• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Anisotropic thermoelectric transport properties in polycrystalline SnSe2?

    2021-06-26 03:04:22CaiyunLi李彩云WenkeHe何文科DongyangWang王東洋andLiDongZhao趙立東
    Chinese Physics B 2021年6期
    關(guān)鍵詞:東洋彩云文科

    Caiyun Li(李彩云), Wenke He(何文科), Dongyang Wang(王東洋), and Li-Dong Zhao(趙立東)

    School of Materials Science and Engineering,Beihang University,Beijing 100191,China

    Keywords: thermoelectric,SnSe2,anisotropic structure,Cl-doping

    1. Introduction

    Thermoelectric material, as the main body of device for reversible conversion between waste heat and electricity, can effectively alleviate the shortage of traditional primary energy and improve the situation of environmental degradation.[1,2]The dimensionless figure of merit (ZT) can be used to assess the conversion ability of thermoelectric materials for practical production and application,defined asZT=S2σT/κtot,whereS,σ,κtot, andTare the Seebeck coefficient, electrical conductivity,total thermal conductivity,and absolute temperature,respectively.[3–5]In recent years, a series of new theories and advanced material fabrication technologies have been developed to optimize the thermoelectric properties,[6–16]such as raising power factor(PF=S2σ)through employing the band structure engineering[7,8,17]or lowering thermal conductivity by adopting defect engineering.[11,18–23]In addition,a certain material with low intrinsic thermal conductivity is explored to evade election–phonon coupling effectively.[14,24–27]

    As a compound consisting of the same elements as SnSe,SnSe2has attracted much attention owing to not only its features of nontoxicity, non-pollution, earth-abundant, and low cost,[28]but also its natural layered structure leading to a low thermal conductivity,[29]making it become a competitive material in the field of thermoelectricity. Moreover, the firstprinciples calculations forecasted that SnSe2is able to reach a promisingZTvalue of~2.95 in n-type SnSe2crystals when the carrier concentration (n) is raised to~1020cm?3at 800 K.[30]SnSe2is crystallized in a typical structure of CdI2(Figs. 1(a)–1(c)), and Se accumulates in a densely arranged hexagonal form while Sn is in the octahedral interstice surrounded by six Se atoms.[31]Similar to many layered compounds (Bi2Se3, Bi2Te3, etc.),[32]n-type polycrystalline SnSe2exhibits anisotropic thermoelectric properties along thea-axis andc-axis,[33]the weaker van der Waals chemical bonding between the layers makes the acoustic phonon mode along thec-axis softer than that along thea-axis, and results in a much lower thermal conductivity along the interlayer direction(c-axis).[34]When sintering the polycrystalline SnSe2samples,the layered structures are inclined to distribute along the sintering pressure direction. Therefore,superiorZTvalues are generally obtained along the pressuring direction owing to the much lower thermal conductivity.[18,30,33]

    Among the diverse approaches for optimizing SnSe2,the substitution of halogen atoms in Se sites is proved to be a convenient and highly effective strategy to increase the carrier concentration, and thus improves its electrical performance.[29,33,35–37]Shuet al. reported a highZTof~0.56 at 773 K in n-type polycrystalline SnSe2as the doping concentration of Cl reaches to~6%.[36]Further, Liuet al. built an imbedded Ag+bridge in the layers of SnSe2and harvested a record-breakingZTof~1.03.[18]However, the excessive increment of carrier concentration in the SnSe2matrix will inevitably result in a higher thermal conductivity from the electron contribution. In this case,we first introduce SnSe phase into SnSe2to reduce the lattice thermal conductivity because of the inter-phase scattering between SnSe2matrix and the second phases.[38–41]Subsequently, we select Cl dopant to optimize the carrier concentration and improve the electrical performance. Meanwhile, the anisotropic thermoelectric transport properties are investigated and analyzed in SnSe2-based samples. We find a~3 times lower thermal conductivity along the direction parallel to the spark plasma sintering(SPS) pressure (‖P), and a~2 times higherPFalong the direction perpendicular to the SPS pressure (⊥P) in SnSe2-based samples. As a result, comprehensive consideration on the electrical properties and thermal conductivity,a higherZTis attained along the‖ Pdirection. Besides, the minimum thermal conductivity decreases from~0.57 W·m?1·K?1to~0.39 W·m?1·K?1after introducing 2%SnSe along the‖Pdirection. Then, the maximumPFyields a sharp increase in SnSe2-2% SnSe after 5% Cl doping, which increases from~1.70μW·cm?1·K?2to~9.76μW·cm?1·K?2along the⊥Pdirection. In the end, theZTvalue is improved to as high as~0.6 after the two-step optimization along the‖Pdirection.All above optimizing processes are summarized in Fig.2.

    Fig.1. Crystal structure of SnSe2: (a)crystal structure along the a-axis;(b)the unit cell;(c)crystal structure along the c-axis.

    Fig. 2. A two-step optimization process for SnSe2 along the ‖P and ⊥P directions. The units of PFmax and κmin are μW·cm?1·K?2 and W·m?1·K?1,respectively.

