• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Cobalt anchored CN sheet boosts the performance of electrochemical CO oxidation?

    2021-06-26 03:05:00XuLiu劉旭JunChaoHuang黃俊超andXiangMeiDuan段香梅
    Chinese Physics B 2021年6期
    關(guān)鍵詞:劉旭

    Xu Liu(劉旭), Jun-Chao Huang(黃俊超), and Xiang-Mei Duan(段香梅)

    School of Physical Science and Technology,Ningbo University,Ningbo 315211,China

    Keywords: first-principles calculations,single-atom catalyst,CO oxidation,rate-limiting reaction barrier

    1. Introduction

    As greenhouse gases like CO get increased,[1]researchers are trying their best to find solutions to decrease the content of CO in the air.[2]One of the most promising methods is to convert CO to CO2by a highly effective catalyst.[3,4]So far,considerable efforts have been made to develop novel and efficient catalysts for CO oxidation. Some typical noble metals can effectively catalyze CO oxidation, such as Pt,[5]Pd,[6]Ru,[7]and Au.[8]However, considering the low cost, environmental friendliness, and outstanding thermal stability, researchers start to develop noble-free metals gradually and achieve certain success in CO oxidation.[9]Adhering to further increase the catalytic performance and reduce the cost,the view of researchers turns to single-atom catalysts (SACs)[10]for their high site density,high specify,and low cost.[11]

    Two-dimensional (2D) materials are extensively applied in various catalytic reactions as substrates owing to their large surface area, high thermal stability, and easily manufacture, such as graphene,[12,13]MoS,[14,15]hexagonal boron nitride monolayers (h-BN),[16,17]and graphic carbon nitride(CN,[18–20]C2N,[21,22]and C3N4[23–25]). Many 2D materials are rich in electron pairs to combine with metal ions, and it seems easy to recognize active sites. Besides,due to the crude or artificial vacancies, 2D materials can be used as prominent supports to host metal atoms and get high stable catalyst. In the experiment, SACs can be synthesized using the mass-selected soft-landing technique,improved wet chemistry methods, or atomic layer deposition methods. Many studies showed that defects of the support materials could serve as anchoring sites for metal clusters and even single atom.[26]

    It is reported that carbon nitride (CN), successfully synthesized in the experiment, can be applied in He separation,[25]H2storage,[27]water decomposition,[28,29]and CO oxidation.[20]Co atom, as an ideal noble-free metal, has a good performance in CO oxidation, even surpassing traditional noble metal catalysts. For instance,experimental works showed that the Co atom in Co3O4shows strong catalytic activity in CO oxidation at low temperature.[30,31]However,the reaction barrier of Co-anchored graphene(Co@Gra)is as high as 0.65 eV,[32]which cannot be carried out at room temperature. In order to improve the performance, researchers start to introduce defects in graphene-based SAC,and the reaction barrier of Co@Sv-Gra is decreased by 0.23 eV.[32]Co implanted h-BN and g-C3N4are also reported as excellent catalysts for CO oxidation, and the reaction barriers of Co@h-BN[33]and Co@g-C3N4[34]are 0.41 eV and 0.21 eV,respectively. The catalytic behavior of Co-anchored CN in the CO oxidation reaction is worth studying.

    Based on first-principles calculations,we investigated CO oxidation on Co anchored planar CN sheet. Our results show that the Co atom(s) can perfectly bind to the CN monolayer and maintain the stability of the whole system. When O2and CO molecules are adsorbed over Co/2Co@CN, the gas molecules are activated through electron “acceptance donation” interaction between gas molecules and the transition metal. Furthermore, Co anchored CN systems possess superior catalytic activity toward the CO oxidation reaction.

    2. Computation details

    The calculations are performed based on density functional theory (DFT) by the Viennaab initiosimulation package (VASP).[35]The Perdew–Burke–Ernzerh (PBE) functional of generalized gradient approximation (GGA) with the semi-empirical van der Waals (vdW) method of Grimme(DFT-D2) was used to handle the exchange and correlation functionals.[36,37]The cutoff energy is set to be 500 eV.The convergence tolerance for the geometry optimization is 10?4eV for the energy and 10?2eV/?A for the force. A vacuum space of 20 ?A is adopted to avoid interaction between two adjacent images. The reciprocal space is sampled with a 3×3×1k-point grid generated automatically using the Monkhorst-Pack method[38]for optimization. A HubbardUterm was added to the PBE functional (DFT+U) to describe partially filled d orbitals. The on-site Coulomb interaction(U)of 4 eV and exchange interaction(J)of 1 eV were applied.[39]Additionally,we used the climbing image nudged elastic band(CI-NEB) method[40]to search for transition states to investigate the reaction paths. Bader charge analysis is adopted to obtain the number of transferred electrons.[41]The first principles molecular dynamics(MD)simulations at 300 K with a time step of 1 fs are performed to check the structural stability.

    Taking Co@CN as an example, the binding energy (Eb)of Co on CN is defined as the energy difference between the Co atomically deposited CN and the separated CN plus the freestanding Co atom,that isEb=ECo@CN?ECN?ECo. The more negative binding energy,the more energy advantage the anchoring of Co on the substrate.

