• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Floquet bands and photon-induced topological edge states of graphene nanoribbons?

    2021-06-26 03:04:12WeijieWang王威杰Xiaolong呂小龍andHangXie謝航
    Chinese Physics B 2021年6期
    關(guān)鍵詞:小龍

    Weijie Wang(王威杰), Xiaolong L¨u(呂小龍), and Hang Xie(謝航)

    College of Physics,Chongqing University,Chongqing,China

    Keywords: Floquet bands,graphene,topological phase transition,edge states

    1. Introduction

    In recent years, the periodically-driven systems have attracted a lot of research concerns. By using the Floquet theorem to these systems,the time-dependent system can be transformed into the steady system with the infinite-dimensional Floquet Hamiltonian. This Hamiltonian generates a serial of quasienergies due to Floquet band branches in the energy domain.[1]

    Under the light radiation,graphene-like 2D materials can obtain some topological properties,such as the photo-induced Hall effect,as well as some photo-induced energy gaps.[2]Recently, this type of Hall effect has also been experimentally observed.[3]In addition,the graphene system under illumination may exhibit edge current and magnetic field.[4]Moreover,it is experimentally and theoretically confirmed that radiated graphene has the quantum-rachet effect,which causes the unidirectional current.[5]According to the Floquet theorem, under the periodic perturbations of external fields,both graphene and the Su–Schrieffer–Heeger systems can generate unidirectional currents and various topological phases.[6,7]Besides,the light resonance may cause some suppression effect of ballistic conduction in graphene systems.[8]

    In the aspect of topological properties,researchers found that radiated graphene nanoribbons (GNR) have the dynamic gaps, in which there exist some topological chiral edge states.[9]These edge states have a bulk–edge correspondence with the topological characteristics of its bulk system.[10,11]More recently, in the Floquet researches, some high-Chernnumber systems are discovered in the systems with the complex periodic perturbations (such as quenching systems).[12]Under the high-frequency approximation, one can derive the effective Hamiltonian with one or more perturbation terms(by the Brillouin–Wigner theory)in the hexagonal lattice of twodimensional materials.[13,14]Besides, some experimental observations have also revealed the Floquet–Bloch states and the interaction with the dressed Volkov states in the topological insulator with the Dirac fermions, which established a systematic path for the coherent manipulation of solids via lightmatter interaction.[15,16]

    However,many of the current works on the topology analysis and quantum transport of radiated two-dimensional materials are based on the high-frequency approximation.[13,17–21]In the realistic graphene systems,due to the large hopping energy of 2D materials (from 1 eV to 3 eV), the corresponding high-frequency light(with the energy about above 10 eV)goes into the ultraviolet range. This is experimentally unrealistic and can result in the photon-ionization of the samples.Therefore,the low-frequency illumination is more suitable for experimental researches of Floquet electronic systems. We notice that some recent theoretical work considers the lowfrequency systems, such as the effective Hamiltonian model reported by Voglet al.[22]and the topological phase transition studies of black phosphorene by Kanget al.[23]Besides,Usajet al.[9]and Torreset al.[24]considered the frequencies smaller than the bandwidth of the Floquet topological insulator, and analyzed the edge states and the transport properties.Perez-Piskunowet al.[25]found the hierarchy of Floquet gaps and topological phase transitions in the driven honeycomb lattices with the very low driven frequencies. But the detailed investigations of the topological properties of the graphene system,as well as the edge state distributions and its relation with the photon excitations at low (or arbitrary) frequencies, still remain unexplored.

    In this paper,we use the non-perturbative Floquet Hamiltonian and Berry curvature formula to study the Chern numbers at arbitrary frequency.We find that there exist many types of photo-induced edge states and high-Chern-number states in the low frequency range,besides the ordinary quantum anomalous Hall(QAH)states with the Chern number of±1 under the high-frequency illumination. All these edge states have topological properties and follow the bulk–edge correspondence.We also find the correspondence of the Floquet bands and the edge states distributions in the decomposed photon-number space.Moreover,we investigate the size effect in zigzag GNR.

    This paper is organized as follows. Section 2 gives the theoretical introduction of this work, including the theory of the Floquet band for graphene systems and the Chern numbers calculation method. Section 3 shows our results and discussion, including the topological phase transitions of GNR, the band structures, the edge state profiles in the photo-number space,and the size/photo-number effects. Section 4 gives the conclusions of this work.