    2. Results and discussion

    The powder XRD patterns of the SnSe2-x% SnSe composites (x=0, 1, 2, 3) are shown in Fig. 3(a). It is found that the diffraction peaks are well consistent with the simulated pattern (PDF# 01-089-2939). The lattice parameters do not change after adding 1% SnSe whatever the addition of SnSe content, which indicates the presence of SnSe phase(Fig.3(b)).From the band gap measurement results(Figs.3(c)and 3(d)), the band gap slightly decreases after adding SnSe into SnSe2,which is due to the relative low band gap of SnSe.

    The electrical conductivities of SnSe2-x% SnSe samples along the two directions (‖ Pand⊥P) are measured in the temperature range from 300 K to 773 K(Figs.4(a)and 4(b)).The electrical conductivity is very low at room temperature and then increases as the temperature rises, which is a typical temperature-dependent intrinsic semiconductor feature.The electrical conductivity depends weakly on the temperature from 300 K to 600 K.At high temperatures,the electrical conductivity after adding SnSe is higher than that of pristine SnSe2,which may come from that the reduced band gap from introducing SnSe is more conducive to thermal excitation as the temperature rises. This behavior is more striking along the⊥Pdirection in this layered compound. It is obvious that the electrical conductivity along the⊥Pdirection is superior to that along the‖Pdirection,which indicates an outstanding⊥Pdirection(can be considered as the in-plane direction in crystals)electrical transport property in SnSe2. Besides, the Seebeck coefficients of all samples are relatively large and maintain within the range of~?400μV·K?1to?600μV·K?1at the whole working temperature(Figs.4(c)and 4(d)).As a consequence,the power factors after introducing SnSe are higher than that of pristine SnSe2, especially in the polycrystalline samples along the⊥Pdirection(Figs.4(e)–4(f)). A maximum power factor of~1.7 μW·cm?1·K?2at 773 K is attained in SnSe2along the⊥Pdirection, and is twice of that along the‖Pdirection, which is ascribed to the excellent in-plane carrier mobility in SnSe2.

    Fig.3. (a)XRD patterns;(b)the lattice parameters;(c)UV–vis absorption spectra,and(d)band gaps for SnSe2-x%SnSe.

    Fig. 4. Temperature dependence of electrical transport properties along the ‖P and ⊥P directions for SnSe2-2% SnSe: (a)–(b) electrical conductivities;(c)–(d)Seebeck coefficients;(e)–(f)power factors.

    To further investigate the difference in electrical properties after adding SnSe and along the two directions in SnSe2, the Hall measurements are conducted. Since SnSe is a p-type phase in SnSe2, the room-temperature (RT) carrier concentration decreases from~1.17×1018cm?3to~5.62×1017cm?3, but a high carrier mobility (μ) is obtained from~1.82 cm2·V?1·s?1to~8.16 cm2·V?1·s?1and~10.57 cm2·V?1·s?1to~38.05 cm2·V?1·s?1along the‖Pand⊥Pdirections,respectively(Figs.5(a)and 5(b)). The carrier mobilities along these two directions also show a significant distinction,the values along the⊥Pdirection are~5–10 times higher than those along the‖Pdirection. Based on the single parabolic band model,[42]we have calculated the carrier mobility as a function of carrier concentration(Fig.5(c)). All the experimental data are under the simulated curve, which is attributed to the more complex scattering mechanism in polycrystalline samples, such as grain boundary, precipitated phase, etc.[39,43]Moreover, on the basis of the single band model,the Seebeck coefficient can be obtained as[44,45]

    wherekBrepresents the Boltzmann constant,hrepresents the Planck constant, andm?represents the density of state effective mass. The Pisarenko line shows that the effective masses along the two directions are almost unchanged after increasing the SnSe concentration,indicating a single band transport feature at low carrier concentration in SnSe2(Fig.5(d)).

    Fig. 5. (a) Carrier concentration; (b) carrier mobility; (c) carrier mobility, and (d) Seebeck coefficient as a function of carrier concentration along the‖P and ⊥P directions for SnSe2-x%SnSe.

    Fig. 6. The temperature dependence of thermal conductivity along the ‖P and ⊥P directions for SnSe2-2% SnSe: (a)–(b) total thermal conductivity;(c)–(d)electronic thermal conductivity;(e)–(f)lattice thermal conductivity.

