• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Magnetostriction and spin reorientation in ferromagnetic Laves phase Pr(GaxFe1?x)1.9 compounds?

    2021-06-26 03:30:26MinYuZeng曾敏玉QingTang唐慶ZhiWeiMei梅志巍CaiYanLu陸彩燕YanMeiTang唐妍梅XiangLi李翔YunHe何云andZePingGuo郭澤平
    Chinese Physics B 2021年6期
    關(guān)鍵詞:李翔

    Min-Yu Zeng(曾敏玉) Qing Tang(唐慶) Zhi-Wei Mei(梅志巍) Cai-Yan Lu(陸彩燕)Yan-Mei Tang(唐妍梅) Xiang Li(李翔) Yun He(何云) and Ze-Ping Guo(郭澤平)

    1Guangxi Key Laboratory of Nuclear Physics and Nuclear Technology,Guangxi Normal University,Guilin 541004,China

    2School of Electronic Engineering and Automation,Guilin University of Electronic Technology,Guilin 541004,China

    Keywords: easy magnetization direction(EMD),magnetostriction,spin-reorientation

    1. Introduction

    The binary C15 cubic Laves phase compound terfenol-D (Tb0.27Dy0.73Fe2) is well known for its outstanding magnetostriction at room temperature, which is widely applied in acoustic transducers,sensors,and actuators.[1–3]However,the heavy rare earths are expensive, and their excellent magnetostrictive properties can only retain at the temperature range of?20?C to+60?C.[4,5]Therefore,the low-cost compound PrFe2,which has large magnetostriction at a wide temperature range(λ111~5600 ppm at 0 K and|λ‖?λ⊥|~1100 ppm at room temperature)should be of giant interest.[1,6–8]However,the alloy also exhibits large magnetocrystalline anisotropy at low temperatures. Therefore, in the past decades, much efforts have been paid on developing a RxPr1?xFe2anisotropic compensation system by selecting another RFe2alloy with different signs of magnetocrystalline anisotropy constantK1to PrFe2to obtain large magnetostriction at low magnetic fields.[9–17]

    To develop a RxPr1?xFe2anisotropic compensation system, the studies of crystal structures and spin reorientation temperature (TSR) in PrFe2are significant. This is because for RFe2alloys, there is a one-to-one relationship between lattice distortion and EMD (rhombohedral structure with EMD along〈111〉, orthorhombic structure with EMD along〈110〉,and tetragonal structure with EMD along〈100〉,respectively).[1,6,16–21]Besides,different EMDs correspond to different magnetocrystalline anisotropy properties, ifK2and higher-order anisotropy constants are neglected.[21]PrFe2is a tetragonal symmetry below itsTSR(70 K) and a rhombohedral structure above itsTSR.[1,6–8,22]Then, another RFe2alloy considered in a RxPr1?xFe2anisotropic compensation system should be selected basing on the crystal structure andTSRof PrFe2. For example, TbFe2with EMD lying along〈111〉should be considered whenT <70 K,[1,23,24]and DyFe2with EMD lying along〈100〉should be considered when 70 K<T <300 K,etc.[1,19]

    As mentioned above,TSRis an important property for PrFe2alloy, which significantly impacts the EMD and magnetic anisotropy. Low magnetocrystalline anisotropy frequently occurs atTSR.[9–16]Therefore, it is of great interest if we find a method to control it for different temperature applications. According to the investigations of Ga substitution for Fe in TbFe2system, the EMD of the compound may deviate slightly from the major axis of symmetry, and it leads to the increase of tetragonal distortionλ100.[25]Besides, the investigation of Ga substitution for Fe in Dy0.6Tb0.3Pr0.1(Fe0.95?xMn0.05Gax)1.85alloys shows that the substitution can affect the homogeneity region and the grain size of the multicomponent pseudobinary compound(Dy,Tb,Pr)(Fe,Mn,Ga)2.[26]These results indicate that Ga substitution for Fe can impact the EMD orTSRin the alloys.Then,we would like to examine here the effect of Ga substitution for Fe in the magnetic and magnetostriction properties,especially the EMD andTSRin PrFe1.9alloy. Here, we choose the ratio of R:(Fe,Ga)as 1:1.9 instead of 1:2 in order to obtain a more pure Laves phase.[7,9]

