• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Tuning transport coefficients of monolayer MoSi2N4 with biaxial strain?

    2021-06-26 03:04:22XiaoShuGuo郭小姝andSanDongGuo郭三棟
    Chinese Physics B 2021年6期

    Xiao-Shu Guo(郭小姝) and San-Dong Guo(郭三棟)

    1School of Electronic Engineering,Xi’an University of Posts and Telecommunications,Xi’an 710121,China

    2Key Laboratory of Advanced Semiconductor Devices and Materials,Xi’an University of Posts and Telecommunications,Xi’an 710121,China

    Keywords: MoSi2N4,electronic transport,2D materials

    1. Introduction

    The successful exfoliation of graphene[1]induces increasing attention on two-dimensional (2D) materials. Many of them have semiconducting behavior, which has various potential applications in electronics, optoelectronics and piezoelectronics.[2–5]Their electronic structures, heat transport and piezoelectric properties have been widely investigated.[6–16]It has been proved that the strain can effectively tune electronic structures, transport and piezoelectric properties of 2D materials,[15–23]which shows great potential for better use in the nanoelectronic,thermoelectric and piezoelectric applications.For example,both compressive and tensile strains can induce the semiconductor-to-metal transition in monolayer MoS2.[17]In many monolayers of transition metal dichalchogenides (TMD), the power factor can be enhanced by strain due to bands converge.[15,16,18]With increased tensile strain, the lattice thermal conductivity shows monotonous decrease, up-and-down and jump behavior with similar penta-structures.[19]Strain can also improve the piezoelectric strain coefficient by tuning the elastic and piezoelectric stress coefficients.[20–23]

    Recently, the layered 2D MoSi2N4and WSi2N4have been experimentally achieved by chemical vapor deposition (CVD).[24]The septuple-atomic-layer MA2Z4monolayers with twelve different structures are constructed by intercalating MoS2-type MZ2monolayer into InSe-type A2Z2monolayer.[25]The 66 thermodynamically and dynamically stable MA2Z4structures are predicted by the first principle calculations. They can be commonly semiconductors,half-metal ferromagnetisms or spin-gapless semiconductors(SGSs), Ising superconductors and topological insulators,which depend on the number of valence electrons.[25]We predict intrinsic piezoelectricity in monolayer MA2Z4,[26]which means that MA2Z4family may have potential application in piezoelectric field. Structure effect on intrinsic piezoelectricity in monolayer MSi2N4(M=Mo and W)has also been reported by the first principle calculations.[27]By applied strain,the VSi2P4monolayer undergoes ferromagnetic metal(FMM)to SGS to ferromagnetic semiconductor (FMS) to SGS to ferromagnetic half-metal (FMHM) with increasing strain.[28]Some materials of MA2Z4lack inversion symmetry with a strong SOC effect, which are expected to exhibit rich spinvalley physics.[25]The valley-dependent properties of monolayer MoSi2N4, WSi2N4and MoSi2As4have been predicted by the first-principles calculations.[25,29,30]Recently,Janus 2D monolayer in the new septuple-atomic-layer 2D MA2Z4family has been achieved,[31]which shows Rashba spin splitting and out-of-plane piezoelectric polarizations.

    In nanoscale devices,the residual strain usually exists in real applications.[32]In our previous work,the small strain effects(0.96 to 1.04)on piezoelectric coefficients of monolayer MoSi2N4have been investigated.[26]In this work, the large(0.90 to 1.10) biaxial strain-tuned electronic structures and transport coefficients of monolayer MoSi2N4are studied by the first principle calculations. Witha/a0from 0.90 to 1.10,the energy band gap of monolayer MoSi2N4firstly increases,and then decreases. In n-type doping,the Seebeck coefficientScan be effectively enhanced by applying compressive strain,and then theZTecan be improved. The tensile strain can induce flat valence bands around theΓpoint near the Fermi level, producing large p-typeS. Therefore, our works give an experimental proposal to improve transport coefficients of monolayer MoSi2N4.

    The rest of the paper is organized as follows. In Section 2,we give our computational details and methods about transport coefficients. In Sections 3 and 4, we present the main results of monolayer MoSi2N4about strain-tuned electronic structures and transport coefficients. Finally, we present our conclusions in Section 5.