    The total thermal conductivity(κtot)for all samples continuously decreases with elevating temperature(Figs.6(a)and 6(b)). It can be seen that theκtotwith SnSe phase along the‖Pand⊥Pdirections are lower than those of pristine SnSe2.Besides, theκtotalong the‖Pdirection is much lower than that along the⊥Pdirection. Theκtotmainly comes from the contributions of electronic thermal conductivity(κele)and lattice thermal conductivity (κlat). Theκeleis calculated byκele=LσT,whereLis the Lorentz constant,theκeleincreases as temperature rises,which is mainly due to the increased electrical conductivity at high temperatures (Figs. 6(c) and 6(d)).The lattice thermal conductivity(κlat)can be obtained by subtractingκelefromκtot,namely,κlat=κtot?κele. Interestingly,the overallκlatalong the‖ Pdirection is~3 times lower than that along the⊥Pdirection (Figs. 6(e) and 6(f)). Moreover,a lowκlatof~0.39 W·m?1·K?1is obtained at 773 K in SnSe2-2%SnSe sample along the‖Pdirection while theκlatin the pristine SnSe2sample is~0.56 W·m?1·K?1,implying a strong inter-phase scattering after introducing 2%SnSe.

    In order to further explore the decline of the lattice thermal conductivity, we calculate the Gr¨uneisen constant (γ) of these two samples along the‖Pdirection,[46,47]as shown in Table 1.Theγof these two samples are~3.03 and~2.95,respectively,which indicates that the sample with 2%SnSe has a stronger anharmonicity.

    Table 1. The longitude sound velocity(vl),shear sound velocity(vs),average sound velocity(va),and Gr¨uneisen parameters(γ)of SnSe2 and SnSe2-2%SnSe.

    Fig.7. Temperature dependent ZT values along the(a)‖P and(b)⊥P directions for SnSe2-2%SnSe.

    Fig.8. (a)XRD patterns;(b)lattice parameters;(c)UV–vis absorption spectra,and(d)band gap for SnSe2-2%SnSe-y%Cl.

    Compared with the excellent electrical transport properties along the⊥Pdirection,the contribution from thermal conductivity along the‖Pdirection to finalZTs is more strikingly, especially when introducing SnSe phase with intrinsically lowκlat. Therefore,combining the electrical and thermal properties along the two directions, relatively higherZTs are achieved along the‖Pdirection(Figs.7(a)and 7(b)). TheZTvalue along the‖Pdirection approaches to as high as~0.13 at 773 K for SnSe2-2%SnSe while is only~0.09 for SnSe2.

    Based on the obtained low thermal conductivity and highZTin SnSe2with 2% SnSe, we further improve the electrical transport properties through halogen element doping. The XRD data of all samples with Cl doping are shown in Fig.8(a).It is obvious that all the diffraction peaks agree well with the simulated pattern (PDF# 01-089-2939) (SnSe2-2% SnSe-y%Cl,y=0, 1, 2, 3, 4, 5, 6). Figure 8(b) shows that the lattice parameter gradually decreases with increasing Cl content, it proves that Cl is doped into SnSe2matrix as Cl has a smaller atomic radius than Se. The decrement of band gap from~1.0 eV to~0.83 eV is likely related to the introduction of impurity energy levels after Cl doping (Figs. 8(c) and 8(d)).

    After Cl doping, the carrier concentration is optimized,leading to a huge increment of electrical conductivity (σ) in SnSe2-2% SnSe samples. At room temperature, theσincreases from~4 S·cm?1to~78 S·cm?1and from~9 S·cm?1to~208 S·cm?1along the‖Pand⊥Pdirections after 5%Cl doping, respectively (Figs. 9(a) and 9(b)). This striking difference mainly derives from the unique layered structure of SnSe2as mentioned above. The Seebeck coefficient decreases after increasing carrier concentration along the two directions (Figs. 9(c) and 9(d)). Besides, it can be seen that thePFreaches to as high as~5.12 μW·cm?1·K?2and~9.76 μW·cm?1·K?2after 5% Cl doping along the‖Pand⊥Pdirections, respectively (Figs. 9(e) and 9(f)), which is an prominent enhancement compared to the undoped samples.

    To further investigate the dramatic increase in theσ, thenandμat room-temperature are measured. As Fig.10(a)depicts, thenis largely enhanced from~5.6×1017cm?3to~6.2×1019cm?3after Cl doping, which benefits from the fact that Cl is an effective electron donor.[35]It is worth noting that theμincreases with rising the doping concentration from 1%to 5%(Fig.10(b)),which may be due to the microregulation of Cl on SnSe2and SnSe phases.[36]In other word,Cl replaces Se not only in SnSe2but also in SnSe, making the SnSe phase be changed from intrinsic p-type to n-type,therefore, the n–p phase in SnSe2convert to n–n phase thus reducing the energy barrier between SnSe2and SnSe, which makes the carriers facilely migrate. As a consequence, theμincreases up to~12 cm2·V?1·s?1after 5% Cl doping along the‖Pdirection. Based on the single parabolic model,[42]experimental data locate under the simulated relationship curve ofμwith increasednobviously (Fig. 10(c)), which is attributed to the dominance of grain boundary scattering in polycrystalline SnSe2at low temperatures.[48]Based on the Pisarenko relationship,[38,44]it is found that the effective mass increases after Cl doping(Fig.10(d)),which implies a multiple band transport behavior in SnSe2as the carrier concentration rises.[35]

    Fig. 9. The temperature dependence of electrical transport properties along the ‖P and ⊥P directions for SnSe2-2% SnSe-y% Cl samples:(a)–(b)electrical conductivities;(c)–(d)Seebeck coefficients;(e)–(f)power factors.