    2. Theories and methods

    2.1. Floquet–Bloch Hamiltonian for the honeycomb lattice systems

    In this work, we use the tight-binding model for the graphene system with the nearest neighbor approximation

    wherec+iandciare the electron creation and annihilation operators at sitei,εiis the on-site energy,andγi j(t)is the timedependent hopping energy between sitesiandj;〈i,j〉means the hopping only occurs between the nearest neighbors.

    We consider a beam of circularly-polarized light vertically radiated on the graphene plane. The photon–electron interaction is considered by modifying the hopping parameters with the Peierls substitution[25]

    whereΦ0=h/eis the quantum flux with the Planck constanthand elementary chargee;γ0is the hopping energy between sitesiandjwithout radiation,riandrjare the positions of the two sites; andA(t)is the vector potential of the light. In the case of the circular polarization with angular frequencyωand amplitudeA0,A(t)=A0(cosωt,sinωt);the corresponding electric field is given asE(t)=E0(?sinωt,cosωt)withE0=A0ω.

    Since the Hamiltonian of the light-driven system is periodic in time domain with the periodT,H(t)=H(t+T)andT=2π/ω,we may use the Fourier transformation to change the time-dependent Hamiltonian into the frequency domain according to the Floquet theory[1]

    whereεnis the quasienergy;HnandFnare the Fourier component of the Hamiltonian and the wave function, respectively.The former component is calculated as

    We can also write the whole HamiltonianHFin the extended Floquet–Hilbert(Sambe)space as[13]

    In practical calculations, people use the photon-number cut-off scheme to change the above infinite-dimensional Floquet matrix into some small Floquet matrix, which only includes finite Fourier components of the Hamiltonian. For example, the following Floquet Hamiltonian is cut off by one photon number(NF=1):

    Figure 1 shows the lattice of the bulk graphene. With the tight-binding approximation and the Bloch theorem, we may obtain the Hamiltonian in the momentum space

    wherekis the Bloch wavevector in two dimensions, andγ0is the hopping energy between the nearest neighboring sites.When we consider the light radiation, the Peierls substitution(Eq. (2)) is employed. The Fourier component of the timedependent Hamiltonian is calculated as

    In our case, the vector potential is approximately spatial uniform in the region of the nearest neighboring atom sites(landl')of graphene. So the hopping energy under radiation can be written as

    The vector potential of the circularly polarized light is given asA=A0(cosωt·x+sinωt·y); and the displacement between two neighboring atoms isrl'l=rl'?rl=a(cosαl'l·x+sinαl'l·y), whereαl'lis the angle betweenrl'landxaxis. Substituting these expressions into Eq.(10),we obtain

    where?l'l=αl'l ?π/2 is the angle betweenrl'landy-axis(see Fig.1,?l'lforr1,r2,andr3are 0,θ,and?θ,respectively).Then by applying the Jacobi–Anger expansion

    whereJm(x)is them-th order Bessel function, Eq.(9)can be rewritten as

    Similarly,H?1andH?2expressions can also be derived by this way.

    For the GNR system under the light radiation,we also use the Peierls substitution to Eq.(1)and use the Floquet theorem to obtain the Floquet Hamiltonian.

    Fig.1. Honeycomb lattice of graphene and GNR in the real space. The bond length is a and the dashed rectangle box denotes the unit cell of GNR(with the period b and Ny repeat units in y direction),r1,r2,and r3 are the three vectors between the nearest-neighboring sites.

    2.2. The Berry curvature and Chern number calculations

    When the Hamiltonian in the momentum space is obtained, we can calculate the Chern number, which can characterize the topological property of the Floquet system. The Chern number of then-th band is defined by an integral in the first Brillouin zone(FBZ)

    In this paper, we use a more efficient numerical method to calculate the Berry curvature and the Chern number.[26]Firstly,we define the following normalized link quantities:

    where ? is the infinitesimal shift inxorydirection;N1(k),N2(k),N12(k), andN21(k) are the corresponding normalization constants, for exampleN1(k) =|〈n(k1,k2)|n(k1+?,k2)〉|. The Chern number can be evaluated as the Berry curvature summation in the discretized FBZ

    Here we give an equivalence proof between this new formula and the original Berry curvature definition (Eq. (15)).With the Taylor expansion and ignoring the higher order, we haven(k1+?,k2)≈n(k1,k2)+?k1n(k1,k2)·?. Substituting this into Eq.(18a),we have

    Then with the Taylor expansion of logarithm function ln(1+x)≈xand Eq.(16),we obtain

    Similarly,we can prove that

    Thus we see that Eq.(20)is the discretized form of Eq.(15),and these two methods are equivalent.