    2. Computational detail

    To avoid interactions between two neighboring images,a vacuum spacing of more than 32 ?A along thezdirection is added to construct monolayer MoSi2N4. The elastic stiffness tensor elementsCi jare calculated using strain-stress relationship(SSR),which are performed by employing the VASP code[33,35,38]within the framework of DFT.[36,37]A kinetic cutoff energy of 500 eV is adopted, and we use the popular generalized gradient approximation of Perdew, Burke and Ernzerh of (GGA-PBE)[37]as the exchange–correlation potential to calculate elastic and electronic properties. The total energy convergence criterion is set to 10?8eV, and the Hellmann–Feynman forces on each atom are less than 0.0001 eV·?A?1. The Brillouin zone (BZ) sampling is obtained using a Monkhorst–Pack mesh of 15×15×1 for elastic constantsCi j. The 2D elastic coefficientsC2Di jhave been renormalized by the the length of unit cell alongzdirection(Lz):C2Di j=LzC3Dij.

    The electronic transport coefficients of MoSi2N4monolayer are calculated by solving the Boltzmann transport equations within the constant scattering time approximation (CSTA), which is performed by the BoltzTrap[39]code.To include the SOC, a full-potential linearized augmentedplane-waves method is used to calculate the energy bands of MoSi2N4monolayer, as implemented in the WIEN2k package.[40]To attain accurate transport coefficients, a 35×35×1k-point meshes is used in the first BZ for the energy band calculation,make harmonic expansion up tolmax=10 in each of the atomic spheres,and setRmtkmax=8.

    3. Electronic structures

    The MoSi2N4monolayer can be considered as the insertion of the 2H MoS2-type MoN2monolayer into theα-InSetype Si2N2,and the side and top views of the structure of the MoSi2N4monolayer are plotted in Fig.1.The structure breaks the inversion symmetry,but preserves a horizontal mirror corresponding to the plane of the Mo layer. This leads to that MoSi2N4monolayer only has in-plane piezoelectric response,and has not out-of-plane piezoelectric polarizations. Using optimized lattice constants,[26]the energy bands of MoSi2N4monolayer using GGA and GGA+SOC are shown in Fig. 2,and exhibit both the indirect band gaps with valence band maximum (VBM) atΓpoint and CBM atKpoint. Due to lacking inversion symmetry and containing the heavy element Mo,there exists an SOC induced spin splitting of about 0.13 eV near the Fermi level in the valence bands atKpoint. This may provide a platform for spin-valley physics,[25,29,30]but the VBM is not atKpoint,which can be tuned by strain. According to orbital projected band structure,it is found that the states near the Fermi level are dominated by the Mo d orbitals.More specifically, the states around both CBM and VBM are dominated by the Modz2orbital.

    Fig.1. The crystal structure of monolayer MoSi2N4 ((a)side view and(b) top view). The primitive cell is are marked by black line, and the large red balls represent Mo atoms, and the middle blue balls for Si atoms,and the small green balls for N atoms.

    It is proved that the electronic structures, topological properties, transport and piezoelectric properties of 2D materials can be effectively tuned by strain.[15–23,41]The biaxial strain can be simulated bya/a0or(a?a0)/a0,whereaanda0are the strained and unstrained lattice constants, respectively.Thea/a0<1 or (a ?a0)/a0<0 means compressive strain,whilea/a0>1 or(a?a0)/a0>0 implies tensile strain. Witha/a0from 0.90 to 1.10, the energy band structures are plotted in Fig.2,and the energy band gap and spin-orbit splitting value?atKpoint are shown in Fig.3.

    Fig.2. The energy band structures of monolayer MoSi2N4 using GGA+SOC with the application of biaxial strain(?10%to 10%),and the unstrained energy band using GGA.The VBM and CBM are marked by arrows. At 0.96(0.98)strain,four CBE(two VBE)are marked by ellipse.

    Fig. 3. For MoSi2N4 monolayer, the energy band gap and spin-orbit splitting value ?at K point using GGA+SOC as a function of strain.