    2. Experiment design

    We prepared the ingots of Pr(GaxFe1?x)1.9withx=0.0,0.02, 0.05, 0.10, and 0.15 stoichiometry by melting the high purity metals in a magneto controlled arc furnace in an argon atmosphere. The purities of the constituents are 99.9 wt%.Because the radius of Pr3+is large, and the radius ratio of(R,Pr):Fe ion is too big to fit the ideal atomic radius ratio for Laves phase(1.225),the ingot were pressed to 6 GPa by a hexahedral anvil press and heated to 900?C for 30 min to obtain single-phase Laves phase.[7,27]Conventional x-ray diffraction(XRD)analysis was carried out at room temperature using CuKαradiation with a Rigaku D/Max-gA diffractometer. Figures 1(a) and 1(b) show the examples of XRD spectrum of Pr(GaxFe1?x)1.9compounds prepared under ordinary pressure and high pressure,respectively. The indices(hkl)of the Laves phase are also indexed here.[7,15,27,28]It can be seen from Fig. 1(a) that cubic Laves phase could hardly be observed in the samples prepared under ordinary pressure. However, all of the samples prepared by high-pressure annealing method exhibit almost single Cubic Laves phase with MgCu2structure, with minor impurity phases (i.e.rare-earth phases) over the whole concentration range investigated.[7,15,27,28]This indicates high-pressure annealing method is an effective method to prepare cubic Laves phase alloys with high content of Pr.The lattice parameters were calculated from the{220},{311},{422},{333}, and{440}XRD spectra of Fig. 1(b) by Unit-Cell. The Curie temperatureTCwas detected by a thermal gravitation analyzer (TGA) with a vertical gradient magnetic field under the samples. The Curie temperatureTCwas determined by the differential thermal analysis(DTA).The crystal structure was determined by the Rigaku-TTR3 x-ray diffractometer. The scaling scale is from 40.5?to 43?for the{440}peak and from 70.5?to 73?for{222}peak,respectively,both with a step width of 0.02 between 15 K and 300 K. The xray diffraction(XRD)was performed with a fitted time mode,where each point was relaxed for 4 seconds. The XRD peaks were fitted by Jade 6.5 XRD analytical software, and the effect of theKα2radiation was eliminated by a standard process. We used superconducting quantum interference device magnetometer (SQUID) to measure the temperature dependence of the magnetization(M)to determineTSR. The magnetostrictions were measured using standard strain-gauge technique, while the magnetic fields were supplied by Quantum Design physical property measurement system (PPMS). The57Fe M¨ossbauer spectra were collected on a constant accelerated spectrometer with the transmission geometry at room temperature and 77 K, with the source of57Co in Pd matrix with an activity of about 25 mCi. The spectrums were calibrated with a standardα-Fe foil and analyzed by Lorentzian lines in 256 channels using the software Klencsar and Moss-Winn.

    Fig. 1. XRD patterns of Pr(GaxFe1?x)1.9 compounds prepared (a) under ordinary pressure and(b)high pressure,respectively.

    3. Results and discussion

    In order to detect the Curie temperatureTCof Pr(Fe1?xGax) alloys, the thermo gravimetric analysis (TGA)was performed, and the results are shown in Fig. 2. ThenTCwas determined by the differential thermal analysis(DTA),which is shown in the inset of Fig. 2 (taking the alloy withx=0.02 as an example).

    The concentration dependence ofTCis plotted in Fig.3.It can be found in Fig.3 thatTCdecreases from 513 K to 433 K with increasing Ga concentrationx, which can be probably attributed to the decrease ofR–Tcoupling strength due to Ga substitution.It is similar to the results of Tb(Fe1?xGax)[25]and Dy0.6Tb0.3Pr0.1(Fe0.95?xMn0.05Gax)1.85alloys.[26]The lattice parameteracalculated from the XRD spectra (Fig. 1(b)) is also plotted in Fig. 3. The lattice parameter increases from 0.746 nm to 0.753 nm with increasing Ga content,which can be attributed to the larger atom radius of Ga compared to that of Fe. This result is also similar to that of Tb(Fe1?xGax)[25]and Dy0.6Tb0.3Pr0.1(Fe0.95?xMn0.05Gax)1.85alloys.[26]

    Fig.2. The TGA of Pr(GaxFe1?x)1.9 alloys. The inset shows the differential thermal analysis of the alloy with x=0.02.

    Fig.3. Ga concentration dependence of lattice parameter a and Curie temperature TC,respectively.

    Figure 4 shows the magnetic field dependence of magnetostrictionλ=(λ||?λ⊥)at both room temperature and 5 K,respectively. As shown in Fig. 4(a), the magnetostriction decreases monotonously with the increasingxat room temperature (RT), due to the decrease of magnetic properties of the compounds.[1,25,26]Once again,this result is similar to that of Tb(Fe1?xGax)[25]and Dy0.6Tb0.3Pr0.1(Fe0.95?xMn0.05Gax)1.85systems.[26]However,at 5 K,Ga substitution reduces the magnetostriction when 10 kOe≤H ≤90 kOe,while it yields an increased magnetostriction with 0 kOe≤H ≤10 kOe,as shown in the inset of Fig. 4(b). This indicates that Ga substitution with 0.02≤x ≤0.05 can enhance the magnetostriction at 5 K.

    Fig.4.(a)The field dependence of magnetostriction(λ=λ||?λ⊥)at RT.(b)The field dependence of the magnetostriction(λ||)at 5 K of Pr(GaxFe1?x)1.9 alloys. The inset shows λ|| with 0 kOe ≤H ≤12 kOe.

