frequency band greater than 550 nm,the value of the dielectric function imaginary part decreases with atomic number increasing. When group-V element replaces Si atom the dielectric function has more obvious change than when group-V element replaces C atom, and the difference is manifested mainly in a frequency band greater than 500 nm.

    Fig.6. Dielectric spectra of doped SiCNTs,showing(a)real part and(b)imaginary part for group-V elements replacing C atoms,(c)real part and(d)imaginary part for group-V elements replacing Si atoms.

    Fig.7. Refractive properties of doped SiCNTs,showing(a)refractive index and(b)extinction coefficient for group-V replacing C atoms,(c)refractive index and(d)extinction coefficient for group-V replacing Si atoms,respectively.

    The dielectric spectrum of semiconductor follows the Lorentz model,and for the doped SiCNT containing multiple spectral peaks can be expressed as[41]

    whereNandm?are the electron concentration and the equivalent mass, respectively. The spectrum dielectric behavior of SiCNT is derived from free-electron plasma oscillation,τdenotes the relaxation time, and relates to the damping of the electron plasma oscillation. The oscillation frequencyωjdepends on the electron transitions between different bands. The refractive index of the semiconductor is determined by the electron displacement polarization. According to the electron polarization ratio model, the electron displacement polarization ratio of SiCNT can be expressed as[42]

    whereMijdenotes the dipole transition matrix elements betweeniandjstates,andNrepresents the number of electrons in the transition.

    According to the analysis of Fig. 2, Table 3, and Fig. 5,it can be seen that the two spectral peaks near 200 nm and 400 nm are derived from the transition between the valence band and the conduction band of SiCNT, respectively. Since there are few empty states in the valence band while many empty states in the conduction band,and the energy level difference in the valence band is greater than in the band gap,the dielectric constant and refractive index at 200 nm are much smaller than the values around 400 nm. Similarly,the number of free electrons of doped atoms is much smaller than the valence electrons of SiCNT,resulting in relatively low dielectric constant and low refractive index in the above 500-nm band.In particular,the differences among refractive indexes of SiCNTs,caused by different doping elements are reflected mainly in this frequency band, and their variation law is closely related to the concentration of free electrons in the donor ionization,which is consistent with the dielectric spectrum of Fig.6.As can be seen from Fig.7,the refractive index and extinction coefficient of AsC-SiCNT are the lowest because of its lowest impurity concentration.

    3.4. Optical dispersion and loss

    Dispersion and loss are important parameters to measure the optical properties of material. The dispersion coefficient can be expressed as[32]

    whereλis the wavelength,cis the propagation speed of the electromagnetic wave in vacuum, andn(λ) is the refractive index of SiCNT. The dispersion spectra of SiCNTs doped by different elements are shown in Fig.8.

    Figure 9 shows the reflectivity and loss factor of SiCNT doped with different elements. The loss factor is also called the loss tangent,which can be expressed as

    whereε'andε''are the real part and imaginary part of the dielectric constant,δeis called the electrical loss angle.

    It can be seen from Fig. 9 that except for the band near 300 nm, the reflectance of group-V element-doped SiCNT is less than 10%(10 dB),so it does not reflect visible light;NCSiCNTs has the largest refractive index when group-V element replaces C atom, followed by AsC-, PC-, and SbC-SiCNTs.When the group-V element replaces Si atom,the refractive index increases with the increase of the number of doping atoms in the band range of 400 nm–750 nm,and the situation is opposite in the band above 750 nm. Regardless of whether C or Si atom is replaced,the refractive index of SbC-SiCNT is the smallest.

    Fig.8. Dispersion spectra of SiCNTs doped with(a)N,(b)P,(c)As,and(d)Sb respectively. It can be seen from Fig.8 that when group-V element replaces C atom,the dispersion coefficients of NC-and PC-SiCNTs are slightly larger than that of AsC-and SbC-SiCNTs,respectively,among them,AsC-SiCNT’s impurity concentration is the smallest and dispersion coefficient is the smallest. When group-V element replaces Si atom,there is no significant difference in the dispersion coefficient for doped SiCNT.When group-V element substitutes for Si atom,the dispersion coefficient is larger than that when C atom is replaced,but there is no big difference in the dispersion coefficient when N atom replaces C atom or Si atom.