    The adsorption energy (Ea) of the gas molecules is obtained by the energy difference between the absorbed Co@CN and the gaseous species plus the bare Co@CN.Eacan be expressed asEa=Eadsorbate+Co@CN?Eadsorbate?ECo@CN. The charge density difference ?ρis used to describe the electronic interaction between the substrate and the adsorbate, ?ρ=ρa(bǔ)dsorbate/support?ρa(bǔ)dsorbate?ρsupport. Hereρa(bǔ)dsorbate/support,ρa(bǔ)dsorbate, andρsupportare the corresponding charge densities of the combined system,the free adsorbate,and the bare support,respectively.

    3. Results and discussion

    3.1. One and two Co atoms anchored CNs

    The calculated lattice constant of CN is 7.13 ?A, the C–N and C–C bond lengths are 1.35 ?A and 1.52 ?A,respectively.The results are in good agreement with the reported values of 7.12 ?A, 1.34 ?A, and 1.54 ?A.[27,28]A 2×2×1 supercell containing 24 carbon and 24 nitrogen atoms was established. The intrinsic hole surrounded by six sp2bonded nitrogen atoms is beneficial for Co atom anchoring. We consider three possible sites for Co landing on CN,find the most favorable configuration is the one shown in Fig. 1(a), where the Co atom bonds to two edge N atoms with a bond length of 1.85 ?A and keeps

    its planar geometric structure undistorted(see Fig.1(c)). The most stable geometry for two Co atoms on CN is shown in Fig.S1(a),with the Co–N bond length of 1.81 ?A and the Co–Co distance of 2.39 ?A. The corresponding binding energy is calculated to be?3.77 eV and?3.26 eV/atom for Co@CN and 2Co@CN, respectively, indicating the strong interaction between the Co atom and CN monolayer. For comparison,the data are listed in Table 1, where the cohesive energies per atom of the bulk metalsEc(?4.39 eV) are taken from experiments.[42]

    Table 1. The binding energies (eV) for Co, Bader charge Q (|e|) from Co to the substrate,the bond length of Co?N(A?),magnetic moment(μB),and the ratio of Eb/Ec for the most favorable Co adsorptions on CN.

    Fig. 1. The top (a) and side view (c) of optimized atomic configuration, the charge density difference plots (b) with an iso-surface value of 0.003|e|/Bohr3,as well as spin-polarized PDOS(d)for Co@CN.The charge accumulation and depletion regions are represented in yellow and blue, respectively. The bold blue short line points to the d-band center (?1.77 eV)of Co atom.

    The transition metals have a tendency of forming clusters,then we investigate the stability of Co@CN by CI–NEB and MD methods. As shown in Figs. 2(a) and 2(b), the diffusion barrier for Co from one stable site to another in the neighboring hole is 2.62 eV.Such a large diffusion barrier conforms that the single Co atom binds with the CN monolayer steadily and hard to move. On the other hand,the largeEb/Ecratios of 0.86 and 0.74 for single and double cobalt on the substrate manifest that Co atoms prefer a 2D growth morphology on CN.Furthermore, MD results manifest that the structure remains undistorted at room temperature (see Figs. 2(d) and 2(e)). Charge transfers from Co and 2Co to CN monolayer are 0.72|e| and 1.19|e|,respectively. Comparing the energy band structure of pure CN monolayer with that of Co@CN and 2Co@CN in Fig.S2,the bands dominated by N-2p orbitals in Co@CN and 2Co@CN show that there is a semiconductor to metal transition.

    Fig.2. The top(a)and side view(b)of diffusion path diagram and relative energy(c). The results of molecular dynamics(MD)simulations(d)and(e).

    As shown in Fig. 1(b) and Fig. S1(b), the charge rearrangement mainly occurs among the Co atom(s) and the twoedged N atoms. To better understand its physical mechanism, partial density of states(PDOS)is plotted in Fig.1(d)and Fig. S1(d). The overlapped peaks caused by orbital hybridization appearing between Co-3d and N-2p states illustrate that the single Co atom(s)can be viewed as an active site. The insertion of the second Co atom proves the ability of catalytic because the d-band center deviates from the Fermi level.[43]The magnetic momentum for Co and 2Co@CN is 2.68μBand 4.0μB,respectively.

    3.2. Adsorption of species involved in the CO oxidation

    The thermodynamics of a specific reaction are strongly affected by the stability of reactants, intermediates, transition orbitals,and products.[44]The ability to bind the gas molecules on catalytic active centers confirms the reaction efficiency.We then investigate the adsorption of reactants CO and O2over Co atom(s)anchored CN.

    O2molecule is one of the most important participants in the whole process of CO oxidation. We consider both end-on and side-on adsorption of O2on both Co@CN and 2Co@CN,and find that the adsorption energy via side-on is more negative (see Table 2 and Table S1); therefore, we focus on this configuration. As shown in Fig.3(a),the O2molecule prefers to lie parallel to the plane of the substrate, on top of the implanted Co atom. The two nearest Co–O distances are both 1.8 ?A, the O–O bond length is 1.34 ?A, stretched by 0.11 ?A compared with the value of free O2(g), which indicates that the “donation–acceptance” between Co and edged N in CN that activates the reaction activity of the single Co atom. The charge transfer of 0.58|e|is mainly caused by the reduction of the Co atom and accumulation of O2molecule(see Fig.3(b)).Evidenced by DOS in Fig. 3(c), after adsorption, the Co-3d states are overlapped with O2-2π?state, the DOS peaks of O2-5σand O2-1πstates are downshifted, indicating that O2molecule accepts electrons from Co-3d orbital.The strong hybridization among them benefits the O2molecule to combine with Co@CN.