    It is found that the wholeκtotafter Cl doping are slightly higher compared to those of the undoped 2% SnSe samples, which are in the range of~0.45 W·m?1·K?1to~1.35 W·m?1·K?1at 773 K (Figs. 11(a) and 11(b)). Besides, theκeleincreases rapidly with increasing the doping content owing to the contribution from the increased carrier concentration (Figs. 11(c)and 11(d)). In the end, theκlatincreases slightly after Cl doping along the two directions,which may come from the reduced energy barrier between SnSe2and SnSe phases weakening the inter-phase scattering after Cl doping(Figs.11(e)and 11(f)).

    Fig.10. (a)Carrier concentration;(b)carrier mobility;(c)carrier mobility,and(d)Seebeck coefficient as function of carrier concentration for SnSe2-2%SnSe-y%Cl.

    Fig. 11. The temperature dependence of thermal conductivities along the ‖P and ⊥P directions for SnSe2-2% SnSe-y% Cl: (a)–(b) total thermal conductivities;(c)–(d)electronic thermal conductivities;(e)–(f)lattice thermal conductivities.

    Fig.12. Temperature dependent ZT values along the(a)‖P and(b)⊥P directions for SnSe2-2%SnSe-y%Cl.

    Through the comprehensive evaluation on the anisotropic electrical properties and thermal conductivity of SnSe2-2%SnSe with Cl doping, the samples show higherZTvalues along the‖Pdirection than the⊥Pdirection(Figs.12(a)and 12(b)). Finally,a maximumZTof~0.6 at 773 K is achieved in SnSe2-2%SnSe-5%Cl along the‖Pdirection, which is a great improvement compared toZTof~0.13 for the SnSe2-2%SnSe sample without Cl doping.

    2.1. Conclusion

    In summary, the thermoelectric performance of SnSe2is improved successfully by a two-step optimization strategy,namely,reducing the thermal conductivity by introducing SnSe and then increasing the power factor through Cl doping.Specifically, introducing SnSe phase can significantly reduce the lattice thermal conductivity in SnSe2due to the inter-phase scattering and strong anharmonicity,then Cl doping optimizes the carrier concentration thus improving the electrical properties. Meanwhile,we also estimate that the anisotropic thermoelectric properties along the‖Pand⊥Pdirections in SnSe2-based samples, and find a more prominent contribution from the thermal conductivity to the finalZTs along the‖Pdirection. Ultimately,a highZTof~0.6 along the‖Pdirection is achieved for SnSe2-2% SnSe-5% Cl sample at 773 K, which makes it a promising candidate for thermoelectric application.