    It is found that the energy band gap firstly increases(0.90 to 0.96), and then decreases (0.96 to 1.10), which is due to transformation of CBM.Similar phenomena can be observed in many TMD and Janus TMD monolayers.[16,44]With strain from compressive one to tensile one, the?has a rapid increase, and then a slight decrease. With increasing compressive strain(1.00 to 0.90),the position of CBM(VBM)changes fromK(Γ) point to one point along theK–Γdirection (Kpoint),when the compressive strain reaches about 0.94(0.96).The compressive strain can also tune the numbers and relative positions of valence band extrema(VBE)or CBE.For example,at 0.96,the four CBE can be observed,and their energies are very close, which has very important effects on transport properties. To explore orbital contribution to the conduction bands in the case of 0.96 strain,we project the states to atomic orbitals at 0.96 strained and unstrained conditions, which are shown in Fig. 4. At 0.96 strain, the composition of the lowenergy states has little change with respect to unstrained one.At 0.98, the energy of two VBE are nearly the same. The compressive strain can makeKpoint with spin splitting become VBM, which is very useful to allow spin manipulation for spin-valley physics. For example,at 0.94 strain,the VBM atKpoint is 0.49 eV higher than that atΓpoint. It is clearly seen that the increasing tensile strain can make valence band around theΓpoint near the Fermi level more flat.

    Finally,the elastic constantsCijare calculated as a function ofa/a0to study the mechanical stability of MoSi2N4monolayer with strain. For 2D hexagonal crystals, the Born criteria of mechanical stability[45](C11>0 andC66>0)should be satisfied. The calculatedC11andC66as a function of strain are plotted in Fig. 5, and it is clearly seen that the MoSi2N4monolayer in considered strain range is mechanically stable,which is very important for farther experimental exploration.

    Fig.4. For MoSi2N4 monolayer,the orbital projected band structure at 0.96 strained and unstrained conditions.

    Fig. 5. For MoSi2N4 monolayer, the elastic constants C11 and C66 vs.a/a0 from 0.90 to 1.10.

    4. Electronic transport property

    Proposed by Hicks and Dresselhaus in 1993,[42,43]the potential thermoelectric materials can be achieved in the lowdimensional systems or nanostructures. The dimensionless figure of merit,ZT=S2σT/(κe+κL),can be used to measure the efficiency of thermoelectric conversion of a thermoelectric material, whereS,σ,T,κe, andκLare the Seebeck coefficient,electrical conductivity,working temperature,electronic and lattice thermal conductivities,respectively.It is noted that,for the 2D material,the calculatedσ,κeandκLdepend onLz(here,Lz= 40 ?A), and theSandZTis independent ofLz.For 2D materials, we use electrons or holes per unit cell instead of doping concentration, which is described byN, and theN <0(N >0)mean n-type(p-type)doping. It is proved that the SOC has important effects on transport coefficients of TMD and Janus TMD monolayers.[16,18,44]However,the SOC has neglectful influences on transport properties of unstrained MoSi2N4monolayer,which can be observed from typical Seebeck coefficientSin Fig.6.

    This is because the energy bands near the Fermi level between GGA and GGA+SOC are nearly the same. However,the SOC has an important effect on p-type transport coefficients under the condition of compressive strain. For example,at 0.96 strain, a detrimental effect on Seebeck coefficientScan be observed, when including SOC (see Fig. 6). This is because the SOC can remove the band degeneracy near the VBM. Thus, the SOC is included to investigate the biaxial strain effects on transport coefficients of MoSi2N4monolayer.

    Fig.6. For MoSi2N4 monolayer,the room-temperature Seebeck coefficient S using GGA and GGA+SOC at 1.00 and 0.96 strains as a function of doping level N with N being the number of electrons or holes per unit cell.

    An upper limit ofZTcan be measured byZTe=S2σT/κe, neglecting theκL. The room-temperatureZTeof MoSi2N4monolayer under different strains as a function of doping level is also shown in Fig. 7. The calculated results show that the dependence ofZTeis very similar toS(absolute value),which can be explained by the Wiedemann–Franz law:κe=LσT(Lis the Lorenz number). Then theZTecan be reformulated byZTe=S2/L. Thus, the strain-induced bands convergence improvesS,which is beneficial to betterZTe.

    Fig.7.For MoSi2N4 monolayer,the room-temperature transport coefficients with the a/a0 from 0.90 to 1.10,i.e.,Seebeck coefficient S,electrical conductivity with respect to scattering time σ/τ,power factor with respect to scattering time S2σ/τ and ZTe (an upper limit of ZT)as a function of doping level N using GGA+SOC.Left: compressive strain. Right: tensile strain.