    Table 2. The adsorption energies(eV/atom)for CO and O2(side-on),Bader Charge Q(|e|/atom),and bond length(?A)for the Co implanted CN.

    Fig. 3. The side views of the most plausible adsorption structures, the corresponding charge density difference,which iso-surface value is set to 0.003 e/Bohr3 and the PDOS for O2 on Co@CN (a)–(c) and 2Co@CN(d)–(f).

    For 2Co@CN shown in Fig. 3(d), the O2molecule adsorbs over the catalyst,like a bridge connecting one Co atom to the other. TheEaof the O2molecule is?1.43 eV/atom,and it is relatively larger than that of the O2molecule on 2Cu@C2N(?0.67 eV/atom). The bond length of O–O(1.50 ?A)is longer than that of O2over Co@CN. Moreover, Bader charge analysis shows that each Co atom transfers 0.70|e| to the O2molecule. After O2adsorbing, there are several peaks overlapping with Co-3d and O2-2p states at the energy region of?2 eV to?5 eV,as shown in Figs.3(c)and 3(f).For Co@CN,the O2molecule donates 1πand 5σstate electrons to Co-3d state, and the occupied Co-3d states feedback electrons to 2π?state of O2molecule, which is evidenced by the spindown peak near Fermi level. The ability to adsorb O2of both Co@CN and 2Co@CN is strong, especially the latter, with more charge(0.70|e|vs.0.58|e|)transferred from the substrate to O2molecule,the length of O–O bond is more elongated.

    CO interacts strongly with the Co@CN.For the most stable configuration,the calculatedEaof CO is?1.14 eV,which is close to the value of O2(?1.27 eV),so CO poisoning may be avoided. As presented in Fig. 4(a), the CO molecule is not perpendicular to the Co@CN plane but is inclined. The length of the C–Co bond is 1.82 ?A. The C–O bond length increases by 0.02 ?A compared to the value of free CO(g)(1.14 ?A). The charge transfer is 0.07|e| from the substrate to CO.From the density of states in Fig.4(c),it can be seen that there is slight charge transfer between CO and the substrate due to the donation of CO-5σstate electrons to Co-3d state and the back-donation of Co-3d state electrons to the CO-2π?state. For CO on 2Co@CN, the adsorbate stands above the two Co atoms and is almost perpendicular to the CN sheet(see Fig.4(d)). TheEaof?1.48 eV/atom is closer to the value of O2(?1.43 eV/atom);therefore,CO poisoning will not occur.The bond lengths of C–O(1.18 ?A)are also longer than that of the CO molecule on Co@CN.Moreover,Bader charge analysis shows that the adsorbed CO molecule gains 0.085|e|/atom from 2Co@CN.The strong interaction between Co and CO is evidenced by the DOS in Fig.4(f). The slight charge transferring is mainly caused by the donation of CO-4π?,1π,5σelectrons to Co-3d state and back donation of Co-3d electrons to CO-2π?. Like the adsorption of O2,the more electrons transfer from the substrate to the CO molecule,the larger the C–O bond length.

    Fig. 4. The side views of the most stable adsorption structures, the corresponding charge density difference and the PDOS for CO on Co@CN(a)–(c)and 2Co@CN(d)–(f).

    We also consider the final products O atomic and CO2adsorption on both catalysts and summarize the data in Table S1. TheEaof O atom absorbed on Co@CN and 2Co@CN is?3.94 eV and?3.14 eV, respectively. Due to the strong hybridization between the O-2p and Co-3d states, the Co–O bond length is all less than 2 ?A. The bond length of the two C–O bonds,as well as the angle of O–C–O,is the same as that of free CO2(g). TheEaof CO2is?0.42 eV and?0.34 eV,respectively,both are less than 0.50 eV,indicating that CO2is easy to desorb.[33]

    3.3. CO oxidation on Co@CN and 2Co@CN

    Generally, the CO oxidation on catalysts can mainly be performed by three typical reaction mechanisms, namely Eley–Rideal (ER), Langmuir–Hinshelwood (LH), and termolecular Eley–Rideal (TER) mechanism. Considering the recycling of catalysts,we take catalysts themselves as the initial state in three mechanisms.

    The ER,a mechanism of single active state participating in the reaction,is initiated by the direct reaction of gaseous CO molecules with the adsorbed O atom at the reaction centers resulting in the activation of O2to form a carbonate-like CO3intermediate or a final product of CO2. The dissociation of O2is the rate-limiting step. For Co@CN,the interaction with CO is as strong as that with O2,which can avoid CO poisoning. The configuration of physically adsorbed CO above the pre-adsorbed O2is selected as the initial state(IS2). As shown in Fig. S3, a chemically adsorbed atomic O and a physically adsorbed CO2molecule are considered as the final state(FS).In IS2, when the CO molecule approaches the activated O2,the O–O distance increases from 1.34 ?A to 1.35 ?A.The insertion of CO is exothermic; the breaking of the O–O bond and the formation of the new C–O bonds need to cross a barrier of 0.73 eV.Then it forms carbonate–like CO3(TS1). The CO3in TS1 dissociates by scission of one C–O bond attached to the Co atom. The process has an energy barrier of 3.14 eV(from MS1 to TS2). As a result, there leaves a physically adsorbed CO2and an O atom adsorbing on the Co@CN(FS).CO2adsorption on Co@CN is quite weak,and entire CO oxidation is exothermic at 300 K.The ER mechanism is unfavorable due to its large reaction barriers(>3 eV).The reaction on 2Co@CN is shown in Fig.S5. The entire reaction progress of 2Co@CN is similar to that of Co@CN,and its reaction barrier is 2.65 eV.