    猜你喜歡
    東洋彩云文科
    Majorana zero modes induced by skyrmion lattice
    小院的夜·東洋畫
    彩云之南
    一路彩云奔小康
    香格里拉(2021年2期)2021-07-28 06:50:48
    文科不懂理科的傷悲
    當(dāng)時(shí)明月在,曾照彩云歸
    海峽姐妹(2020年5期)2020-06-22 08:26:08
    鄭和下東洋
    彩云問
    民族音樂(2019年3期)2019-08-14 01:05:16
    求學(xué)·文科版2019年6、7期合刊
    豆文科作品
    藝術(shù)家(2018年7期)2018-09-22 02:09:20
    99精品在免费线老司机午夜| 久久人人97超碰香蕉20202| 黄色片一级片一级黄色片| 国产成人精品在线电影| 精品久久久久久久毛片微露脸| 国产精品av久久久久免费| 悠悠久久av| 香蕉久久夜色| 日韩欧美在线二视频| 黄色片一级片一级黄色片| 两人在一起打扑克的视频| 成人国语在线视频| 99国产精品一区二区蜜桃av| 中亚洲国语对白在线视频| 美女高潮喷水抽搐中文字幕| 国产精品二区激情视频| 国产一区二区三区综合在线观看| 成人三级黄色视频| 国产一区在线观看成人免费| 精品国产美女av久久久久小说| 亚洲,欧美精品.| 亚洲第一青青草原| 久久久水蜜桃国产精品网| 久久久久久久午夜电影 | 黑人欧美特级aaaaaa片| 精品国产乱子伦一区二区三区| 国产片内射在线| 黄片播放在线免费| 国产精品一区二区免费欧美| 黄色怎么调成土黄色| 美国免费a级毛片| 9热在线视频观看99| 又紧又爽又黄一区二区| 久久伊人香网站| 伦理电影免费视频| 国产日韩一区二区三区精品不卡| 精品一区二区三区av网在线观看| 丰满迷人的少妇在线观看| 亚洲色图综合在线观看| 看片在线看免费视频| 国产激情欧美一区二区| 9191精品国产免费久久| 亚洲一区中文字幕在线| 久热爱精品视频在线9| 亚洲精品成人av观看孕妇| 国产高清视频在线播放一区| 精品一区二区三区视频在线观看免费 | 久久九九热精品免费| 久久这里只有精品19| 久久久国产一区二区| 久久久久精品国产欧美久久久| 亚洲欧洲精品一区二区精品久久久| 亚洲 欧美一区二区三区| 搡老熟女国产l中国老女人| 国产精品国产高清国产av| 亚洲欧美激情在线| 老汉色∧v一级毛片| 亚洲第一av免费看| 国产成年人精品一区二区 | 中文字幕av电影在线播放| 757午夜福利合集在线观看| 午夜两性在线视频| 好男人电影高清在线观看| 国产成人系列免费观看| 亚洲av成人av| 国产有黄有色有爽视频| 国产精品久久久久久人妻精品电影| 日韩大码丰满熟妇| 人人妻人人澡人人看| svipshipincom国产片| 可以在线观看毛片的网站| 咕卡用的链子| 久久人人精品亚洲av| 久久国产精品影院| 老熟妇仑乱视频hdxx| 99国产极品粉嫩在线观看| 在线观看一区二区三区激情| 80岁老熟妇乱子伦牲交| 国产亚洲欧美在线一区二区| 中文字幕人妻丝袜制服| 国产精品久久视频播放| 在线观看免费日韩欧美大片| 精品一区二区三区四区五区乱码| 免费不卡黄色视频| 丰满迷人的少妇在线观看| 色综合婷婷激情| 老司机在亚洲福利影院| 夜夜看夜夜爽夜夜摸 | 亚洲精品美女久久av网站| 国内毛片毛片毛片毛片毛片| 国产精品偷伦视频观看了| 久久久国产成人精品二区 | 午夜a级毛片| 男女床上黄色一级片免费看| 精品免费久久久久久久清纯| 久久午夜亚洲精品久久| 十分钟在线观看高清视频www| 免费久久久久久久精品成人欧美视频| 国产在线精品亚洲第一网站| 女人爽到高潮嗷嗷叫在线视频| 一级a爱视频在线免费观看| 天堂俺去俺来也www色官网| 亚洲av成人不卡在线观看播放网| 在线观看一区二区三区| 深夜精品福利| 亚洲九九香蕉| 又大又爽又粗| 亚洲欧美激情综合另类| 老司机午夜福利在线观看视频| 高潮久久久久久久久久久不卡| 色综合婷婷激情| 亚洲精品一卡2卡三卡4卡5卡| 国产精品综合久久久久久久免费 | 国产精品久久久久成人av| 亚洲av成人一区二区三| 777久久人妻少妇嫩草av网站| 少妇粗大呻吟视频| 伊人久久大香线蕉亚洲五| 一a级毛片在线观看| 大陆偷拍与自拍| 99精品久久久久人妻精品| www.