    Fig.9. Reflectance and loss factorfor N,P,As,and Sb replacing[(a),(b)]C atom and[(c),(d)]Si atom.

    Under optical frequencyε''=σ/ω, the loss comes mainly from the electronic conductance. When C atom is replaced, the loss of NC-SiCNT is the largest, and SbC-, PC-,and AsC-SiCNTs decrease in sequence;in the substitution for Si,the loss of NSi-SiCNT is the smallest,and SbSi-,AsSi-,and PSi-SiCNTs increase in sequence,which is similar to the trend of photoconductivity in Fig. 5. Whether C or Si atom is replaced, AsC-SiCNT has the least loss. By comparing Fig. 8 with Fig.9,it is clear that group-V element-doped SiCNT has a large loss around 300 nm,however,it generates a higher reflection due to the lowest dispersion coefficient in this band.

    4. Conclusions

    In this work, we have studied the effect on the optical properties of SiCNT where C atom or Si atom is replaced by the group-V element. The results are shown below. In the frequency band between 600 nm and 1500 nm, there are obvious differences among the optical absorptions of different elements doped SiCNTs. Especially for N-and P-SiCNTs,the absorption coefficient of NSi-SiCNT is about 5000 cm?1larger than that of NC-SiCNT. In the range of 248 nm–620 nm, the doped SiCNT has a greater photoconductivity, and the photoconductivity generated by the intrinsic excitation of doped SiCNT is exhibited within a spectral width corresponding to nearly 2×1014Hz. In the band greater than 620 nm, there are differences in photoconductivity when group-V element replaces C atom or Si atom. When the group-V element replaces Si atom, the dielectric function and refractive index change significantly compared with when C atom is replaced,and the difference is manifested mainly in the frequency band above 500 nm.Regardless of whether C or Si atom is replaced,SbC-SiCNT has the smallest refractive index.