    Fig. 5. Temperature dependence of the magnetization (M) for the alloys with x=0.0, 0.02, 0.05, 0.10, and 0.15, respectively, at the field strength H=50 kOe. The inset shows the determination of TSR when x=0.15.

    Figure 5 shows the magnetization (M) temperature dependence of the alloys at the magnetic field of 50 kOe.An abnormity can be seen clearly in the magnetization (M)curve for each compounds, which has been marked by an arrow in the figure. By comparing theM–Tdata with those obtained from the high-precision XRD step scanning,as well as our earlier reported M¨ossbauer spectra measurements,we are able to identify the anomalies corresponding to the spin reorientations.[8,10,13,16–20,29,30]Forx=0,an anomaly appears in the form of a peak at 74 K, which is identified as a spin reorientation taking place from〈100〉to〈111〉. Then this anomalies seems to shift to approximately 120 K whenxincreases from 0.0 to 0.15. The anomaly forx=0.15 is not very obvious, but it can be observed in an enlarged view as shown in the inset of Fig.5,which is similar to the situations of Sm0.76Nd0.24Fe2and Sm0.7Nd0.3Fe2.[29]

    In order to further confirm the EMD type in Gacontainning alloys above and below the anomalies temperature inM–Tcurve, a high-precision XRD step scanning was performed on Pr(Ga0.02Fe0.98)1.9for the{222}and{440}peaks during cooling from 300 K to 15 K after elimination of Kα2, which are shown in Figs.6(a)and 6(b), respectively.The double-splitting of the{222}and{440}reflections (the intensity ratio of split peaks is about 1:3 and 1:1, respectively) between 135 K and 300 K are typical for rhombohedral structure,[1,6–8,19,20]indicating the EMD of the compound lies along〈111〉in this temperature range. On the other hand,a prominent tetragonal symmetry can be seen between 15 K and 80 K,which can be confirmed by the non-splitting of the{222}reflections and doubly splitting of the{440}reflections.This indicates the EMD of the compound lies along〈100〉in this temperature range. Thus we can conclude that the spinreorientation occurs in the Pr(Ga0.02Fe0.98)1.9alloy,which has been verified in Pr-containning alloys.[1,6–8]

    Fig.6. The profiles of the step-scanned{440}and{222}XRD reflection of the sample with x=0.02.

    Fig. 7. 57Fe M¨ossbauer spectra of Pr(Ga0.02Fe0.98)1.9 at 77 K and room temperature,respectively.

    Figure 7 shows the57Fe M¨ossbauer spectra for singlephase Pr(Ga0.02Fe0.98)1.9at both 77 K and room temperature,where the circles present the experimental data and the solid lines give the fitted curves. The data can be fitted by two sextets with area ratio about 3:1 at room temperature, indicating that the EMD is along the〈111〉axis.[9,22,23,31]On the other hand,for the data at 77 K,the spectra can be fitted by a single sextet,indicating that EMD is lying along〈100〉.These results are in good agreement with the XRD result in Fig. 6. Therefore,the abnormities in magnetization(M)results in Fig.5 can be explained by the transform of EMD from〈111〉to〈100〉in the alloys.

    The phase diagram of the spin configuration accompanied with different structures for Pr(GaxFe1?x)1.9alloys are plotted in Fig. 8, in whichTSRis obtained from the collection of theM–Tcurve in Fig. 5 andTCis obtained from the collection of the DTA data in Fig. 3. Meanwhile, the EMD type were determined by XRD (Fig. 6) and M¨ossbauer spectra measurements (Fig. 7), and were represented by red circle, blue trigon, light blue diamond, and pink trigon, respectively. It can be seen from Fig. 8 that the phase diagram can be separated into three regions,which have been identified by cubic symmetry region I, rhombohedral symmetry region II,and tetragonal symmetry region III, respectively. It can be seen that the EMD types accurately land in the corresponding region (〈111〉in region II and〈100〉in region III). This indicates that the data from XRD and M¨ossbauer spectra measurement are well consistent with theTSRdetermined byM–Tcurve. Furthermore, it shows thatTCdecreases with increasing Ga concentrationx, due to the decrease ofR–Tcoupling strength caused by Ga substitution.[19,20]An increase ofTSRfrom 70 K to 120 K can be seen in Fig. 8, with the increasing Ga concentrationx. It indicates that the 3d–4f hybridization or even 4f–4f coupling is composition-sensitive in this system.[25,26]This result is similar to that of Co or Al substitution for Fe in light rare earth Laves phase compounds,such as Pr0.5Nd0.5(Fe1?xCox)1.9,[16]Nd(Fe1?xCox)1.9,[32]Pr(Fe1?xCox)1.9,[33]and Pr(Fe1?xAlx)1.9systems.[34]However, it is different to that in Tb0.3Dy0.7(Fe1?xMnx)2,[35]and Sm0.88Dy0.12(Fe1?xCox)2systems,[36]in which Co or Mn substitution for Fe slightly decreasesTSR. The underlying physical mechanisms is still to be investigated.