精华液| 久久精品亚洲熟妇少妇任你| 午夜福利在线观看吧| 国产av又大| 在线av久久热| 免费在线观看日本一区| 手机成人av网站| 午夜视频精品福利| 午夜a级毛片| 国产亚洲欧美在线一区二区| 国产黄色免费在线视频| 色婷婷av一区二区三区视频| 日韩大尺度精品在线看网址 | 一二三四在线观看免费中文在| 久久狼人影院| 日韩欧美免费精品| 18禁黄网站禁片午夜丰满| 大型黄色视频在线免费观看| 日本黄色日本黄色录像| 欧美日韩福利视频一区二区| 久久国产亚洲av麻豆专区| 亚洲精品在线美女| 国产午夜精品久久久久久| 高清毛片免费观看视频网站 | 脱女人内裤的视频| 国产成人欧美| 久久久久久久午夜电影 | 国产不卡一卡二| 日韩av在线大香蕉| 国产精品亚洲av一区麻豆| 91九色精品人成在线观看| 精品人妻1区二区| 久久中文字幕一级| 久久久国产成人免费| 亚洲欧洲精品一区二区精品久久久| a级毛片黄视频| 午夜日韩欧美国产| 性少妇av在线| 国产av一区在线观看免费| 中文字幕av电影在线播放| 欧美精品亚洲一区二区| 国产男靠女视频免费网站| 91精品三级在线观看| cao死你这个sao货| 精品久久久久久电影网| 精品国产乱子伦一区二区三区| 老司机在亚洲福利影院| 女性被躁到高潮视频| 久久热在线av| 亚洲自偷自拍图片 自拍| ponron亚洲| 丰满的人妻完整版| 久久中文字幕一级| 久99久视频精品免费| 最新美女视频免费是黄的| 超碰成人久久| 久久人人97超碰香蕉20202| 亚洲视频免费观看视频| 久久天躁狠狠躁夜夜2o2o| 亚洲精品国产一区二区精华液| 大码成人一级视频| 久久久久国产一级毛片高清牌| 国产精品久久久久成人av| 免费在线观看影片大全网站| 欧美激情极品国产一区二区三区| 无人区码免费观看不卡| 亚洲一区二区三区不卡视频| 精品一区二区三卡| 亚洲精华国产精华精| 国产精品一区二区免费欧美| 亚洲一区二区三区色噜噜 | 男女之事视频高清在线观看| 久久久久国产一级毛片高清牌| 美女福利国产在线| 亚洲三区欧美一区| 精品乱码久久久久久99久播| 十八禁人妻一区二区| 国产麻豆69| 欧美日韩乱码在线| av福利片在线| 亚洲情色 制服丝袜| 欧美不卡视频在线免费观看 | 欧美日本亚洲视频在线播放| 国产黄a三级三级三级人| 91国产中文字幕| 精品第一国产精品| 国产精品亚洲一级av第二区| 精品人妻在线不人妻| 欧美激情高清一区二区三区| 国产麻豆69| 中文字幕高清在线视频| 成人特级黄色片久久久久久久| av视频免费观看在线观看| 18美女黄网站色大片免费观看| √禁漫天堂资源中文www| 香蕉久久夜色| 一级黄色大片毛片| 每晚都被弄得嗷嗷叫到高潮| 乱人伦中国视频| 精品国产一区二区三区四区第35| 18禁美女被吸乳视频| 欧美黄色淫秽网站| 欧美乱色亚洲激情| 亚洲伊人色综图| 免费高清在线观看日韩| 国产极品粉嫩免费观看在线| 亚洲色图综合在线观看| 天天躁夜夜躁狠狠躁躁| 黑丝袜美女国产一区| 嫁个100分男人电影在线观看| 国产人伦9x9x在线观看| 亚洲人成网站在线播放欧美日韩| 美女高潮喷水抽搐中文字幕| 99riav亚洲国产免费| 国产成人啪精品午夜网站| 欧美性长视频在线观看| 国产xxxxx性猛交| 午夜福利免费观看在线| 别揉我奶头~嗯~啊~动态视频| 人人澡人人妻人| 久久久久久免费高清国产稀缺| 精品乱码久久久久久99久播| 黄片大片在线免费观看| 法律面前人人平等表现在哪些方面| 午夜福利影视在线免费观看| 国产高清视频在线播放一区| 美女高潮到喷水免费观看| 黄色片一级片一级黄色片| 国产成+人综合+亚洲专区| 亚洲成人免费av在线播放| 色综合站精品国产| 69精品国产乱码久久久| 国产日韩一区二区三区精品不卡| 亚洲中文字幕日韩| 亚洲精品粉嫩美女一区| 国产成人一区二区三区免费视频网站| 中文字幕高清在线视频| 亚洲 国产 在线| 叶爱在线成人免费视频播放| 欧美丝袜亚洲另类 | 久久精品影院6| 国产极品粉嫩免费观看在线| 色综合婷婷激情| 日本欧美视频一区| 人成视频在线观看免费观看| 91麻豆av在线| 色老头精品视频在线观看| 一级a爱片免费观看的视频| 一夜夜www| 性欧美人与动物交配| 高清欧美精品videossex| 国产又色又爽无遮挡免费看| 久久精品91无色码中文字幕| 国产av一区在线观看免费| 欧美精品亚洲一区二区| av视频免费观看在线观看| www.www免费av| 丰满迷人的少妇在线观看| 色哟哟哟哟哟哟| 俄罗斯特黄特色一大片| 在线av久久热| 精品福利观看| 国产精品国产av在线观看| 大香蕉久久成人网| 怎么达到女性高潮| 黄色 视频免费看| 色综合站精品国产| bbb黄色大片| 成人精品一区二区免费| 最好的美女福利视频网| 日本免费a在线| 熟女少妇亚洲综合色aaa.