    5. Conclusion

    In summary,we have investigated the biaxial strain(0.90 to 1.10) effects on electronic structures and transport coefficients of monolayer MoSi2N4by the reliable first-principles calculations. With the strain from 0.90 to 1.10, the energy band gap of MoSi2N4monolayer shows a nonmonotonic behavior. It is found that the SOC has little effects on transport coefficients of unstrained MoSi2N4in the considered doping range due to the hardly changed dispersion of bands near the Fermi level. However,the SOC has very important influences on transport properties of strained MoSi2N4,for example,0.96 strain, which is due to the position change of VBM.The calculated results show that compressive strain can tune the numbers and relative positions of CBE,which can lead to enhanced n-typeS,and then better n-typeZTe.Our work may provide an idea to optimize the electronic structures and transport properties of monolayer MoSi2N4.

    Acknowledgments

    We are grateful to the Advanced Analysis and Computation Center of China University of Mining and Technology(CUMT)for the award of CPU hours and WIEN2k/VASP software to accomplish this work.

    女人高潮潮喷娇喘18禁视频| 亚洲欧美成人综合另类久久久| 国产在线免费精品| videos熟女内射| 少妇 在线观看| 国产1区2区3区精品| 国产高清国产精品国产三级| e午夜精品久久久久久久| 国产黄频视频在线观看| 亚洲欧美一区二区三区黑人| 一二三四社区在线视频社区8| 人人妻,人人澡人人爽秒播 | 免费看av在线观看网站| www日本在线高清视频| 精品少妇久久久久久888优播| 久久久国产一区二区| 国产熟女午夜一区二区三区| 丝袜人妻中文字幕| 大话2 男鬼变身卡| 18禁国产床啪视频网站| av在线老鸭窝| 精品少妇一区二区三区视频日本电影| 国产免费视频播放在线视频| 91老司机精品| 久久99热这里只频精品6学生| 国产欧美日韩综合在线一区二区| 日韩av不卡免费在线播放| 精品久久久久久久毛片微露脸 | 国产在视频线精品| 中文乱码字字幕精品一区二区三区| 我要看黄色一级片免费的| 免费av中文字幕在线| 18禁裸乳无遮挡动漫免费视频| 亚洲欧洲国产日韩| 亚洲天堂av无毛| 国产女主播在线喷水免费视频网站| 大陆偷拍与自拍| 国产精品九九99| 午夜免费男女啪啪视频观看| 另类精品久久| 国产老妇伦熟女老妇高清| 精品国产国语对白av| 高潮久久久久久久久久久不卡| 亚洲综合色网址| 操出白浆在线播放| 波多野结衣一区麻豆| 成人手机av| 