    Fig. 8. Phase diagram of the spin configuration accompanied with different crystal structures for Pr(GaxFe1?x)1.9 compounds(Ms denotes the easy magnetization direction,PS denotes the paramagnetic state).

    The intrinsic magnetostrictionλ111of the PrFe1.9and Pr(Ga0.02Fe0.98)1.9as a function of temperature is shown in Fig.9,in whichλ111was obtained from

    withd440anddenoting the crystallographic plane distances of{440}and{40}, respectively. The parametersd440andcan be calculated by the Bragg’s formulaλ=2dsinθ(λrepresents the wavelength,θrepresents the angle of diffraction in Fig.7).[6,9,30]The data ofλ111in PrFe1.9were obtained from Ref.[8]. The error ofλ111was estimated by the error transfer formula

    in whichθ1andθ2stand for the diffraction angles of{440}and peaks,respectively,and the scanning angle error is ?θ=0.02?/2. Significant decrease ofλ111with increasing temperature can be observed in both samples, which can be attributed to the rapid decrease of the sublattice moment with decreasing temperature.[1]Ga substitution yields a rapid decrease spontaneous magnetostrictionλ111. This is similar to the result of Ga substitution for Fe in TbFe2. which can be explained by the single-ion model.[25,26]According to the singleion model,λ111varies with temperature as magnetic momentσ3R(T). Assuming the rare earth sublattice moment decreases with decreasing Curie temperatureTC,the decrease ofTCwith increasing Ga content results in a decrease ofσ3(T), which leads to a reduction in the spontaneous magnetostrictionλ111.

    Fig. 9. Temperature dependence of the spontaneous magnetostriction λ111 for PrFe1.9 and Pr(Ga0.02Fe0.98)1.9.

    4. Conclusions

    Ga substitution decreases the magnetostriction with magnetic field ofH ≥8 kOe, while increases the magnetostriction when 0 kOe≤H ≤8 kOe for the compounds withx ≤0.05 at 5 K. Drastic transition of the step scanned XRD and M¨ossbauer spectra, as well as the abnormal temperature dependence of magnetization and magnetostriction are observed,which indicate the occurrence of spin-reorientation (SR) in all the alloys investigated. The phase diagram is constructed,which illustrates an increase of the spin-reorientation temperatureTSRdue to Ga substitution.