    The LH,a mechanism of double active states(CO+O2)participating in the reaction, starts with the interaction between the co-adsorbed CO and O2molecules for forming a peroxide-like OCOO intermediate and then the O–O bond breaks. And there leaves a physically adsorbed CO2together with an adsorbed atomic O like the final state of ER.As shown in Fig.S4,the co-adsorption of CO and O2on Co@CN is selected as the initial state(IS).Then crossing an energy barrier of 0.25 eV,CO and O2are parallel with end-on configurations(TS1). The CO and O2are activated,the O–O and C–O bonds are elongated. The peroxide-like OCOO has formed (MS1)with new O–O bond(1.63 ?A).With the scission of the new O–O bond and Co–C in MS,a physically adsorbed CO2is formed together with an adsorbed atomic O(TS2). The reaction from MS1 to TS2 climbs the energy barriers of 0.79 eV.The entire progress is exothermic with a small reaction barrier of 1.69 eV.The reaction could process readily with the barrier of 0.8 eV or less.[44]The findings indicate that CO oxidation on Co@CN is not particularly desirable. Whereas, O2molecule prefers adsorbing on 2Co@CN (IS1). With CO molecule participating in, the O–O bond stretches. Then one of the O atoms approaches to adsorbed CO molecule, and it forms OCOO(MS1). Then it gets dispersed,the corresponding reaction barrier is only 0.62 eV. We conclude that 2Co@CN is superior in terms of a minor reaction barrier. Following this,as shown in Fig.S6,the left adsorbed atomic O will react with another gaseous CO molecule(IS)and form the second physically adsorbed CO2(FS). For Co@CN (2Co@CN), the formation of the second CO2needs to pass over a reaction barrier of 0.28 eV(0.34 eV) and release the heat of 3.82 eV (2.65 eV), respectively.

    Fig.5. Schematic energy profile corresponding to the configurations(side-view)for CO oxidation on Co@CN through TER mechanism. All energies are given with respect to the reference energies of IS0.

    Fig.6. Schematic energy profile corresponding to the configurations(side-view)for CO oxidation on 2Co@CN through TER mechanism.

    Similar to the LH mechanism,the TER is a mechanism of double active states (CO+CO) participating in the reaction.Free O2molecule can be activated by the two co–adsorbed CO molecules to form an OCO–M–OCO intermediate. Then CO2molecules gradually stay away from the catalysts after the breaking of the C–Co bond. As shown in Fig.5, two CO molecules are chemically co–adsorbed on the Co site,and one O2molecule approaches them from the top(IS).Then the insertion of O2actives the pre-adsorbed CO with the elongated O–O bond length of 1.28 ?A (TS1) via adsorbing energy of 0.47 eV.Once a free O2is close enough,two O atoms bind to the C atoms and form an OCO–Co–OCO intermediate(MS).From MS to TS1, as the O–O bond length continues to increase, it finally breaks, and OCO–Co–OCO dissociates into two CO2molecules with a small reaction barrier of 0.42 eV and a huge exothermic energy of 4.35 eV (TS2). Due to the smallEa(?0.42 eV)of CO2on Co@CN,they should desorb spontaneously and finish the reaction cycle. The rate–limiting step for the TER mechanism is the dissociative adsorption of O2,and the reaction energy of Co@CN is 0.42 eV.The result indicates that the CO oxidation on Co@CN through the TER mechanism is superior to Pd@CN (0.48 eV). For 2Co@CN,as shown in Fig. 6, the adsorbed O2molecule reacts with two CO molecules simultaneously and produces an OCO–Co–OCO intermediate.[45]The reaction barrier is 0.38 eV, a bit smaller than that of Co@CN.

    4. Conclusion

    We have investigated the electronic structure of one and two Co atoms implanted on CN monolayer and their catalytic role played in CO oxidation by first-principles calculations.Our results show that the large binding energy and high diffusion barrier ensure that Co atoms are steadily anchored on CN and hard to form clusters,which are beneficial for the reactions. The adsorption energies of CO and O2on both catalysts are comparable, and the reactants molecules can be effectively captured and activated. Via three typical reaction mechanisms, we find that CO oxidation can favorably be in progress over both catalysts,and the TER mechanism is more preferable with a fairly small rate-limiting reaction barrier.