亚洲国产欧美一区二区综合| 伊人亚洲综合成人网| 十八禁网站网址无遮挡| videos熟女内射| 女性生殖器流出的白浆| 午夜福利视频在线观看免费| 亚洲国产成人一精品久久久| 欧美精品啪啪一区二区三区 | 满18在线观看网站| 成人亚洲精品一区在线观看| 欧美人与善性xxx| 午夜福利乱码中文字幕| 久久久国产欧美日韩av| 成年av动漫网址| 亚洲精品第二区| 欧美性长视频在线观看| 久久青草综合色| 日韩大片免费观看网站| 婷婷色综合大香蕉| 人成视频在线观看免费观看| 亚洲人成77777在线视频| 91精品三级在线观看| 精品视频人人做人人爽| avwww免费| 欧美日韩av久久| 每晚都被弄得嗷嗷叫到高潮| 国产又色又爽无遮挡免| 国产精品 国内视频| av又黄又爽大尺度在线免费看| 大陆偷拍与自拍| 亚洲成人国产一区在线观看 | 久久九九热精品免费| 首页视频小说图片口味搜索 | 90打野战视频偷拍视频| 精品一品国产午夜福利视频| 丝瓜视频免费看黄片| 国产视频一区二区在线看| 国语对白做爰xxxⅹ性视频网站| 激情五月婷婷亚洲| 操美女的视频在线观看| 十八禁人妻一区二区| 90打野战视频偷拍视频| 国产在线视频一区二区| 在线观看免费视频网站a站| 亚洲国产精品国产精品| 免费看av在线观看网站| 日本欧美国产在线视频| 啦啦啦在线免费观看视频4| 国产日韩一区二区三区精品不卡| 亚洲av男天堂| 成年人黄色毛片网站| 亚洲黑人精品在线| 老司机影院毛片| 捣出白浆h1v1| 黄片小视频在线播放| 一区二区日韩欧美中文字幕| 久久久国产欧美日韩av| 十八禁高潮呻吟视频| 亚洲 国产 在线| 十八禁人妻一区二区| 婷婷丁香在线五月| 啦啦啦在线免费观看视频4| 99精品久久久久人妻精品| 丝瓜视频免费看黄片| 亚洲av综合色区一区| 欧美精品亚洲一区二区| 又黄又粗又硬又大视频| 女人爽到高潮嗷嗷叫在线视频| 在线观看免费高清a一片| 国产一区二区 视频在线| 国产激情久久老熟女| 日韩制服骚丝袜av| 最黄视频免费看| 美女大奶头黄色视频| 日本a在线网址| 亚洲欧美精品自产自拍| 久久中文字幕一级| 叶爱在线成人免费视频播放| www.999成人在线观看| 国产又色又爽无遮挡免| 另类亚洲欧美激情| a级片在线免费高清观看视频| 欧美黑人精品巨大| 人妻 亚洲 视频| 天天躁狠狠躁夜夜躁狠狠躁| av在线老鸭窝| 精品一品国产午夜福利视频| 成人午夜精彩视频在线观看| 精品人妻在线不人妻| 男女床上黄色一级片免费看| 欧美人与善性xxx| 色精品久久人妻99蜜桃| 少妇猛男粗大的猛烈进出视频| 50天的宝宝边吃奶边哭怎么回事| 久久国产精品人妻蜜桃| 日本av手机在线免费观看| 天堂8中文在线网| 久久99热这里只频精品6学生| 亚洲,一卡二卡三卡| 日日爽夜夜爽网站| 免费一级毛片在线播放高清视频 | 啦啦啦在线观看免费高清www| 国产成人欧美在线观看 | 人人妻人人澡人人看| 亚洲五月婷婷丁香| 免费观看a级毛片全部| 亚洲美女黄色视频免费看| 欧美精品一区二区免费开放| 国产国语露脸激情在线看| 性少妇av在线| 老司机午夜十八禁免费视频| 女人精品久久久久毛片| 亚洲视频免费观看视频| 国产欧美日韩一区二区三 | 91精品国产国语对白视频| 国产精品一区二区免费欧美 | 久久影院123| 男女高潮啪啪啪动态图| 人人澡人人妻人| 久久国产亚洲av麻豆专区| 99国产精品99久久久久| 黄色毛片三级朝国网站| 99久久99久久久精品蜜桃| 一本综合久久免费| 老司机深夜福利视频在线观看 | 热99国产精品久久久久久7| 亚洲自偷自拍图片 自拍| 久久精品亚洲熟妇少妇任你| 我要看黄色一级片免费的| 又黄又粗又硬又大视频| 一边摸一边抽搐一进一出视频| 成年人午夜在线观看视频| 亚洲国产精品成人久久小说| 黄色视频在线播放观看不卡| 国产日韩欧美视频二区| 亚洲中文字幕日韩| 狠狠精品人妻久久久久久综合| 国产日韩欧美在线精品| 99热国产这里只有精品6| 香蕉国产在线看| 99热国产这里只有精品6| 建设人人有责人人尽责人人享有的| 