    猜你喜歡
    李翔
    李翔《記憶膠囊系列》
    《光明頂上光芒照 排云亭中排郁愁》
    李翔作品欣賞
    黔江:“三在一融合”精細(xì)化治理城市
    《勾股定理》拓展精練
    一本書(shū)的風(fēng)波
    BOUNDEDNESS OF MULTILINEAR LITTLEWOOD-PALEY OPERATORS ON AMALGAM-CAMPANATO SPACES?
    善意的謊言
    李翔書(shū)法作品欣賞
    鄉(xiāng)土情懷 筆墨新境——李翔的山水畫(huà)
    丹青少年(2017年4期)2017-02-06 03:08:20
    av天堂在线播放| 亚洲精品一卡2卡三卡4卡5卡| 黑人欧美特级aaaaaa片| 日本vs欧美在线观看视频| 亚洲成av人片免费观看| 日日干狠狠操夜夜爽| 亚洲人成77777在线视频| 国产亚洲av高清不卡| 亚洲中文字幕一区二区三区有码在线看 | 无限看片的www在线观看| 久久人人爽av亚洲精品天堂| 国产单亲对白刺激| 国产欧美日韩综合在线一区二区| 国产成人影院久久av| 久久久久久久久久久久大奶| 少妇裸体淫交视频免费看高清 | 黄频高清免费视频| 美女高潮到喷水免费观看| 午夜福利,免费看| 国产精品香港三级国产av潘金莲| 91字幕亚洲| 欧美+亚洲+日韩+国产| 无限看片的www在线观看| 91在线观看av| 国产亚洲精品综合一区在线观看 | av有码第一页| 人人妻人人爽人人添夜夜欢视频| 国产又爽黄色视频| 一级a爱片免费观看的视频| 亚洲专区中文字幕在线| 悠悠久久av| 色哟哟哟哟哟哟| 日本黄色视频三级网站网址| 亚洲欧美精品综合一区二区三区| 91九色精品人成在线观看| 精品国内亚洲2022精品成人| 亚洲在线自拍视频| 老司机午夜十八禁免费视频| 99久久精品国产亚洲精品| 久久久久久亚洲精品国产蜜桃av| 国产极品粉嫩免费观看在线| 一区在线观看完整版| 别揉我奶头~嗯~啊~动态视频| 亚洲色图 男人天堂 中文字幕| 精品欧美国产一区二区三| 18美女黄网站色大片免费观看| 免费人成视频x8x8入口观看| 亚洲九九香蕉| 亚洲精品中文字幕一二三四区| 91av网站免费观看| 日韩av在线大香蕉| 亚洲九九香蕉| 国产一区二区三区在线臀色熟女| 国产三级黄色录像| 美女高潮到喷水免费观看| 国产欧美日韩精品亚洲av| 99精品欧美一区二区三区四区| 国产精品,欧美在线| 久久中文看片网| 99热只有精品国产| 天堂√8在线中文| 99国产精品免费福利视频| 十八禁网站免费在线| 欧美黑人欧美精品刺激| 亚洲,欧美精品.| 黄片小视频在线播放| 午夜免费观看网址| 亚洲成av片中文字幕在线观看| 天堂√8在线中文| 美女午夜性视频免费| 丁香欧美五月| 男女下面进入的视频免费午夜 | 在线十欧美十亚洲十日本专区| 在线国产一区二区在线| 丝袜美足系列| 国产亚洲精品一区二区www| 亚洲国产日韩欧美精品在线观看 | 电影成人av| 一区二区三区精品91| 禁无遮挡网站| 中文字幕人妻熟女乱码| 男女下面插进去视频免费观看| 亚洲五月天丁香| 国产成人精品久久二区二区91| 国产成人精品久久二区二区91| 欧美成人一区二区免费高清观看 | 大型av网站在线播放| 亚洲欧美一区二区三区黑人| 国产亚洲精品久久久久5区| 男女之事视频高清在线观看| 久久亚洲真实| 色播亚洲综合网| 在线观看午夜福利视频| 免费人成视频x8x8入口观看| 女性生殖器流出的白浆| 变态另类丝袜制服| АⅤ资源中文在线天堂| 在线永久观看黄色视频| 精品乱码久久久久久99久播| 色综合站精品国产| 日本a在线网址| 啪啪无遮挡十八禁网站| 中国美女看黄片| 国产欧美日韩一区二区精品| 精品国产一区二区久久| 欧美黄色淫秽网站| svipshipincom国产片| 国产精品一区二区在线不卡| 久久国产精品人妻蜜桃| 久久影院123| 一区二区三区国产精品乱码| 麻豆一二三区av精品| 人人妻人人澡人人看| 日本撒尿小便嘘嘘汇集6| 十分钟在线观看高清视频www| 成人三级做爰电影| 国产精品一区二区在线不卡| 成人精品一区二区免费| 女人爽到高潮嗷嗷叫在线视频| netflix在线观看网站| 国产免费男女视频| 亚洲av五月六月丁香网| 老司机靠b影院| 久久人人97超碰香蕉20202| 国产亚洲精品第一综合不卡| 亚洲欧美日韩无卡精品| 婷婷六月久久综合丁香| 天堂√8在线中文| 成人亚洲精品一区在线观看| 国产精品一区二区三区四区久久 | 9热在线视频观看99| 亚洲中文字幕一区二区三区有码在线看 | 