    猜你喜歡
    劉旭
    Thermodynamic properties of two-dimensional charged spin-1/2 Fermi gases
    綁錯(cuò)的女友,騙錢騙色的渣女竟查無此人
    某新型航空材料加速腐蝕當(dāng)量關(guān)系試驗(yàn)研究
    17歲少年捐腎之死:有個(gè)孝子醫(yī)生深淵沉淪
    讓不愉快化成過眼云煙
    西門警事之四十二
    派出所工作(2018年6期)2018-09-10 23:01:56
    雨中情
    派出所工作(2017年6期)2017-05-30 10:48:04
    西門警事之十四困局
    派出所工作(2016年2期)2016-05-30 05:20:20
    一把折扇有乾坤,北京老宅挖寶一波三折
    The Short-term Effects of Temperature and Free Ammonia onAmmonium Oxidization in Granular and Floccular Nitrifying System*
    国产精品亚洲一级av第二区| 男人舔奶头视频| 人人妻人人澡欧美一区二区| 色在线成人网| 人人妻,人人澡人人爽秒播| 日韩免费av在线播放| 亚洲精品国产区一区二| 亚洲国产看品久久| 淫秽高清视频在线观看| 久久精品91无色码中文字幕| 久久香蕉国产精品| 琪琪午夜伦伦电影理论片6080| 成人午夜高清在线视频 | 国产亚洲精品综合一区在线观看 | 成人三级黄色视频| 老熟妇仑乱视频hdxx| 久久狼人影院| 日韩视频一区二区在线观看| www.www免费av| 国产区一区二久久| 国产99久久九九免费精品| 精品午夜福利视频在线观看一区| 欧美成人免费av一区二区三区| 50天的宝宝边吃奶边哭怎么回事| 免费无遮挡裸体视频| 午夜影院日韩av| 啦啦啦 在线观看视频| 久久久久国内视频| 首页视频小说图片口味搜索| 中文字幕av电影在线播放| 婷婷精品国产亚洲av| 伊人久久大香线蕉亚洲五| 色综合亚洲欧美另类图片| 国产精品自产拍在线观看55亚洲| 在线观看午夜福利视频| 色av中文字幕| 91在线观看av| 最近最新中文字幕大全电影3 | 老司机深夜福利视频在线观看| 亚洲中文字幕日韩| 欧美黑人精品巨大| 黄频高清免费视频| x7x7x7水蜜桃| 亚洲 欧美一区二区三区| 精品少妇一区二区三区视频日本电影| 日韩 欧美 亚洲 中文字幕| 一个人免费在线观看的高清视频| cao死你这个sao货| 久久久久久国产a免费观看| 日韩欧美免费精品| 热99re8久久精品国产| 男女那种视频在线观看| 欧美 亚洲 国产 日韩一| 精品电影一区二区在线| 天天躁夜夜躁狠狠躁躁| 自线自在国产av| 午夜福利欧美成人| av在线天堂中文字幕| 麻豆成人午夜福利视频| 国产aⅴ精品一区二区三区波| 欧美性长视频在线观看| 自线自在国产av| 中文字幕人妻丝袜一区二区| 久久久久国内视频| 法律面前人人平等表现在哪些方面| 成人永久免费在线观看视频| 好男人电影高清在线观看| 天堂动漫精品| 亚洲精品美女久久av网站| 亚洲熟妇中文字幕五十中出| 色综合亚洲欧美另类图片| а√天堂www在线а√下载| 桃色一区二区三区在线观看| 久久久久久久久中文| 午夜两性在线视频| 他把我摸到了高潮在线观看| 免费人成视频x8x8入口观看| aaaaa片日本免费| 日日爽夜夜爽网站| 色哟哟哟哟哟哟| 99国产极品粉嫩在线观看| 亚洲国产毛片av蜜桃av| 亚洲成人久久性| 少妇被粗大的猛进出69影院| 少妇裸体淫交视频免费看高清 | 久99久视频精品免费| 精品国产乱子伦一区二区三区| 国产亚洲精品久久久久久毛片| 国产亚洲精品第一综合不卡| 一个人免费在线观看的高清视频| 美女 人体艺术 gogo| 最近最新中文字幕大全电影3 | 精品久久久久久久毛片微露脸| 在线观看日韩欧美| 一级毛片女人18水好多| 亚洲人成网站高清观看| 波多野结衣巨乳人妻| 久热爱精品视频在线9| 日韩欧美 国产精品| 欧美激情 高清一区二区三区| 又大又爽又粗| 久久午夜综合久久蜜桃| 国产亚洲精品久久久久久毛片| 精品国产美女av久久久久小说| 老鸭窝网址在线观看| 国产成人啪精品午夜网站| 免费无遮挡裸体视频| 久热这里只有精品99| 亚洲黑人精品在线| 午夜精品久久久久久毛片777| bbb黄色大片| 国产成人欧美在线观看| 亚洲一区高清亚洲精品| 国产亚洲精品综合一区在线观看 | 日韩欧美三级三区| www.www免费av| 91大片在线观看| 国产精品一区二区精品视频观看| 巨乳人妻的诱惑在线观看| АⅤ资源中文在线天堂| 亚洲av美国av| 国产三级黄色录像| 