国产成人免费无遮挡视频| 国产免费视频播放在线视频| 超碰成人久久| a级毛片黄视频| 久久人人爽人人片av| 下体分泌物呈黄色| 日韩中文字幕欧美一区二区 | 国产精品一国产av| 久久久亚洲精品成人影院| 十八禁人妻一区二区| 欧美日韩视频精品一区| 国产色视频综合| 美女主播在线视频| 欧美亚洲 丝袜 人妻 在线| 在线观看免费日韩欧美大片| 操出白浆在线播放| 亚洲伊人久久精品综合| 日韩大片免费观看网站| 多毛熟女@视频| 亚洲av电影在线观看一区二区三区| 亚洲情色 制服丝袜| 亚洲精品在线美女| 欧美日韩一级在线毛片| 亚洲欧美成人综合另类久久久| 性少妇av在线| 免费久久久久久久精品成人欧美视频| 久久久国产一区二区| www.精华液| 一级毛片电影观看| 欧美日韩视频高清一区二区三区二| 亚洲 欧美一区二区三区| 国产免费视频播放在线视频| 国产免费一区二区三区四区乱码| 啦啦啦视频在线资源免费观看| 色播在线永久视频| a 毛片基地| 久久精品久久久久久久性| 亚洲国产成人一精品久久久| 天天躁狠狠躁夜夜躁狠狠躁| 一区福利在线观看| 国产一卡二卡三卡精品| 国产精品九九99| 99热国产这里只有精品6| 成人国产一区最新在线观看 | a级毛片在线看网站| 青草久久国产| 操美女的视频在线观看| 久久午夜综合久久蜜桃| 日日爽夜夜爽网站| 老司机影院成人| 悠悠久久av| tube8黄色片| 高清视频免费观看一区二区| 黑丝袜美女国产一区| 伊人亚洲综合成人网| 人人妻人人澡人人看| 男女边吃奶边做爰视频| 久久国产亚洲av麻豆专区| 曰老女人黄片| 成人国产一区最新在线观看 | 欧美精品一区二区免费开放| 一级毛片 在线播放| 9色porny在线观看| 免费在线观看视频国产中文字幕亚洲 | www.999成人在线观看| 精品久久久精品久久久| 精品人妻熟女毛片av久久网站| 五月开心婷婷网| av网站免费在线观看视频| 国产成人一区二区三区免费视频网站 | 久久99一区二区三区| 日韩大码丰满熟妇| 免费在线观看黄色视频的| 欧美国产精品一级二级三级| 久久青草综合色| 曰老女人黄片| av天堂在线播放| 十八禁网站网址无遮挡| 天天操日日干夜夜撸| 观看av在线不卡| 久久热在线av| 成年人午夜在线观看视频| 久久精品国产a三级三级三级| 久久久欧美国产精品| 香蕉丝袜av| 最黄视频免费看| 多毛熟女@视频| av电影中文网址| 久久久久久久大尺度免费视频| 热99久久久久精品小说推荐| 一级毛片黄色毛片免费观看视频| 在线观看免费日韩欧美大片| 国产精品免费大片| 男男h啪啪无遮挡| 黄色怎么调成土黄色| 免费高清在线观看日韩| 丝袜在线中文字幕| 国产精品久久久人人做人人爽| 国产xxxxx性猛交| 午夜福利免费观看在线| 日韩一卡2卡3卡4卡2021年| 亚洲成人手机| 婷婷色av中文字幕| 少妇被粗大的猛进出69影院| 在线看a的网站| 精品久久久久久电影网| 国产免费视频播放在线视频| 国产精品一二三区在线看| 久久狼人影院| 男女之事视频高清在线观看 | 亚洲国产精品一区三区| 婷婷色综合www| 黑人巨大精品欧美一区二区蜜桃| 啦啦啦 在线观看视频| 亚洲国产日韩一区二区| 国产成人精品无人区| 国产成人影院久久av| bbb黄色大片| 亚洲,一卡二卡三卡| 另类精品久久| 亚洲,欧美精品.| 亚洲精品自拍成人| 在线观看www视频免费| 国产一区二区三区av在线| 欧美另类一区| 在现免费观看毛片| 国产成人系列免费观看| 精品久久久久久久毛片微露脸 | 欧美在线黄色| 国产精品一区二区在线观看99| 最黄视频免费看| 国产成人a∨麻豆精品| 日韩中文字幕欧美一区二区 | 国产国语露脸激情在线看| 久久热在线av| 99热全是精品| 国产主播在线观看一区二区 | svipshipincom国产片| 一边摸一边抽搐一进一出视频| 国产精品久久久av美女十八| 夫妻性生交免费视频一级片| 婷婷色综合大香蕉| 校园人妻丝袜中文字幕| 国产精品久久久久久精品古装| 国产伦理片在线播放av一区| 亚洲av欧美aⅴ国产| av网站在线播放免费| 