国产精品一区二区免费欧美| av专区在线播放| 国产乱人伦免费视频| 亚洲中文字幕日韩| 久久欧美精品欧美久久欧美| av天堂在线播放| 日韩欧美三级三区| 国产精品自产拍在线观看55亚洲| 欧美激情在线99| 18禁裸乳无遮挡免费网站照片| 日本 欧美在线| 一进一出抽搐动态| 成年免费大片在线观看| 成年女人毛片免费观看观看9| 午夜久久久久精精品| 日韩在线高清观看一区二区三区 | 亚洲 国产 在线| 色综合亚洲欧美另类图片| 麻豆国产97在线/欧美| 毛片一级片免费看久久久久 | 国产色爽女视频免费观看| 赤兔流量卡办理| 亚洲av二区三区四区| 免费在线观看影片大全网站| 国产精品无大码| 国产精品,欧美在线| 亚洲国产欧美人成| 久久久久久久午夜电影| 日本爱情动作片www.在线观看 | 免费大片18禁| 给我免费播放毛片高清在线观看| 国产成人aa在线观看| 亚洲avbb在线观看| 国产成人a区在线观看| 日本熟妇午夜| 一区二区三区高清视频在线| 又粗又爽又猛毛片免费看| 久久这里只有精品中国| 长腿黑丝高跟| 欧美成人性av电影在线观看| 国产精品嫩草影院av在线观看 | 欧美激情国产日韩精品一区| 内射极品少妇av片p| 久久久久国产精品人妻aⅴ院| 国产乱人视频| 91麻豆精品激情在线观看国产| 亚洲狠狠婷婷综合久久图片| 一本久久中文字幕| 欧美中文日本在线观看视频| av在线老鸭窝| 欧美人与善性xxx| 亚洲第一区二区三区不卡| 男女下面进入的视频免费午夜| 露出奶头的视频| 久久天躁狠狠躁夜夜2o2o| 亚洲人与动物交配视频| 久久久久久久久久久丰满 | 亚洲电影在线观看av| 国产 一区精品| АⅤ资源中文在线天堂| 丰满乱子伦码专区| 亚洲美女搞黄在线观看 | 国内久久婷婷六月综合欲色啪| 亚洲在线观看片| 黄色一级大片看看| 三级国产精品欧美在线观看| 97人妻精品一区二区三区麻豆| 亚洲内射少妇av| 亚洲欧美日韩卡通动漫| 亚洲成人久久爱视频| 别揉我奶头 嗯啊视频| 国产亚洲精品综合一区在线观看| 亚洲成人免费电影在线观看| 成人三级黄色视频| 少妇的逼好多水| 国产精品久久视频播放| 久久精品国产亚洲网站| 亚洲avbb在线观看| 日日摸夜夜添夜夜添av毛片 | 欧美zozozo另类| x7x7x7水蜜桃| 黄色丝袜av网址大全| 亚洲无线观看免费| 中文亚洲av片在线观看爽| 亚洲精品在线观看二区| 国产精品一区二区三区四区久久| 嫩草影院新地址| 一进一出抽搐动态| 午夜久久久久精精品| 日韩国内少妇激情av| 午夜福利在线在线| 国产黄a三级三级三级人| 男插女下体视频免费在线播放| 干丝袜人妻中文字幕| 在线国产一区二区在线| 日韩,欧美,国产一区二区三区 | 国产午夜精品久久久久久一区二区三区 | 日本在线视频免费播放| 91狼人影院| 亚洲成人免费电影在线观看| 男女下面进入的视频免费午夜| 九九热线精品视视频播放| 国产精华一区二区三区| 亚洲avbb在线观看| 欧美日韩瑟瑟在线播放| 91午夜精品亚洲一区二区三区 | 直男gayav资源| 欧美精品啪啪一区二区三区| 婷婷精品国产亚洲av在线| 久久精品国产清高在天天线| 亚洲av成人av| 欧美在线一区亚洲| 麻豆av噜噜一区二区三区| 国产av麻豆久久久久久久| 999久久久精品免费观看国产| 成人国产麻豆网| 国产精品女同一区二区软件 | 亚洲国产高清在线一区二区三| 自拍偷自拍亚洲精品老妇| 久久久久久久午夜电影| 日韩欧美精品免费久久| 精品午夜福利视频在线观看一区| 亚洲午夜理论影院| 麻豆久久精品国产亚洲av| av国产免费在线观看| 欧美性猛交╳xxx乱大交人| 可以在线观看的亚洲视频| 国产探花在线观看一区二区| 日本成人三级电影网站| 午夜福利18| 亚洲av成人av| 一本久久中文字幕| 精品久久久久久久久久久久久| 黄色配什么色好看| 神马国产精品三级电影在线观看| 国产男人的电影天堂91| 性色avwww在线观看| 国产久久久一区二区三区| 少妇熟女aⅴ在线视频| 精品人妻1区二区| 精品久久国产蜜桃| 精品一区二区三区视频在线| 中文字幕久久专区| 亚洲国产高清在线一区二区三| 精品国产三级普通话版| 最近中文字幕高清免费大全6 | 色综合婷婷激情| 久久热精品热| 色哟哟·www| 天天躁日日操中文字幕| 欧美中文日本在线观看视频| 搡老熟女国产l中国老女人| 神马国产精品三级电影在线观看| 国产一区二区三区在线臀色熟女| 午夜激情欧美在线| 国产伦精品一区二区三区四那| 国内精品美女久久久久久| 国产精品一及| 一区二区三区免费毛片| 亚洲精品乱码久久久v下载方式| 91狼人影院| 