    岛国毛片在线播放| 国产欧美日韩一区二区三区在线| 久久久久久久国产电影| 亚洲欧美一区二区三区久久| 成人三级做爰电影| 最近最新中文字幕大全免费视频 | 亚洲中文av在线| 午夜久久久在线观看| 亚洲在久久综合| 成人国产av品久久久| 中文天堂在线官网| 19禁男女啪啪无遮挡网站| 美女国产高潮福利片在线看| 中文字幕最新亚洲高清| 成人黄色视频免费在线看| 一区在线观看完整版| 亚洲中文av在线| 18禁动态无遮挡网站| 啦啦啦视频在线资源免费观看| 青青草视频在线视频观看| 99精品久久久久人妻精品| 伊人亚洲综合成人网| 黑丝袜美女国产一区| 久久久久久久国产电影| 国产黄色视频一区二区在线观看| 日本猛色少妇xxxxx猛交久久| 中文字幕人妻熟女乱码| 视频在线观看一区二区三区| 80岁老熟妇乱子伦牲交| 亚洲专区中文字幕在线 | 一边摸一边抽搐一进一出视频| 成人亚洲精品一区在线观看| 国产亚洲欧美精品永久| 日本av免费视频播放| 大陆偷拍与自拍| 久久天堂一区二区三区四区| 久久狼人影院| 一边摸一边做爽爽视频免费| 久热爱精品视频在线9| av卡一久久| 一边亲一边摸免费视频| 精品一区二区三区四区五区乱码 | 久久毛片免费看一区二区三区| 老司机深夜福利视频在线观看 | 久久久久久久久久久久大奶| 母亲3免费完整高清在线观看| 性高湖久久久久久久久免费观看| 赤兔流量卡办理| 精品视频人人做人人爽| 建设人人有责人人尽责人人享有的| 日本爱情动作片www.在线观看| 制服人妻中文乱码| 国产亚洲午夜精品一区二区久久| 国产精品三级大全| 国产精品无大码| 欧美在线一区亚洲| 51午夜福利影视在线观看| av有码第一页| 成人午夜精彩视频在线观看| 精品人妻一区二区三区麻豆| 777久久人妻少妇嫩草av网站| 一本久久精品| 91精品伊人久久大香线蕉| 一级毛片电影观看| 啦啦啦在线观看免费高清www| 99精品久久久久人妻精品| 亚洲国产欧美一区二区综合| 日韩熟女老妇一区二区性免费视频| 欧美黄色片欧美黄色片| 乱人伦中国视频| 久热爱精品视频在线9| 亚洲情色 制服丝袜| 各种免费的搞黄视频| av福利片在线| 亚洲天堂av无毛| 18在线观看网站| 成年美女黄网站色视频大全免费| 亚洲久久久国产精品| 日韩,欧美,国产一区二区三区| 免费观看人在逋| 操出白浆在线播放| 午夜激情久久久久久久| 日韩一卡2卡3卡4卡2021年| 国产成人欧美在线观看 | 日韩一区二区三区影片| 97在线人人人人妻| 一区福利在线观看| 国产精品二区激情视频| 国产精品av久久久久免费| tube8黄色片| 99久久人妻综合| 国产爽快片一区二区三区| 在线 av 中文字幕| 高清欧美精品videossex| 日韩成人av中文字幕在线观看| 精品一区在线观看国产| 亚洲欧美一区二区三区久久| 成年av动漫网址| 欧美激情 高清一区二区三区| 中文字幕另类日韩欧美亚洲嫩草| 亚洲熟女精品中文字幕| √禁漫天堂资源中文www| 精品少妇内射三级| 天天躁夜夜躁狠狠躁躁| 高清视频免费观看一区二区| a级毛片在线看网站| 成人国语在线视频| 一级毛片我不卡| 超碰97精品在线观看| 女人高潮潮喷娇喘18禁视频| 99国产综合亚洲精品| 日本午夜av视频| 国产精品欧美亚洲77777| 9191精品国产免费久久| 蜜桃国产av成人99| 国产日韩欧美在线精品| 宅男免费午夜| 亚洲七黄色美女视频| 一级片'在线观看视频| 亚洲国产最新在线播放| 久久久久久人妻| 蜜桃在线观看..