热99国产精品久久久久久7| 色网站视频免费| 亚洲国产毛片av蜜桃av| 久久久国产精品麻豆| 欧美人与性动交α欧美精品济南到| 中国国产av一级| 国产精品99久久99久久久不卡| 国产xxxxx性猛交| 欧美在线一区亚洲| 亚洲国产欧美在线一区| a级毛片黄视频| 日韩视频在线欧美| 满18在线观看网站| 色综合欧美亚洲国产小说| 2021少妇久久久久久久久久久| 久久久久久久国产电影| 女性生殖器流出的白浆| 菩萨蛮人人尽说江南好唐韦庄| 9191精品国产免费久久| 涩涩av久久男人的天堂| 国产伦人伦偷精品视频| 桃花免费在线播放| 2021少妇久久久久久久久久久| 国产精品久久久av美女十八| 大话2 男鬼变身卡| 国产精品免费大片| 国产老妇伦熟女老妇高清| 久久精品熟女亚洲av麻豆精品| 亚洲一码二码三码区别大吗| 久久久国产一区二区| 老司机在亚洲福利影院| 成人午夜精彩视频在线观看| 国产黄色免费在线视频| 国产视频首页在线观看| 啦啦啦啦在线视频资源| 人妻一区二区av| 麻豆国产av国片精品| 一区二区三区四区激情视频| 嫩草影视91久久| 大陆偷拍与自拍| 自拍欧美九色日韩亚洲蝌蚪91| 精品福利观看| 免费人妻精品一区二区三区视频| 午夜福利免费观看在线| 日韩一卡2卡3卡4卡2021年| 天天躁日日躁夜夜躁夜夜| 丝袜喷水一区| 亚洲av日韩在线播放| √禁漫天堂资源中文www| 亚洲成人免费电影在线观看 | 中文字幕色久视频| 亚洲精品国产av成人精品| 国产淫语在线视频| 国产精品偷伦视频观看了| 黄色a级毛片大全视频| 纯流量卡能插随身wifi吗| 成在线人永久免费视频| 国产男人的电影天堂91| 亚洲精品第二区| 久久久久精品人妻al黑| 久久九九热精品免费| 人人妻人人添人人爽欧美一区卜| 男女无遮挡免费网站观看| 51午夜福利影视在线观看| 国产亚洲午夜精品一区二区久久| 狂野欧美激情性bbbbbb| 国产又色又爽无遮挡免| 制服诱惑二区| 99九九在线精品视频| 久久精品熟女亚洲av麻豆精品| 亚洲精品日韩在线中文字幕| 亚洲欧美日韩高清在线视频 | 国产色视频综合| 国产99久久九九免费精品| 欧美成人精品欧美一级黄| 久久女婷五月综合色啪小说| 日韩中文字幕视频在线看片| 秋霞在线观看毛片| 岛国毛片在线播放| 亚洲五月色婷婷综合| 亚洲国产最新在线播放| 一个人免费看片子| 亚洲国产欧美一区二区综合| 黄片播放在线免费| 成年av动漫网址| 亚洲黑人精品在线| xxxhd国产人妻xxx| 新久久久久国产一级毛片| 51午夜福利影视在线观看| 欧美中文综合在线视频| 亚洲欧美日韩另类电影网站| 国产精品九九99| 女人精品久久久久毛片| 久久久久国产精品人妻一区二区| 十八禁网站网址无遮挡| e午夜精品久久久久久久| 侵犯人妻中文字幕一二三四区| 日韩,欧美,国产一区二区三区| 在线av久久热| 丝袜脚勾引网站| 久久鲁丝午夜福利片| 国产男人的电影天堂91| 天堂俺去俺来也www色官网| 亚洲av电影在线进入| 免费久久久久久久精品成人欧美视频| 一级黄片播放器| 欧美人与善性xxx| 少妇人妻久久综合中文| 美女国产高潮福利片在线看| 国产欧美日韩精品亚洲av| 少妇人妻久久综合中文| 丝袜在线中文字幕| 美女午夜性视频免费| 只有这里有精品99| 亚洲欧美一区二区三区久久| 午夜免费观看性视频| av福利片在线| 国产精品久久久久久精品电影小说| 中文字幕人妻丝袜一区二区| 首页视频小说图片口味搜索 | 丝袜美腿诱惑在线| 欧美精品av麻豆av| 老熟女久久久| 最新的欧美精品一区二区| 亚洲国产欧美网| 国产精品欧美亚洲77777| 黄色片一级片一级黄色片| 久久久久网色| 岛国毛片在线播放| 2018国产大陆天天弄谢| 三上悠亚av全集在线观看| 人成视频在线观看免费观看| 国产1区2区3区精品| 国产主播在线观看一区二区 | 手机成人av网站| 看十八女毛片水多多多| 男女高潮啪啪啪动态图| 乱人伦中国视频| 亚洲精品久久久久久婷婷小说| netflix在线观看网站| 久久天堂一区二区三区四区| av片东京热男人的天堂| 在线观看www视频免费| 天堂中文最新版在线下载| 啦啦啦中文免费视频观看日本| 日韩 欧美 亚洲 中文字幕| 国产成人av教育| 一二三四在线观看免费中文在| 亚洲成色77777| 在线观看国产h片| 日本欧美视频一区| 中文字幕人妻熟女乱码| 久久久久国产精品人妻一区二区| 99国产综合亚洲精品| av一本久久久久| 黑人巨大精品欧美一区二区蜜桃| 日韩一本色道免费dvd| 天天躁日日躁夜夜躁夜夜| 蜜桃在线观看..