    3. Results and analyzing

    In order to better describe the results, we set a fixed electric field asE0=γ0/(ea) throughout the paper. With otherE0values, we may have similar results. Figures 2(a)–2(b) show that in different driven frequencies, the graphene is in different topological phases with corresponding Chern numbers. We name the three topological phases as phase A(?ω>5.96γ0), phase B (2.92γ0≤?ω ≤5.96γ0), and phase C (1.4γ0≤?ω <2.92γ0) in Fig. 2(b). In the Floquet calculations, we need to set a proper cutoff value (NF) due to the infinite dimension of the Floquet Hamiltonian. In Fig. 2, we draw the Chern number curves as a function of different driven frequencies withNF=1 andNF=2. We can see that the Chern number curves shown in Figs.2(a)and 2(b)are coincident in the region of 1.4γ0≤?ω ≤7γ0,while they are different in the region ofγ0≤?ω <1.4γ0. In this low-frequency range,more Floquet bands(or largerNFvalue)should be used for convergence. So we may conclude that in the frequency region of ?ω ≥1.4γ0, the Chern numbers are converged withNF=1 and 2. Appendix A also shows that with ?ω=1.4γ0,the band structures of GNR are converged only whenNF≥2. In this work, we just focus on the region of 1.4γ0≤?ω ≤7γ0, and we takeNF=2 throughout this paper. Figures 2(c) and 2(d)show the Berry curvature distributions withNF=2 and different ?ωvalues. We can see that all the Berry curvature peaks are around the Dirac points.

    Fig.2. Chern-number phase diagrams with(a)NF=1 and(b)NF=2. Berry curvature distributions with different driven frequencies[(c)?ω=2γ0,(d)?ω=3.5γ0]in the Floquet graphene system(E0=γ0/(ea)).

    In Fig.2,there are three topological phases in the region of 1.4γ0≤?ω ≤7γ0, with the Chern numbers of 2, 3, and 1. For zigzag GNR systems,these topological phases also exhibit the bulk–edge correspondence from the band structures.Figures 3(a)–3(c)show the results. We can see that under the radiation,there appear some edge-state bands across the original gap near the zero energy (called as 0-gap). And there appears a new dynamic gap aroundE=±?ω/2 with some edge-state bands across this gap.[9]This new gap results from the anti-crossing of the two intersecting band replicas(with the photon numbersn=0 andn=±1),due to the coupling Floquet matrices. This gap is called theπ-gap since it is similar to the gaps near the Brillouin zone boundary.[22]In Fig.3(a),with ?ω= 7γ0we see that there just exists one edge state(red line) within 0-gap in the upper GNR edge. In Fig. 3(b)with ?ω=4γ0,there are not only one pair of edge-state bands within 0-gap,but also two pairs of edge-state bands withinπg(shù)ap. And in Fig.3(c),there are two types of edge states bands within 0-gap(one in the middle and one at the two sides of the band range[0,2π/b]).

    Here we show that the bulk–edges correspondence also holds in the graphene system under different radiation frequencies.We define the net chirality of edge states in the upper edge as the winding number,denoted asW0(in 0-gap)andWπ(inπ-gap). The net chirality is the sum of the edge-state numbers, which is positive for the positive slope of the band; and negative for the negative slope of the band. Then we calculatec=Wπ ?W0, wherecis the Chern number of the band between 0-gap andπ-gap.[10,27]Table 1 lists all these quantities in the three phases. We can see that the calculated Chern numbers agree well with our numerical results in Fig.2(b).

    Table 1. The winding numbers and Chern numbers in different topological phases of GNR.

    Fig.3. Quasienergy spectra of zigzag GNR with the size Ny=40 at different driven frequencies: (a)?ω =7γ0;(b)?ω =4γ0;(c)?ω =2γ0. The red lines denote the upper-edge states,and the blue lines denote the lower-edge states.

    Fig.4.Projected 2D band structures of Floquet graphene system with different frequencies(ky=0):(a)?ω=6.5γ0,(b)?ω=5.96γ0,(c)?ω=4γ0,(d)?ω =2.92γ0,(e)?ω =2.5γ0. The different colors denote different Floquet bands,for example,blue: n=0;red: n=1;black: n=?1;green:n=2. The circles in(b)and(d)denote the band close(touching)regions between n=0 and n=1,or n=?1 and n=1 replicas,respectively.