| 免费观看av网站的网址| 桃花免费在线播放| av在线播放精品| 亚洲精品国产av成人精品| 精品少妇一区二区三区视频日本电影 | av福利片在线| 国产精品女同一区二区软件| 又黄又粗又硬又大视频| 欧美老熟妇乱子伦牲交| 国产精品国产三级专区第一集| 国产精品人妻久久久影院| 国产免费视频播放在线视频| 777久久人妻少妇嫩草av网站| 飞空精品影院首页| 夫妻性生交免费视频一级片| 国产精品 国内视频| 亚洲免费av在线视频| 91老司机精品| 老司机在亚洲福利影院| 国产成人系列免费观看| 色网站视频免费| 日韩大片免费观看网站| 婷婷色综合www| 国产爽快片一区二区三区| 99re6热这里在线精品视频| 1024视频免费在线观看| www.熟女人妻精品国产| 亚洲一区中文字幕在线| 国产色婷婷99| 午夜福利网站1000一区二区三区| 美女扒开内裤让男人捅视频| 黄片播放在线免费| 97在线人人人人妻| 香蕉丝袜av| 日韩一卡2卡3卡4卡2021年| 亚洲精品av麻豆狂野| 国产精品免费视频内射| 亚洲 欧美一区二区三区| 18禁动态无遮挡网站| 岛国毛片在线播放| 操出白浆在线播放| 精品久久久精品久久久| 涩涩av久久男人的天堂| 一级毛片黄色毛片免费观看视频| 久久久久国产一级毛片高清牌| 嫩草影院入口| 亚洲少妇的诱惑av| 成人免费观看视频高清| 久久久国产一区二区| 下体分泌物呈黄色| 午夜免费观看性视频| 天堂中文最新版在线下载| 国产一区二区在线观看av| av国产精品久久久久影院| 国产片特级美女逼逼视频| 伊人久久大香线蕉亚洲五| 91精品三级在线观看| 亚洲av日韩在线播放| 色综合欧美亚洲国产小说| 亚洲综合精品二区| 天天躁狠狠躁夜夜躁狠狠躁| 在线看a的网站| 一本色道久久久久久精品综合| 亚洲精品久久午夜乱码| 亚洲精品中文字幕在线视频| 高清视频免费观看一区二区| 亚洲美女黄色视频免费看| 国产亚洲最大av| 我要看黄色一级片免费的| 人人妻,人人澡人人爽秒播 | 在线免费观看不下载黄p国产| 久久国产精品男人的天堂亚洲| 午夜福利免费观看在线| 99热网站在线观看| 久久久精品区二区三区| 日本黄色日本黄色录像| 国产精品秋霞免费鲁丝片| 国产av国产精品国产| 国产精品国产三级国产专区5o| 国产午夜精品一二区理论片| 如日韩欧美国产精品一区二区三区| xxx大片免费视频| 性色av一级| 一本一本久久a久久精品综合妖精| 亚洲av中文av极速乱| 午夜久久久在线观看| 久久久久精品性色| 人人妻人人爽人人添夜夜欢视频| 街头女战士在线观看网站| 中文字幕人妻熟女乱码| 天天躁日日躁夜夜躁夜夜| 亚洲国产看品久久| 高清黄色对白视频在线免费看| 色综合欧美亚洲国产小说| 免费日韩欧美在线观看| 两个人免费观看高清视频| 这个男人来自地球电影免费观看 | 黄片小视频在线播放| 这个男人来自地球电影免费观看 | 日韩制服丝袜自拍偷拍| 久久国产精品大桥未久av| 免费观看a级毛片全部| 操出白浆在线播放| 欧美中文综合在线视频| 美女福利国产在线| 欧美亚洲日本最大视频资源| 日韩熟女老妇一区二区性免费视频| 国产麻豆69| 女人爽到高潮嗷嗷叫在线视频| 亚洲精品一区蜜桃| 中文字幕另类日韩欧美亚洲嫩草| 国产精品 欧美亚洲| a 毛片基地| 秋霞伦理黄片| 国产黄频视频在线观看| 午夜福利影视在线免费观看| 欧美97在线视频| 永久免费av网站大全| 美女扒开内裤让男人捅视频| 亚洲精品成人av观看孕妇| 免费看不卡的av| 亚洲精品久久久久久婷婷小说| 欧美日韩视频高清一区二区三区二| 国产精品久久久久久久久免| 国产精品国产av在线观看| 