| 亚洲一区中文字幕在线| 欧美午夜高清在线| 亚洲人成电影观看| 欧美久久黑人一区二区| 三上悠亚av全集在线观看| 精品久久久久久久毛片微露脸| 亚洲欧美精品综合久久99| 欧美精品亚洲一区二区| 宅男免费午夜| 后天国语完整版免费观看| 中文字幕高清在线视频| 99re在线观看精品视频| 国产黄色免费在线视频| 国产精品一区二区免费欧美| 999久久久国产精品视频| 亚洲av日韩精品久久久久久密| 日韩一卡2卡3卡4卡2021年| 中文字幕精品免费在线观看视频| avwww免费| 日韩高清综合在线| 91精品国产国语对白视频| 久久国产乱子伦精品免费另类| 在线看a的网站| 正在播放国产对白刺激| 精品国产亚洲在线| 啦啦啦 在线观看视频| e午夜精品久久久久久久| 又黄又爽又免费观看的视频| 国产精品免费一区二区三区在线| 香蕉国产在线看| 免费一级毛片在线播放高清视频 | 久久国产精品男人的天堂亚洲| 久久久久国内视频| 看片在线看免费视频| 欧美黑人精品巨大| 久久九九热精品免费| 一本综合久久免费| 丰满的人妻完整版| 欧美丝袜亚洲另类 | 麻豆av在线久日| 色播在线永久视频| 婷婷六月久久综合丁香| 亚洲色图 男人天堂 中文字幕| 91九色精品人成在线观看| 日韩精品免费视频一区二区三区| 中文字幕人妻熟女乱码| 欧美激情久久久久久爽电影 | 亚洲九九香蕉| 美女扒开内裤让男人捅视频| 18禁观看日本| 交换朋友夫妻互换小说| 国产av一区在线观看免费| 老熟妇仑乱视频hdxx| 99国产精品一区二区蜜桃av| 91大片在线观看| 国产野战对白在线观看| 亚洲一区二区三区欧美精品| 韩国av一区二区三区四区| 一区二区日韩欧美中文字幕| 中文字幕人妻熟女乱码| 成人永久免费在线观看视频| 岛国视频午夜一区免费看| 很黄的视频免费| 水蜜桃什么品种好| 欧美激情极品国产一区二区三区| 日本vs欧美在线观看视频| 精品国产超薄肉色丝袜足j| 一个人免费在线观看的高清视频| 黑人猛操日本美女一级片| 丝袜在线中文字幕| 国产成人精品久久二区二区91| 中文字幕av电影在线播放| 日本 av在线| 女人精品久久久久毛片| 日韩中文字幕欧美一区二区| 国产精品日韩av在线免费观看 | 国产在线精品亚洲第一网站| 亚洲国产精品sss在线观看 | 看片在线看免费视频| 午夜福利一区二区在线看| 国产极品粉嫩免费观看在线| 老熟妇乱子伦视频在线观看| 十八禁网站免费在线| 久久草成人影院| 男人舔女人的私密视频| 精品福利永久在线观看| 色综合婷婷激情| 在线永久观看黄色视频| 国产精品秋霞免费鲁丝片| 欧美精品亚洲一区二区| 欧美激情极品国产一区二区三区| www国产在线视频色| 亚洲成人免费电影在线观看| 国产av精品麻豆| 久久国产精品人妻蜜桃| 亚洲精品一区av在线观看| 这个男人来自地球电影免费观看| 男男h啪啪无遮挡| 日韩精品免费视频一区二区三区| 免费在线观看黄色视频的| 国产精品乱码一区二三区的特点 | 亚洲中文av在线| 欧美日韩亚洲国产一区二区在线观看| 午夜视频精品福利| 中亚洲国语对白在线视频| 咕卡用的链子| 18禁国产床啪视频网站| 99久久综合精品五月天人人| 精品电影一区二区在线| 久久精品国产亚洲av高清一级| 久久人人爽av亚洲精品天堂| 亚洲成人精品中文字幕电影 | 热re99久久国产66热| 久久精品aⅴ一区二区三区四区| 国产精品秋霞免费鲁丝片| 天堂俺去俺来也www色官网| 久久人妻熟女aⅴ| 一级毛片精品| 国产高清激情床上av| 亚洲人成伊人成综合网2020| 亚洲精品成人av观看孕妇| 亚洲精品中文字幕一二三四区| 精品国产乱子伦一区二区三区| 一级a爱片免费观看的视频| 久久九九热精品免费| 色老头精品视频在线观看| 一二三四社区在线视频社区8| 欧洲精品卡2卡3卡4卡5卡区| www.自偷自拍.com| 久久久久九九精品影院| 成人永久免费在线观看视频| 亚洲久久久国产精品| 日韩欧美在线二视频| 日本五十路高清| 后天国语完整版免费观看| 真人一进一出gif抽搐免费| 亚洲欧美精品综合久久99| 三上悠亚av全集在线观看| 99riav亚洲国产免费| 精品国产国语对白av| 国产91精品成人一区二区三区| 国产真人三级小视频在线观看| 国产三级黄色录像| 国内久久婷婷六月综合欲色啪| 亚洲成人精品中文字幕电影 | 欧美久久黑人一区二区| 亚洲第一av免费看| 久9热在线精品视频| 亚洲 欧美 日韩 在线 免费| 日本a在线网址| 看片在线看免费视频| 宅男免费午夜| 欧美一级毛片孕妇| 男人舔女人的私密视频| 国产精华一区二区三区| 黄色成人免费大全| 国产亚洲精品久久久久5区| 日日爽夜夜爽网站| 一二三四社区在线视频社区8| 中文字幕最新亚洲高清| av欧美777| 国产单亲对白刺激| 