    In order to explain the topological phase transition as a function of frequency,we show the Floquet band structures in Fig.4. We use the projected band structures from the 2D Floquet bands for a clear view. In Ref.[28], it was reported that the 0-gap orπ-gap close and reopening means the occurrence of a topological phase transition. In Fig. 4(a), the frequency lies in the phase A range (see Fig. 2(a)). It shows that there is almost no coupling betweenn= 0 andn= 1 (?1) Floquet bands(replica). Then as the driven frequency decreases,the Floquet bands approach to each other and in some critical stage,n=0 andn=1 (?1) replicas tend to get touched and theπ-gap almost closes(Fig.4(b)). But when further reducing the frequency,theπ-gap is reopened(Fig.4(c)),which means the topological phase transition(from phaseAto phaseB)happens. From the colored bands in Fig.4(c), we can see that then=1 andn=0 Floquet bands are intersected nearπ-gap and are anti-crossed near the cross-points. With the similar analysis,from Figs.4(c)–4(e),there exists a gap close and reopening near 0-gap. Therefore,phase B is transformed into phase C.In Fig.4(e), we also see that the corresponding coupled (hybrid) band near 0-gap is withn=1 andn=?1 replicas. As will be seen in Fig. 5 later, these coupled Floquet bands will result in different edge state distributions in the decomposed photon-number space.

    Fig. 5. Electron density distribution of edge states in GNR in the decomposed photon-number space (Ny =40) (a) The edge states in 0-gap with ?ω =7γ0. (b)The edge states in π-gap with ?ω =4γ0. (c)The edge states in the side parts of 0-gap with ?ω =2γ0. The red lines denote the situation of dE/dk >0,and the blue lines denote dE/dk <0.

    Next we show the electron density distribution in the decomposed photon-number space to analyze the origin of the edge states. In Fig. 5(a), the density distribution of the edge states within 0-gap (shown in Fig. 3(a)) only exists inn=0 Floquet photon number space,which means there is no photon resonance. In Fig.5(b),we plot the density distributions of the edge states withinπ-gap(shown in Fig.3(b)).We find they exist inn=0 andn=1 photon number space,which clearly indicates that the edge states originate from the one-photon resonance of the light. It also agrees with the hybrid 2D Floquet bands in Fig. 4(c), wheren=0 andn=1 replica bands are coupled and anti-crossed nearπ-gap. Similarly, in Fig. 5(c),the density distribution with respect to the edge states within 0-gap in Fig. 3(c) mostly exists inn=?1 andn=1 photon number space and only a small amount inn=0 photon number space, which means the edge states are mainly from the two-photons resonance and secondarily from two constructive one-photon resonances. We notice that Kang,Park and Moon also found such resonances in the Floquet bands of black phosphorene systems recently.[23]And these edge-state density distributions are also consistent with the hybrid 2D Floquet bands in Fig.4(e).

    At last, we give a discussion on the size effect of these Floquet edge states. All the band structures in Fig. 6 are in phase B. When ?ω=5γ0, we find with increasing the ribbon width,theπ-gap and the edge states in this gap are gradually formed(see Figs.6(a)–6(c)). From this,we see that although there existsπ-gap for bulk graphene as long as the frequency lies in the phase B range (2.92γ0≤?ω ≤5.96γ0), the GNR band can exhibit this gap and the corresponding edge states only with the large-enough ribbon width. We also observe this size effect for the frequency ofω=5.8γ0(Figs. 6(d)–6(f)).Compared to the ones in Figs. 6(a)–6(c), a larger width is needed to generate theπ-gap and the edge states since the frequency is close to the topological transition point (?ω=5.96γ0). So the size effect plays an important role in the GNR Floquet systems,especially for the frequency close to the transition point.

    Fig.6. Size effect for energy bands of GNR under light radiation with different ribbon widths: (a)–(c)?ω=5γ0,(d)–(f)?ω=5.8γ0.

    4. Conclusion

    To summarize,we have investigated the phase transitions of graphene under light irradiation,and verified the bulk–edge correspondence by calculating the Chern number and analyzing the winding numbers of edge states in the Floquet gaps.We also have used the projected 2D Floquet bands and GNR

    1D bands to analyze its density distributions in the decomposed photon-number space. The origin of the Floquet edge states has been discussed. The size effect in the GNR system is important and becomes strengthened when the driven frequency is close to the phase transition point.