午夜福利18| а√天堂www在线а√下载| 熟女人妻精品中文字幕| 免费人成在线观看视频色| 我的老师免费观看完整版| 国产91精品成人一区二区三区| 国产成人影院久久av| 国产高清三级在线| 999久久久精品免费观看国产| 美女大奶头视频| 观看美女的网站| 精品日产1卡2卡| 亚洲va日本ⅴa欧美va伊人久久| 久久久午夜欧美精品| 欧美性猛交╳xxx乱大交人| 国产精品三级大全| 免费人成视频x8x8入口观看| 精品日产1卡2卡| 看十八女毛片水多多多| 精品国产三级普通话版| 日韩高清综合在线| 国产综合懂色| 国产高清不卡午夜福利| 我的女老师完整版在线观看| 美女cb高潮喷水在线观看| 精品久久久久久久久久免费视频| 国产一级毛片七仙女欲春2| 天堂动漫精品| 简卡轻食公司| 可以在线观看毛片的网站| 久久精品人妻少妇| 在线观看美女被高潮喷水网站| 美女 人体艺术 gogo| 国产亚洲精品av在线| 久久人人精品亚洲av| 我要搜黄色片| 欧美日韩亚洲国产一区二区在线观看| 国语自产精品视频在线第100页| 色噜噜av男人的天堂激情| 少妇猛男粗大的猛烈进出视频 | 成人美女网站在线观看视频| 中文亚洲av片在线观看爽| 99久久中文字幕三级久久日本| 久久午夜福利片| av在线老鸭窝| 亚洲第一区二区三区不卡| 日本精品一区二区三区蜜桃| 国产精品一区www在线观看 | 99热只有精品国产| 99国产精品一区二区蜜桃av| 精品99又大又爽又粗少妇毛片 | 成人午夜高清在线视频| av在线老鸭窝| 日韩人妻高清精品专区| 亚洲国产欧美人成| 99热这里只有是精品在线观看| 日韩,欧美,国产一区二区三区 | 久久久久久久久大av| 美女cb高潮喷水在线观看| 联通29元200g的流量卡| 国产午夜福利久久久久久| 99在线人妻在线中文字幕| 最新在线观看一区二区三区| 国产精品99久久久久久久久| 一a级毛片在线观看| 久久久久九九精品影院| 成人一区二区视频在线观看| 午夜免费成人在线视频| 亚洲精品国产成人久久av| 又爽又黄无遮挡网站| 在线观看免费视频日本深夜| 久久精品国产清高在天天线| 禁无遮挡网站| 欧美高清成人免费视频www| 91av网一区二区| 午夜免费激情av| 欧美高清成人免费视频www| 国产真实伦视频高清在线观看 | 日本熟妇午夜| 在线免费观看的www视频| 成人性生交大片免费视频hd| 在线国产一区二区在线| 3wmmmm亚洲av在线观看| 一本久久中文字幕| 赤兔流量卡办理| 一级a爱片免费观看的视频| 久久久久国内视频| 成人美女网站在线观看视频| 免费在线观看影片大全网站| 露出奶头的视频| 亚洲美女搞黄在线观看 | 免费无遮挡裸体视频| 99热网站在线观看| a在线观看视频网站| 国产欧美日韩精品一区二区| 亚洲精品一区av在线观看| 亚洲欧美日韩卡通动漫| 天堂网av新在线| 国产精品无大码| 日韩欧美精品免费久久| 亚洲午夜理论影院| 国产精品av视频在线免费观看| 久久午夜亚洲精品久久| 看黄色毛片网站| 免费av毛片视频| 简卡轻食公司| 日本熟妇午夜| 五月玫瑰六月丁香| 欧美3d第一页| av.在线天堂| 国产精品自产拍在线观看55亚洲| 内地一区二区视频在线| 动漫黄色视频在线观看| 淫秽高清视频在线观看| 精品99又大又爽又粗少妇毛片 | 午夜福利在线观看吧| 日日夜夜操网爽| 午夜福利18| 欧美zozozo另类| 国产精品野战在线观看| 久久精品久久久久久噜噜老黄 | 精品一区二区三区视频在线| 国产精品亚洲美女久久久| 精品一区二区免费观看| 日韩 亚洲 欧美在线| 成人国产综合亚洲| 香蕉av资源在线| x7x7x7水蜜桃| 女同久久另类99精品国产91| 亚洲精品国产成人久久av| 国产精品永久免费网站| 男女啪啪激烈高潮av片| 久久午夜福利片| 中文字幕高清在线视频| 热99在线观看视频| 无人区码免费观看不卡| 亚洲欧美日韩东京热| 亚洲精品色激情综合| 夜夜夜夜夜久久久久| 伦理电影大哥的女人| 国产精品一区二区三区四区久久| 亚洲精品456在线播放app | 欧美成人a在线观看| 亚洲中文日韩欧美视频| 日韩欧美一区二区三区在线观看| 日本黄色片子视频| 九九在线视频观看精品| 日本爱情动作片www.在线观看 | 久久久国产成人精品二区| 日本黄色视频三级网站网址| 精品免费久久久久久久清纯| 国产探花在线观看一区二区| 精品久久久久久久久亚洲 | 国产一级毛片七仙女欲春2| 听说在线观看完整版免费高清| 真实男女啪啪啪动态图| 免费不卡的大黄色大毛片视频在线观看 | 精品久久久噜噜| 日日啪夜夜撸| videossex国产| 熟妇人妻久久中文字幕3abv| АⅤ资源中文在线天堂| 亚洲av电影不卡..