视频在线观看一区二区三区| 成人漫画全彩无遮挡| 性色av一级| 亚洲成av片中文字幕在线观看| 一级,二级,三级黄色视频| 伦理电影免费视频| 精品国产超薄肉色丝袜足j| 国产一区二区三区综合在线观看| 日韩一卡2卡3卡4卡2021年| 无限看片的www在线观看| 午夜影院在线不卡| 欧美精品一区二区免费开放| 午夜日韩欧美国产| 亚洲欧美色中文字幕在线| 51午夜福利影视在线观看| 最新在线观看一区二区三区 | 欧美久久黑人一区二区| 妹子高潮喷水视频| 国产免费现黄频在线看| 亚洲国产中文字幕在线视频| 悠悠久久av| 免费高清在线观看日韩| 午夜久久久在线观看| 日韩中文字幕欧美一区二区 | 精品亚洲乱码少妇综合久久| 大陆偷拍与自拍| www.精华液| 最近手机中文字幕大全| 欧美黑人精品巨大| 欧美日韩一区二区视频在线观看视频在线| 男女边吃奶边做爰视频| 超碰97精品在线观看| 成人亚洲精品一区在线观看| 一本色道久久久久久精品综合| 午夜激情av网站| 午夜福利在线免费观看网站| 哪个播放器可以免费观看大片| 精品少妇一区二区三区视频日本电影 | 午夜激情av网站| 纯流量卡能插随身wifi吗| 一边亲一边摸免费视频| 色婷婷久久久亚洲欧美| 国产亚洲精品第一综合不卡| 成年美女黄网站色视频大全免费| 欧美亚洲 丝袜 人妻 在线| 一区二区三区四区激情视频| 波多野结衣av一区二区av| 亚洲人成77777在线视频| 国产国语露脸激情在线看| 免费久久久久久久精品成人欧美视频| 王馨瑶露胸无遮挡在线观看| 久久精品熟女亚洲av麻豆精品| 99香蕉大伊视频| av一本久久久久| 亚洲一区中文字幕在线| 一本一本久久a久久精品综合妖精| 亚洲欧洲国产日韩| 午夜91福利影院| 欧美97在线视频| 99香蕉大伊视频| 国精品久久久久久国模美| 人人妻,人人澡人人爽秒播 | 国产欧美日韩一区二区三区在线| 欧美xxⅹ黑人| 多毛熟女@视频| 狠狠精品人妻久久久久久综合| 五月开心婷婷网| 国产麻豆69| 男男h啪啪无遮挡| 亚洲三区欧美一区| 热99久久久久精品小说推荐| 亚洲国产精品一区二区三区在线| 精品一区二区三区av网在线观看 | 精品少妇久久久久久888优播| 亚洲第一av免费看| 麻豆av在线久日| 丝袜美足系列| 国产精品久久久av美女十八| 精品少妇黑人巨大在线播放| 亚洲一区二区三区欧美精品| 中国国产av一级| 国产一区有黄有色的免费视频| 欧美人与性动交α欧美精品济南到| 午夜91福利影院| 男女无遮挡免费网站观看| 免费观看a级毛片全部| 国产精品嫩草影院av在线观看| 80岁老熟妇乱子伦牲交| 人人妻人人澡人人看| 一边摸一边抽搐一进一出视频| 免费看不卡的av| 一区二区av电影网| 欧美 亚洲 国产 日韩一| 蜜桃在线观看..| 国产精品 国内视频| 久久久久人妻精品一区果冻| 亚洲精品国产区一区二| 99国产精品免费福利视频| 最黄视频免费看| 热re99久久国产66热| 精品人妻一区二区三区麻豆| 欧美最新免费一区二区三区| 视频区图区小说| 亚洲欧美清纯卡通| 嫩草影视91久久| 亚洲成色77777| 亚洲一级一片aⅴ在线观看| 最近2019中文字幕mv第一页| 热99久久久久精品小说推荐| 亚洲美女黄色视频免费看| 国精品久久久久久国模美| 欧美av亚洲av综合av国产av | 国产精品嫩草影院av在线观看| 中文字幕另类日韩欧美亚洲嫩草| 亚洲欧美清纯卡通| 满18在线观看网站| 国产精品一区二区精品视频观看| 婷婷色麻豆天堂久久| 精品少妇一区二区三区视频日本电影 | 国产精品av久久久久免费| 