    Appendix A

    To further demonstrate the reliability of our calculations,we give an example for the photon number convergence in GNR band calculations. We use differentNFvalues and plot the corresponding GNR bands below. The low driven frequency (?ω=1.4γ0) on the lower boundary of phase range C is used.

    In Fig. A1, we see that the Floquet band withNF=2 is almost as the same as that withNF=3. ButNF=1 is vastly different, especially inπ-gap. Let us explain it more theoretically. In the Floquet Hamiltonian matrix(Eq.(5)),the coupling matrix elementHnis proportional to the Bessel functions of the first kindHn∝Jn(z)withz=eA0a/?.

    Fig. A1. Quasienergy spectra of zigzag GNR (Ny =40) with different NF values: (a)NF =1; (b)NF =2; (c)NF =3. The corresponding parameters E0=γ0/(ea)and ?ω =1.4γ0.

    Becausez=E0/?ω ≈0.7 in our example, we see thatJn(z)is small enough to be ignored when|n|≥2(Fig.A2(b)).Then according to Fig.A1,we can conclude that the result ofNF=2 is reliable enough with 1.4γ0≤ω ≤7γ0. Meanwhile,we emphasize here that there needs an even largerNFvalue to insure the accuracy and converge of Floquet band calculation when the driven frequency is further smaller. The cut-off value can be estimated from the Bessel function variations in Fig.A2.

    Fig.A2. (a)The behaviors of the Bessel functions of the first kind(Jn(z),n ∈[0,4]). (b)The Bessel functions Jn(0.7)with different n values.