在线观看| 欧美+亚洲+日韩+国产| 俺也久久电影网| 国产精品99久久久久久久久| 欧美精品国产亚洲| 欧美国产日韩亚洲一区| 最好的美女福利视频网| 99在线视频只有这里精品首页| 黄色配什么色好看| or卡值多少钱| 亚洲三级黄色毛片| 国产不卡一卡二| 真人一进一出gif抽搐免费| 成年版毛片免费区| 超碰av人人做人人爽久久| 国产精品一区二区免费欧美| 久久国产乱子免费精品| 99精品久久久久人妻精品| 国产精品98久久久久久宅男小说| 国产精品女同一区二区软件 | 精品乱码久久久久久99久播| 女的被弄到高潮叫床怎么办 | 日韩亚洲欧美综合| 亚洲专区国产一区二区| 在线观看美女被高潮喷水网站| 国产探花在线观看一区二区| 在线观看一区二区三区| 两人在一起打扑克的视频| 91久久精品电影网| 国模一区二区三区四区视频| 一个人看视频在线观看www免费| 少妇的逼好多水| 亚洲在线自拍视频| 精品一区二区免费观看| 91麻豆av在线| av在线观看视频网站免费| 毛片女人毛片| av天堂中文字幕网| 亚洲狠狠婷婷综合久久图片| 99热这里只有是精品50| 2021天堂中文幕一二区在线观| 在现免费观看毛片| 亚洲专区国产一区二区| 国产黄色小视频在线观看| 少妇的逼水好多| 亚洲av免费在线观看| 亚洲精品乱码久久久v下载方式| 国产精品无大码| 久久精品国产亚洲网站| 悠悠久久av| 高清毛片免费观看视频网站| 黄色配什么色好看| 国产精品女同一区二区软件 | 国产精品国产三级国产av玫瑰| 午夜福利成人在线免费观看| 精品人妻1区二区| 乱系列少妇在线播放| 精品不卡国产一区二区三区| 69av精品久久久久久| 伦精品一区二区三区| 亚洲最大成人av| 天堂av国产一区二区熟女人妻| 国产男人的电影天堂91| 中文在线观看免费www的网站| 国产不卡一卡二| 欧美丝袜亚洲另类 | 国产成年人精品一区二区| 久久99热6这里只有精品| 亚洲色图av天堂| 少妇的逼好多水| 国产精品一区二区免费欧美| 久久久成人免费电影| 特大巨黑吊av在线直播| 国产真实伦视频高清在线观看 | 久久久久久九九精品二区国产| 久久九九热精品免费| 亚洲av二区三区四区| 嫩草影院入口| 伦理电影大哥的女人| 99国产精品一区二区蜜桃av| 日韩国内少妇激情av| 一个人免费在线观看电影| 欧美日本视频| 91久久精品国产一区二区三区| 啦啦啦韩国在线观看视频| 国产男人的电影天堂91| 天堂网av新在线| 精品午夜福利在线看| 99热这里只有是精品50| 我的女老师完整版在线观看| 国内久久婷婷六月综合欲色啪| 3wmmmm亚洲av在线观看| 婷婷丁香在线五月| 日本色播在线视频| 欧美丝袜亚洲另类 | 99精品久久久久人妻精品| 人妻夜夜爽99麻豆av| 国产亚洲精品久久久com| 黄色日韩在线| 午夜福利在线观看吧| 在线a可以看的网站| 性色avwww在线观看| 在线a可以看的网站| 亚洲精品影视一区二区三区av| 亚洲最大成人中文| 国产高清有码在线观看视频| 黄色一级大片看看| 一个人观看的视频www高清免费观看| 欧美激情久久久久久爽电影| 亚洲av熟女| 国产毛片a区久久久久| 一个人观看的视频www高清免费观看| 国产精品国产高清国产av| 免费人成视频x8x8入口观看| 成人国产综合亚洲| 国产精品久久久久久av不卡| 婷婷精品国产亚洲av| 欧美黑人巨大hd| 国产精品亚洲一级av第二区| 99riav亚洲国产免费| 亚洲中文字幕日韩| 免费观看的影片在线观看| 永久网站在线| 国产真实乱freesex| 97碰自拍视频| 夜夜夜夜夜久久久久| 国产精品无大码| 欧美极品一区二区三区四区| www日本黄色视频网| 极品教师在线视频| 美女免费视频网站| 亚洲av电影不卡..在线观看| 久久精品久久久久久噜噜老黄 | 日韩欧美国产在线观看| 亚洲一级一片aⅴ在线观看| 天堂网av新在线| 丰满乱子伦码专区| 免费看日本二区| 国产不卡一卡二| 高清在线国产一区| 在线免费观看的www视频| 日韩大尺度精品在线看网址| 琪琪午夜伦伦电影理论片6080| 亚洲午夜理论影院| 精品免费久久久久久久清纯| 一个人看视频在线观看www免费| 欧美zozozo另类| 在线观看免费视频日本深夜| 成年人黄色毛片网站| 三级国产精品欧美在线观看| 一级黄片播放器| 91av网一区二区| 久久精品国产亚洲av天美| 99热网站在线观看| 国产成人a区在线观看| 成年女人永久免费观看视频| 中文资源天堂在线| 亚洲七黄色美女视频| av福利片在线观看| 一本一本综合久久|