亚洲九九香蕉| 99久久国产精品久久久| 中文字幕av电影在线播放| 亚洲全国av大片| 美女高潮到喷水免费观看| 18禁裸乳无遮挡免费网站照片 | 国产99久久九九免费精品| 久久婷婷成人综合色麻豆| 男女床上黄色一级片免费看| 国产精华一区二区三区| 天堂影院成人在线观看| 变态另类成人亚洲欧美熟女| 久久亚洲精品不卡| 欧美午夜高清在线| 91麻豆精品激情在线观看国产| 老鸭窝网址在线观看| 亚洲第一电影网av| 国产精品免费视频内射| 日韩欧美一区二区三区在线观看| 一级片免费观看大全| 久久伊人香网站| 久久国产精品影院| 丰满的人妻完整版| 色精品久久人妻99蜜桃| 亚洲五月婷婷丁香| 国产精品美女特级片免费视频播放器 | 手机成人av网站| 国内揄拍国产精品人妻在线 | 成人一区二区视频在线观看| 少妇粗大呻吟视频| 午夜福利免费观看在线| 欧美成人一区二区免费高清观看 | 美女高潮喷水抽搐中文字幕| 日本免费a在线| 欧美一级毛片孕妇| 婷婷亚洲欧美| 久久天堂一区二区三区四区| 桃红色精品国产亚洲av| 淫妇啪啪啪对白视频| 免费在线观看影片大全网站| 在线天堂中文资源库| 午夜福利视频1000在线观看| 女警被强在线播放| 欧美成人免费av一区二区三区| 精品国产国语对白av| 亚洲精品一区av在线观看| 俄罗斯特黄特色一大片| 免费看日本二区| 激情在线观看视频在线高清| 黄色女人牲交| 大香蕉久久成人网| 国内精品久久久久精免费| 欧美一区二区精品小视频在线| or卡值多少钱| 99久久综合精品五月天人人| 白带黄色成豆腐渣| 欧美午夜高清在线| 午夜精品久久久久久毛片777| 人人妻人人看人人澡| 亚洲 国产 在线| 欧美在线黄色| 亚洲成av片中文字幕在线观看| 99在线人妻在线中文字幕| 免费高清视频大片| 国产亚洲欧美在线一区二区| 非洲黑人性xxxx精品又粗又长| 国产激情偷乱视频一区二区| 成人国产一区最新在线观看| 午夜亚洲福利在线播放| 国产精品久久电影中文字幕| 欧美三级亚洲精品| 女生性感内裤真人,穿戴方法视频| av片东京热男人的天堂| 91九色精品人成在线观看| 国产一区在线观看成人免费| 一边摸一边抽搐一进一小说| 国内精品久久久久精免费| 欧美又色又爽又黄视频| 亚洲精品中文字幕一二三四区| 欧美中文综合在线视频| 国产午夜福利久久久久久| 久久久国产精品麻豆| 亚洲一区高清亚洲精品| 亚洲av中文字字幕乱码综合 | 国内少妇人妻偷人精品xxx网站 | 精品日产1卡2卡| 国产成+人综合+亚洲专区| 日韩精品免费视频一区二区三区| 久久精品91无色码中文字幕| 怎么达到女性高潮| 精品人妻1区二区| 亚洲一码二码三码区别大吗| www.熟女人妻精品国产| 国产成人欧美| 国产精品精品国产色婷婷| 人妻久久中文字幕网| 又紧又爽又黄一区二区| 12—13女人毛片做爰片一| 亚洲激情在线av| 午夜精品久久久久久毛片777| 好看av亚洲va欧美ⅴa在| av欧美777| 欧美成狂野欧美在线观看| 热re99久久国产66热| 午夜福利欧美成人| tocl精华| 欧美日本视频| avwww免费| 亚洲五月婷婷丁香| 日韩一卡2卡3卡4卡2021年| 亚洲欧美日韩高清在线视频| 一区二区三区激情视频| 精品国产一区二区三区四区第35| 欧美性猛交黑人性爽| 麻豆成人午夜福利视频| 午夜免费鲁丝| 国产av在哪里看| 国产精品久久视频播放| 国产激情偷乱视频一区二区| 精品国产一区二区三区四区第35| 国产精华一区二区三区| 中文资源天堂在线| 精品国产美女av久久久久小说| 成人手机av| 欧美乱码精品一区二区三区| 一区二区日韩欧美中文字幕| 后天国语完整版免费观看| 亚洲专区字幕在线| 香蕉av资源在线| 99久久国产精品久久久| www日本在线高清视频| 一级a爱片免费观看的视频| 无限看片的www在线观看| 最好的美女福利视频网| 长腿黑丝高跟| 欧美人与性动交α欧美精品济南到| 欧美一级a爱片免费观看看 | 国产精品亚洲一级av第二区| 免费电影在线观看免费观看| 日本一区二区免费在线视频| 欧美精品亚洲一区二区| 19禁男女啪啪无遮挡网站| 国产v大片淫在线免费观看| 在线观看www视频免费| 国产精品av久久久久免费| 中文字幕最新亚洲高清| 91九色精品人成在线观看| 色在线成人网| 久久久精品欧美日韩精品| 免费在线观看亚洲国产| 亚洲av片天天在线观看| 日韩精品青青久久久久久| 搡老妇女老女人老熟妇| 国产成人av激情在线播放| 一级a爱片免费观看的视频| 精品久久久久久久末码| 精品高清国产在线一区| 日韩 欧美 亚洲 中文字幕| 日韩有码中文字幕| 色老头精品视频在线观看| 国产一区二区激情短视频| 亚洲avbb在线观看| 久久久久免费精品人妻一区二区 | 一边摸一边抽搐一进一小说| 