| 七月丁香在线播放| 亚洲成人国产一区在线观看 | 一本色道久久久久久精品综合| 韩国高清视频一区二区三区| 性色av乱码一区二区三区2| 啦啦啦中文免费视频观看日本| 国产淫语在线视频| 国产成人91sexporn| 亚洲精品在线美女| 精品免费久久久久久久清纯 | 欧美日韩视频高清一区二区三区二| 欧美在线黄色| 国产精品秋霞免费鲁丝片| 一区二区三区激情视频| 亚洲欧美一区二区三区黑人| 国产1区2区3区精品| 尾随美女入室| 中文精品一卡2卡3卡4更新| 成人国产一区最新在线观看 | 十八禁高潮呻吟视频| 久久久久久久久久久久大奶| 咕卡用的链子| 九草在线视频观看| 国产人伦9x9x在线观看| 精品一品国产午夜福利视频| 国产麻豆69| 狠狠精品人妻久久久久久综合| 国产精品国产三级专区第一集| 在现免费观看毛片| 国产精品九九99| 亚洲国产精品一区三区| a级片在线免费高清观看视频| 青春草亚洲视频在线观看| 亚洲国产精品999| 激情视频va一区二区三区| 亚洲三区欧美一区| 母亲3免费完整高清在线观看| 欧美 亚洲 国产 日韩一| videosex国产| 91老司机精品| 国产精品国产av在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲av在线观看美女高潮| av福利片在线| 亚洲精品在线美女| 1024视频免费在线观看| 男人爽女人下面视频在线观看| 最近中文字幕2019免费版| 99国产精品99久久久久| 日本黄色日本黄色录像| 久久综合国产亚洲精品| 热99久久久久精品小说推荐| 国产成人啪精品午夜网站| 男人添女人高潮全过程视频| 爱豆传媒免费全集在线观看| 日本五十路高清| 欧美日韩福利视频一区二区| 激情视频va一区二区三区| 日韩一本色道免费dvd| 欧美国产精品va在线观看不卡| 国产男女超爽视频在线观看| 久久国产亚洲av麻豆专区| 91精品三级在线观看| 9色porny在线观看| 久久毛片免费看一区二区三区| 一边亲一边摸免费视频| 天天影视国产精品| 日韩一卡2卡3卡4卡2021年| 亚洲精品国产av蜜桃| 中文字幕人妻熟女乱码| 国产一级毛片在线| 免费观看a级毛片全部| 国产无遮挡羞羞视频在线观看| 国产精品国产三级专区第一集| 亚洲精品第二区| 麻豆av在线久日| 777久久人妻少妇嫩草av网站| 欧美日韩综合久久久久久| 日日爽夜夜爽网站| 久久av网站| 久久久精品94久久精品| 精品人妻一区二区三区麻豆| 后天国语完整版免费观看| 亚洲欧美一区二区三区国产| 亚洲人成77777在线视频| 亚洲国产精品一区三区| 日韩 欧美 亚洲 中文字幕| 日本wwww免费看| 妹子高潮喷水视频| 91国产中文字幕| 国产精品久久久久久精品古装| 最新的欧美精品一区二区| 午夜两性在线视频| 大香蕉久久成人网| 欧美成人午夜精品| 又大又爽又粗| 一区二区三区激情视频| 国产又爽黄色视频| 亚洲精品乱久久久久久| 精品亚洲成国产av| 亚洲免费av在线视频| av在线老鸭窝| 婷婷丁香在线五月| 久久狼人影院| 国产高清videossex| 91麻豆精品激情在线观看国产 | 老熟女久久久| 精品一区二区三区四区五区乱码 | 精品人妻熟女毛片av久久网站| 欧美日韩视频高清一区二区三区二| 人妻一区二区av| 黄色怎么调成土黄色| 欧美人与善性xxx| 黑人欧美特级aaaaaa片| 国产伦理片在线播放av一区| 两个人看的免费小视频| 91精品三级在线观看| 高清不卡的av网站| 亚洲人成77777在线视频| 一本久久精品|