久久青草综合色| 亚洲精品中文字幕在线视频| 国产在线免费精品| 日本vs欧美在线观看视频| 2018国产大陆天天弄谢| 国产成人av激情在线播放| 国产精品久久久久久久久免| 国产在线免费精品| 国产成人免费观看mmmm| 国精品久久久久久国模美| 久久精品熟女亚洲av麻豆精品| 国产精品成人在线| 亚洲欧美一区二区三区久久| 精品视频人人做人人爽| 性高湖久久久久久久久免费观看| av又黄又爽大尺度在线免费看| 五月天丁香电影| 国产精品麻豆人妻色哟哟久久| 男女免费视频国产| 精品第一国产精品| 国产在线一区二区三区精| 免费高清在线观看日韩| 亚洲综合色网址| 超碰97精品在线观看| 美女脱内裤让男人舔精品视频| 亚洲精品国产色婷婷电影| 黄色 视频免费看| 午夜福利网站1000一区二区三区| av卡一久久| 成人亚洲精品一区在线观看| 午夜福利影视在线免费观看| 男女下面插进去视频免费观看| 久久精品亚洲熟妇少妇任你| a级毛片在线看网站| 久久人人爽人人片av| 日韩av在线免费看完整版不卡| 狂野欧美激情性bbbbbb| 欧美亚洲 丝袜 人妻 在线| 亚洲精品在线美女| 视频区图区小说| 97在线人人人人妻| 又粗又硬又长又爽又黄的视频| 国产又爽黄色视频| 多毛熟女@视频| a级片在线免费高清观看视频| 制服人妻中文乱码| 九草在线视频观看| 亚洲国产欧美网| 夫妻性生交免费视频一级片| 不卡av一区二区三区| 精品福利永久在线观看| 天堂俺去俺来也www色官网| 黄片无遮挡物在线观看| 日韩制服丝袜自拍偷拍| av又黄又爽大尺度在线免费看| 久久性视频一级片| 丝袜美足系列| 亚洲国产精品一区二区三区在线| 免费黄色在线免费观看| 一区在线观看完整版| 日韩制服丝袜自拍偷拍| 久久久久国产一级毛片高清牌| 美女午夜性视频免费| 国产亚洲欧美精品永久| 欧美老熟妇乱子伦牲交| 黄色毛片三级朝国网站| 人体艺术视频欧美日本| 人妻人人澡人人爽人人| 国产福利在线免费观看视频| 国产精品国产三级国产专区5o| 哪个播放器可以免费观看大片| 欧美精品人与动牲交sv欧美| 韩国av在线不卡| 欧美精品一区二区免费开放| 久久精品国产a三级三级三级| 久久久久视频综合| 成人午夜精彩视频在线观看| 久久久久久久精品精品| 精品国产一区二区三区久久久樱花| 在现免费观看毛片| av在线观看视频网站免费| 久久久久久人人人人人| av片东京热男人的天堂| 青春草视频在线免费观看| 精品久久蜜臀av无| 1024香蕉在线观看| 卡戴珊不雅视频在线播放| 欧美激情高清一区二区三区 | 亚洲欧美精品自产自拍| 少妇人妻精品综合一区二区| 成人黄色视频免费在线看| 久久久久久人妻| 七月丁香在线播放| 久久婷婷青草| 亚洲精品久久午夜乱码| 成人亚洲欧美一区二区av| 男人爽女人下面视频在线观看| 免费高清在线观看视频在线观看| 熟妇人妻不卡中文字幕| 少妇的丰满在线观看| 秋霞伦理黄片| 久久青草综合色| 精品国产露脸久久av麻豆| 国产老妇伦熟女老妇高清| 久久99精品国语久久久| 乱人伦中国视频| 高清av免费在线| 亚洲成人国产一区在线观看 | 亚洲精品国产av蜜桃| 亚洲成国产人片在线观看| 久久毛片免费看一区二区三区| 久久精品久久精品一区二区三区| 欧美日韩一区二区视频在线观看视频在线| 久热爱精品视频在线9| 美女主播在线视频| 午夜影院在线不卡| 久久久久久久久免费视频了| 99精国产麻豆久久婷婷| 侵犯人妻中文字幕一二三四区| 别揉我奶头~嗯~啊~动态视频 | 女人被躁到高潮嗷嗷叫费观| 各种免费的搞黄视频| 