国产亚洲精品av在线| 亚洲激情在线av| 成人国语在线视频| 亚洲专区国产一区二区| 哪里可以看免费的av片| 久久亚洲真实| 校园春色视频在线观看| 亚洲熟女毛片儿| 亚洲国产欧洲综合997久久, | 每晚都被弄得嗷嗷叫到高潮| 精品久久久久久久毛片微露脸| 精品久久蜜臀av无| 日韩欧美 国产精品| 男女之事视频高清在线观看| 黄色a级毛片大全视频| 国产高清视频在线播放一区| 母亲3免费完整高清在线观看| 午夜日韩欧美国产| 91麻豆精品激情在线观看国产| 女人被狂操c到高潮| 国产一区二区三区视频了| 狠狠狠狠99中文字幕| 窝窝影院91人妻| 日韩欧美一区二区三区在线观看| 亚洲免费av在线视频| 欧美日韩黄片免| 国产高清有码在线观看视频 | 两人在一起打扑克的视频| 色播在线永久视频| 亚洲激情在线av| 女人被狂操c到高潮| 国产一区二区三区视频了| 欧美在线一区亚洲| xxxwww97欧美| 少妇熟女aⅴ在线视频| av在线播放免费不卡| 老鸭窝网址在线观看| 国产精品一区二区免费欧美| 妹子高潮喷水视频| 日本免费a在线| 两个人看的免费小视频| 久久久久亚洲av毛片大全| 一夜夜www| 男男h啪啪无遮挡| 亚洲精品久久成人aⅴ小说| 亚洲成人久久爱视频| 亚洲中文字幕日韩| 国产黄色小视频在线观看| 精品久久久久久久人妻蜜臀av| 久久天堂一区二区三区四区| 狂野欧美激情性xxxx| 国产爱豆传媒在线观看 | 搡老妇女老女人老熟妇| 日韩欧美在线二视频| 在线观看免费视频日本深夜| 淫秽高清视频在线观看| 级片在线观看| 国产精品香港三级国产av潘金莲| xxxwww97欧美| 久久久久久人人人人人| 两个人视频免费观看高清| 亚洲午夜理论影院| 欧美黄色片欧美黄色片| 国产视频内射| 亚洲精品中文字幕在线视频| 69av精品久久久久久| 9191精品国产免费久久| 亚洲熟妇熟女久久| 中文字幕最新亚洲高清| av在线播放免费不卡| 欧美黄色淫秽网站| 大型黄色视频在线免费观看| 丝袜人妻中文字幕| 色婷婷久久久亚洲欧美| 免费高清在线观看日韩| 亚洲人成网站高清观看| 欧美又色又爽又黄视频| 夜夜爽天天搞| 久久青草综合色| 亚洲美女黄片视频| 日韩大码丰满熟妇| 亚洲精品国产一区二区精华液| 国产高清视频在线播放一区| 国产精品久久久久久人妻精品电影| 亚洲 欧美一区二区三区| 日韩欧美三级三区| 国产片内射在线| 日韩精品免费视频一区二区三区| 国产精品亚洲av一区麻豆| 久久精品人妻少妇| 麻豆成人午夜福利视频| 成人特级黄色片久久久久久久| 久久亚洲真实| 欧美国产精品va在线观看不卡| 成在线人永久免费视频| 国产1区2区3区精品| 美女高潮喷水抽搐中文字幕| 伦理电影免费视频| 亚洲片人在线观看| 精品一区二区三区四区五区乱码| 国产亚洲av高清不卡| 美女高潮到喷水免费观看| 一本一本综合久久| 国产亚洲精品一区二区www| 久久婷婷成人综合色麻豆| 欧美黄色片欧美黄色片| 成人18禁在线播放| 精品国产一区二区三区四区第35| 桃色一区二区三区在线观看| 老司机靠b影院| 亚洲五月天丁香| 熟妇人妻久久中文字幕3abv| 久久香蕉国产精品| 亚洲欧美精品综合久久99| 男人舔女人的私密视频| 91国产中文字幕| 变态另类成人亚洲欧美熟女| 国产成人精品无人区| av电影中文网址| 国产欧美日韩精品亚洲av| 观看免费一级毛片| 欧美在线一区亚洲| 黄色丝袜av网址大全| 两个人免费观看高清视频| 成年女人毛片免费观看观看9| 99国产极品粉嫩在线观看| 热99re8久久精品国产| 国内少妇人妻偷人精品xxx网站 | 国产午夜精品久久久久久| 脱女人内裤的视频| 深夜精品福利| 正在播放国产对白刺激| 久热这里只有精品99| 精品日产1卡2卡| 男女午夜视频在线观看| 国产精品美女特级片免费视频播放器 | 1024手机看黄色片| 欧美三级亚洲精品| 男人的好看免费观看在线视频 | 久久人人精品亚洲av| 久久这里只有精品19| 亚洲全国av大片| 黄色片一级片一级黄色片| 91字幕亚洲| 日韩有码中文字幕| 国内少妇人妻偷人精品xxx网站 | 村上凉子中文字幕在线| 精品无人区乱码1区二区| 亚洲欧美精品综合一区二区三区| 午夜亚洲福利在线播放| 久久 成人 亚洲| 精品国产一区二区三区四区第35| 最新在线观看一区二区三区| 亚洲成人久久性| 日韩大码丰满熟妇| 亚洲一区二区三区不卡视频| 99在线人妻在线中文字幕| 最近最新中文字幕大全电影3 | 夜夜爽天天搞| 亚洲一区中文字幕在线| cao死你这个sao货| 国语自产精品视频在线第100页| 黄频高清免费视频| 在线十欧美十亚洲十日本专区| 两个人视频免费观看高清| 黑丝袜美女国产一区| 真人一进一出gif抽搐免费| 又黄又爽又免费观看的视频| 