自线自在国产av| 久久九九热精品免费| 亚洲欧美激情在线| 亚洲一码二码三码区别大吗| 精品久久久精品久久久| 日韩三级视频一区二区三区| 免费久久久久久久精品成人欧美视频| 嫩草影视91久久| 一区在线观看完整版| 亚洲三区欧美一区| 精品免费久久久久久久清纯| 欧美最黄视频在线播放免费 | 大香蕉久久成人网| 手机成人av网站| 亚洲七黄色美女视频| 国产熟女xx| 男女床上黄色一级片免费看| √禁漫天堂资源中文www| 精品一区二区三卡| 老司机午夜福利在线观看视频| 久久欧美精品欧美久久欧美| 欧美人与性动交α欧美精品济南到| 成人特级黄色片久久久久久久| 久久久久国内视频| 国产精品一区二区精品视频观看| 日本a在线网址| 女人爽到高潮嗷嗷叫在线视频| 国产亚洲欧美在线一区二区| 欧美最黄视频在线播放免费 | 精品熟女少妇八av免费久了| 国产视频一区二区在线看| av网站免费在线观看视频| 欧美国产精品va在线观看不卡| 国产一区二区三区在线臀色熟女 | 中文字幕人妻丝袜一区二区| 正在播放国产对白刺激| 亚洲精品久久成人aⅴ小说| 亚洲一区高清亚洲精品| 韩国精品一区二区三区| 久久午夜亚洲精品久久| 久久国产精品影院| 欧美在线一区亚洲| 热re99久久国产66热| 色综合站精品国产| 精品高清国产在线一区| 久久久水蜜桃国产精品网| 午夜免费鲁丝| 91精品三级在线观看| 人人澡人人妻人| 美女高潮喷水抽搐中文字幕| 国产片内射在线| 久久国产精品男人的天堂亚洲| 亚洲一区高清亚洲精品| 国产亚洲精品第一综合不卡| 免费人成视频x8x8入口观看| 久久久久九九精品影院| 国产乱人伦免费视频| 啪啪无遮挡十八禁网站| 九色亚洲精品在线播放| www.www免费av| 日本黄色视频三级网站网址| 母亲3免费完整高清在线观看| 欧美精品啪啪一区二区三区| 国产成人精品无人区| 亚洲五月色婷婷综合| 麻豆国产av国片精品| 最好的美女福利视频网| 免费久久久久久久精品成人欧美视频| 欧美激情 高清一区二区三区| 国产成人免费无遮挡视频| 国产一区二区三区在线臀色熟女 | 在线观看一区二区三区| 正在播放国产对白刺激| 99热只有精品国产| 91老司机精品| 色综合站精品国产| 亚洲va日本ⅴa欧美va伊人久久| 国产精品 国内视频| av免费在线观看网站| 1024视频免费在线观看| 国产亚洲av高清不卡| 中文欧美无线码| 欧美一区二区精品小视频在线| 日本一区二区免费在线视频| 精品久久久久久久久久免费视频 | 婷婷六月久久综合丁香| 高清在线国产一区| 男女做爰动态图高潮gif福利片 | 日韩有码中文字幕| 老熟妇仑乱视频hdxx| 国产成人av教育| 乱人伦中国视频| 久久久国产成人精品二区 | 日本vs欧美在线观看视频| 人人妻,人人澡人人爽秒播| 亚洲免费av在线视频| 亚洲美女黄片视频| 大码成人一级视频| av欧美777| 级片在线观看| 老汉色av国产亚洲站长工具| 国产99久久九九免费精品| 久久久国产精品麻豆| 香蕉久久夜色| 大型av网站在线播放| 亚洲 欧美 日韩 在线 免费| 欧美人与性动交α欧美精品济南到| 亚洲av成人不卡在线观看播放网| 日韩欧美三级三区| 两个人看的免费小视频| 长腿黑丝高跟| 真人做人爱边吃奶动态| 女人高潮潮喷娇喘18禁视频| 在线观看免费日韩欧美大片| 99久久人妻综合| 国产激情久久老熟女| 亚洲成人国产一区在线观看| 中文字幕高清在线视频| 日日干狠狠操夜夜爽| 国产亚洲精品久久久久久毛片| 真人一进一出gif抽搐免费| 日韩欧美国产一区二区入口| 9191精品国产免费久久| 久久精品人人爽人人爽视色| 国产精品乱码一区二三区的特点 | 在线观看免费日韩欧美大片| 女人被躁到高潮嗷嗷叫费观| aaaaa片日本免费| av在线播放免费不卡| 亚洲欧美日韩高清在线视频| 久久中文字幕一级| 黄色成人免费大全| 久久精品91无色码中文字幕| 纯流量卡能插随身wifi吗| 欧美成人免费av一区二区三区| 亚洲成人国产一区在线观看| 亚洲午夜理论影院| 电影成人av| 三上悠亚av全集在线观看| 狂野欧美激情性xxxx| 亚洲成人国产一区在线观看| 中文字幕高清在线视频| 日韩av在线大香蕉| 久久精品91蜜桃| 99热国产这里只有精品6| 欧美在线黄色| 人妻丰满熟妇av一区二区三区| 欧美激情高清一区二区三区| 麻豆成人av在线观看| 日本wwww免费看| 在线永久观看黄色视频| 亚洲中文日韩欧美视频| 亚洲黑人精品在线| 亚洲精品成人av观看孕妇| bbb黄色大片| 国产真人三级小视频在线观看| 国产日韩一区二区三区精品不卡| 国产成人精品在线电影| 色综合婷婷激情| 又紧又爽又黄一区二区|