国产不卡av网站在线观看| av国产精品久久久久影院| 中文字幕人妻丝袜制服| 日韩一区二区三区影片| 精品一区二区免费观看| 国产精品香港三级国产av潘金莲 | 妹子高潮喷水视频| 一级毛片 在线播放| 亚洲精品久久成人aⅴ小说| 日本av手机在线免费观看| 啦啦啦 在线观看视频| av不卡在线播放| 日韩av在线免费看完整版不卡| 三上悠亚av全集在线观看| xxx大片免费视频| 人妻一区二区av| 色播在线永久视频| 日韩av不卡免费在线播放| 丝袜在线中文字幕| 国产男人的电影天堂91| 欧美黄色片欧美黄色片| 国产在视频线精品| 18在线观看网站| 老熟女久久久| 久久久久精品国产欧美久久久 | 丝瓜视频免费看黄片| 中文精品一卡2卡3卡4更新| 男女床上黄色一级片免费看| 欧美日韩国产mv在线观看视频| 亚洲av欧美aⅴ国产| 亚洲精品中文字幕在线视频| 中文字幕色久视频| 亚洲精品美女久久久久99蜜臀 | 久久国产精品男人的天堂亚洲| 青青草视频在线视频观看| 香蕉丝袜av| 免费黄色在线免费观看| 日韩一卡2卡3卡4卡2021年| 欧美变态另类bdsm刘玥| 久久国产亚洲av麻豆专区| 精品福利永久在线观看| 天天躁夜夜躁狠狠躁躁| 夫妻午夜视频| 女人久久www免费人成看片| 亚洲综合精品二区| 成人手机av| 在线观看人妻少妇| 精品一区二区三区av网在线观看 | 在线观看免费高清a一片| av网站免费在线观看视频| 黄色 视频免费看| 自拍欧美九色日韩亚洲蝌蚪91| 老汉色av国产亚洲站长工具| 久久精品国产综合久久久| 最新的欧美精品一区二区| 成年av动漫网址| 一级毛片电影观看| 大陆偷拍与自拍| 建设人人有责人人尽责人人享有的| av片东京热男人的天堂| 欧美黄色片欧美黄色片| 99久国产av精品国产电影| 亚洲天堂av无毛| 午夜影院在线不卡| av在线播放精品| av网站免费在线观看视频| 自线自在国产av| 亚洲精品国产色婷婷电影| 欧美日韩综合久久久久久| 在线免费观看不下载黄p国产| 性少妇av在线| 国产不卡av网站在线观看| 美国免费a级毛片| 亚洲人成电影观看| 人人妻,人人澡人人爽秒播 | 卡戴珊不雅视频在线播放| 日韩av不卡免费在线播放| 伊人久久国产一区二区| 久久综合国产亚洲精品| 国产伦人伦偷精品视频| 亚洲三区欧美一区| 色吧在线观看| 深夜精品福利| 日本欧美国产在线视频| 欧美日韩福利视频一区二区| 少妇被粗大的猛进出69影院| 美国免费a级毛片| 欧美日韩视频精品一区| 久久婷婷青草| 国产免费一区二区三区四区乱码| 国产黄频视频在线观看| 国产免费又黄又爽又色| 日韩成人av中文字幕在线观看| 男女下面插进去视频免费观看| 亚洲美女搞黄在线观看| 成人漫画全彩无遮挡| 亚洲国产精品一区二区三区在线| 999久久久国产精品视频| 亚洲精品国产色婷婷电影| 欧美日韩一区二区视频在线观看视频在线| 国产精品久久久久久久久免| 国产精品 欧美亚洲| 国产男女超爽视频在线观看| 亚洲欧美激情在线| 亚洲av福利一区| 久久久国产精品麻豆| 日韩中文字幕欧美一区二区 | 超碰成人久久| 国产极品粉嫩免费观看在线| 亚洲精华国产精华液的使用体验| 天天躁日日躁夜夜躁夜夜| 免费观看a级毛片全部| 成年动漫av网址| 日韩欧美精品免费久久| 亚洲天堂av无毛| 赤兔流量卡办理| 亚洲自偷自拍图片 自拍| 日韩伦理黄色片| 18禁国产床啪视频网站| 中文字幕精品免费在线观看视频| 午夜av观看不卡| 成人午夜精彩视频在线观看| 婷婷色综合www| 日韩精品有码人妻一区| 久久av网站| 99久国产av精品国产电影|