亚洲av电影在线进入| 亚洲国产精品久久男人天堂| 亚洲av成人不卡在线观看播放网| 好男人在线观看高清免费视频 | 大香蕉久久成人网| 亚洲专区国产一区二区| 一夜夜www| 亚洲午夜理论影院| 他把我摸到了高潮在线观看| 狂野欧美激情性xxxx| 久久人人精品亚洲av| 人人妻人人澡人人看| 99久久久亚洲精品蜜臀av| 欧美激情高清一区二区三区| 男男h啪啪无遮挡| 日韩三级视频一区二区三区| 欧美一级毛片孕妇| 99国产极品粉嫩在线观看| 亚洲欧美激情综合另类| 村上凉子中文字幕在线| 99久久综合精品五月天人人| 午夜a级毛片| 日本在线视频免费播放| 亚洲片人在线观看| 高清在线国产一区| 99热只有精品国产| 啦啦啦韩国在线观看视频| 19禁男女啪啪无遮挡网站| 免费一级毛片在线播放高清视频| 一个人免费在线观看的高清视频| 亚洲av成人一区二区三| 国产精品自产拍在线观看55亚洲| 欧美乱色亚洲激情| 香蕉丝袜av| 日本熟妇午夜| 亚洲aⅴ乱码一区二区在线播放 | 亚洲成人久久性| 国产色视频综合| 色哟哟哟哟哟哟| 人人妻人人澡人人看| 欧美日本亚洲视频在线播放| 国产v大片淫在线免费观看| 日韩欧美一区视频在线观看| 91大片在线观看| 亚洲精品美女久久av网站| 热re99久久国产66热| 91av网站免费观看| 在线十欧美十亚洲十日本专区| 日本 欧美在线| 一区二区三区激情视频| 在线观看日韩欧美| 午夜免费成人在线视频| 久久久久国产一级毛片高清牌| 久热这里只有精品99| 男女那种视频在线观看| 国产午夜精品久久久久久| 国产熟女xx| 亚洲国产精品成人综合色| 亚洲人成网站在线播放欧美日韩| 1024手机看黄色片| 久久久久亚洲av毛片大全| 免费看日本二区| 国产免费av片在线观看野外av| 精品久久久久久久久久免费视频| 久久久久久久久久黄片| 少妇的丰满在线观看| 波多野结衣高清无吗| aaaaa片日本免费| 99国产极品粉嫩在线观看| 美女 人体艺术 gogo| 天天躁夜夜躁狠狠躁躁| 十分钟在线观看高清视频www| 中文字幕人成人乱码亚洲影| 丰满人妻熟妇乱又伦精品不卡| 亚洲国产欧洲综合997久久, | 亚洲狠狠婷婷综合久久图片| 亚洲va日本ⅴa欧美va伊人久久| 色播亚洲综合网| 妹子高潮喷水视频| x7x7x7水蜜桃| 日本免费一区二区三区高清不卡| 日本撒尿小便嘘嘘汇集6| 国产不卡一卡二| 黑人欧美特级aaaaaa片| 久久久国产精品麻豆| 91老司机精品| 亚洲国产毛片av蜜桃av| 非洲黑人性xxxx精品又粗又长| 韩国精品一区二区三区| 欧美人与性动交α欧美精品济南到| 在线观看www视频免费| 非洲黑人性xxxx精品又粗又长| 18禁黄网站禁片免费观看直播| 久久伊人香网站| 99在线人妻在线中文字幕| 香蕉久久夜色| 最近最新免费中文字幕在线| 亚洲国产欧美日韩在线播放| 亚洲人成伊人成综合网2020| 亚洲国产看品久久| 91老司机精品| 成在线人永久免费视频| 精品福利观看| www.www免费av| 国产亚洲av高清不卡| 国产欧美日韩一区二区精品| 日韩欧美 国产精品| 久久久国产成人免费| 午夜影院日韩av| 日本三级黄在线观看| 日韩三级视频一区二区三区| 一级黄色大片毛片| 精品欧美国产一区二区三| 男女午夜视频在线观看| svipshipincom国产片| 美女高潮喷水抽搐中文字幕| 精品国产国语对白av| 男女视频在线观看网站免费 | 久久亚洲精品不卡| 怎么达到女性高潮| 少妇裸体淫交视频免费看高清 | 日日摸夜夜添夜夜添小说| 一二三四社区在线视频社区8| 99国产精品99久久久久| 欧美激情高清一区二区三区| 黑人巨大精品欧美一区二区mp4| 一进一出抽搐动态| 久久国产精品男人的天堂亚洲| 两个人看的免费小视频| 黄色视频,在线免费观看| 侵犯人妻中文字幕一二三四区| 一进一出抽搐动态| 男人舔女人下体高潮全视频| 精品久久久久久久久久免费视频| 亚洲性夜色夜夜综合| 欧美国产精品va在线观看不卡| 久久性视频一级片| 99国产极品粉嫩在线观看| 成人18禁在线播放| 欧美性猛交黑人性爽| 欧美日韩精品网址| 亚洲成人久久爱视频| 在线观看一区二区三区| 脱女人内裤的视频| 国产高清有码在线观看视频 | 亚洲三区欧美一区| 美女 人体艺术 gogo| 男女下面进入的视频免费午夜 | 国产精品综合久久久久久久免费| 99久久综合精品五月天人人| 亚洲国产欧洲综合997久久, | av超薄肉色丝袜交足视频| 12—13女人毛片做爰片一| www国产在线视频色| 国产精品免费一区二区三区在线| 精品国产乱子伦一区二区三区| 色综合站精品国产| 国产免费男女视频| 欧美成人一区二区免费高清观看 | 亚洲国产欧美网| 欧美成人一区二区免费高清观看 |