    猜你喜歡
    小龍
    《小龍的假日》
    El regreso del dragón
    Erratum to“Floquet bands and photon-induced topological edge states of graphene nanoribbons”
    Contagion dynamics on adaptive multiplex networks with awareness-dependent rewiring*
    小小小小龍
    新書架
    河南電力(2017年1期)2017-11-30 03:04:23
    劉小龍
    董小龍赴寶雞市宣講黨的十八屆六中全會(huì)精神
    讓“數(shù)”“形”結(jié)合更暢通
    風(fēng)中的祈禱詞
    詩(shī)選刊(2015年4期)2015-10-26 08:45:28
    久久久久久久久中文| 中文在线观看免费www的网站| 日产精品乱码卡一卡2卡三| 秋霞在线观看毛片| 国产蜜桃级精品一区二区三区| 搞女人的毛片| 欧美一级a爱片免费观看看| 高清在线视频一区二区三区 | 少妇人妻一区二区三区视频| 国产成人精品久久久久久| 成人亚洲欧美一区二区av| 伦精品一区二区三区| 免费av观看视频| 国产欧美日韩精品一区二区| 日韩大尺度精品在线看网址| 国产综合懂色| 尤物成人国产欧美一区二区三区| 亚洲久久久久久中文字幕| 欧美成人精品欧美一级黄| 亚洲精品456在线播放app| 午夜精品国产一区二区电影 | 久99久视频精品免费| 好男人在线观看高清免费视频| 日韩亚洲欧美综合| 亚洲欧美中文字幕日韩二区| 国产精品一区www在线观看| 欧美xxxx性猛交bbbb| 亚洲成人久久爱视频| av女优亚洲男人天堂| 免费观看的影片在线观看| 在线观看美女被高潮喷水网站| 日韩强制内射视频| 国产精品三级大全| 一级毛片电影观看 | 深夜a级毛片| 蜜臀久久99精品久久宅男| 亚洲精品日韩av片在线观看| 欧美日韩精品成人综合77777| 在线观看一区二区三区| 国产精品久久久久久精品电影| 国产精品人妻久久久影院| 日韩欧美三级三区| 九九热线精品视视频播放| 99久久无色码亚洲精品果冻| 亚洲精品久久国产高清桃花| 免费av不卡在线播放| 久久久久久久久久久免费av| 久久精品91蜜桃| 亚洲成人久久性| 自拍偷自拍亚洲精品老妇| 午夜a级毛片| 又粗又硬又长又爽又黄的视频 | 国产精品一区www在线观看| 欧美色欧美亚洲另类二区| 99久久成人亚洲精品观看| 看片在线看免费视频| 一个人看视频在线观看www免费| 老熟妇乱子伦视频在线观看| 男的添女的下面高潮视频| 日本与韩国留学比较| 精品一区二区免费观看| 少妇的逼好多水| 一夜夜www| 久久午夜福利片| 禁无遮挡网站| 午夜爱爱视频在线播放| 秋霞在线观看毛片| 中文字幕制服av| 一级毛片aaaaaa免费看小| 小蜜桃在线观看免费完整版高清| 91精品一卡2卡3卡4卡| 国产毛片a区久久久久| 久久精品国产亚洲av涩爱 | 在线观看美女被高潮喷水网站| 美女内射精品一级片tv| 性色avwww在线观看| 久久久色成人| 日韩 亚洲 欧美在线| 青春草国产在线视频 | 国产成人一区二区在线| 亚洲在久久综合| 大香蕉久久网| 人体艺术视频欧美日本| 我的老师免费观看完整版| 亚洲精品亚洲一区二区| 亚洲欧美成人综合另类久久久 | 久久亚洲精品不卡| 国产精品一及| 久久久久久国产a免费观看| 综合色丁香网| 日本一二三区视频观看| 亚洲欧美中文字幕日韩二区| 国产亚洲欧美98| 观看免费一级毛片| 久久久欧美国产精品| 国产精品一区二区三区四区免费观看| 在线a可以看的网站| 边亲边吃奶的免费视频| 亚洲精品日韩av片在线观看| 99热只有精品国产| 听说在线观看完整版免费高清| 少妇裸体淫交视频免费看高清| 69av精品久久久久久| 亚洲欧美日韩高清专用| 嘟嘟电影网在线观看| 亚洲第一电影网av| 波多野结衣巨乳人妻| 亚洲最大成人中文| 99视频精品全部免费 在线| 午夜福利高清视频| ponron亚洲| av国产免费在线观看| 中文精品一卡2卡3卡4更新| 九色成人免费人妻av| 亚洲七黄色美女视频| 亚洲av免费高清在线观看| 少妇人妻精品综合一区二区 | 精品久久久久久久人妻蜜臀av| av在线亚洲专区| 欧美最新免费一区二区三区| 国产高潮美女av| 国产精品福利在线免费观看| 日韩欧美三级三区| 日韩成人av中文字幕在线观看| 一边摸一边抽搐一进一小说| 乱系列少妇在线播放| 夜夜夜夜夜久久久久| 精品久久久久久久久久久久久| 国产伦精品一区二区三区四那| 国产成人freesex在线| 夜夜看夜夜爽夜夜摸| 少妇被粗大猛烈的视频| 哪个播放器可以免费观看大片| 成人国产麻豆网| 亚洲欧洲日产国产| 日韩av在线大香蕉| 在线免费十八禁| 一卡2卡三卡四卡精品乱码亚洲| 国产大屁股一区二区在线视频| 97超碰精品成人国产| 国产熟女欧美一区二区| 波多野结衣高清无吗| 免费av毛片视频| 成人漫画全彩无遮挡| 欧美成人一区二区免费高清观看| 热99re8久久精品国产| 国产亚洲av片在线观看秒播厂 | 久久精品久久久久久噜噜老黄 | 日韩亚洲欧美综合| 又爽又黄无遮挡网站| 国产在线精品亚洲第一网站| 国产精品乱码一区二三区的特点| 精品熟女少妇av免费看| 日韩一本色道免费dvd| 色噜噜av男人的天堂激情| 一边亲一边摸免费视频| 久久6这里有精品| 乱系列少妇在线播放| 精品人妻一区二区三区麻豆| 小蜜桃在线观看免费完整版高清| 波野结衣二区三区在线| 日本五十路高清| 国产精品一区二区三区四区久久| 丝袜美腿在线中文| a级毛色黄片| 成人美女网站在线观看视频| 在线播放无遮挡| 国内少妇人妻偷人精品xxx网站| 欧美bdsm另类| 狂野欧美激情性xxxx在线观看| 久久久久九九精品影院| 中出人妻视频一区二区| 精品久久久久久久人妻蜜臀av| 欧美区成人在线视频| 成人三级黄色视频| 国产亚洲91精品色在线| 欧美zozozo另类| 国产片特级美女逼逼视频| 亚洲av不卡在线观看| 欧美最黄视频在线播放免费| 人人妻人人澡人人爽人人夜夜 | 成人午夜高清在线视频| 久久久久性生活片| 午夜福利成人在线免费观看| 看片在线看免费视频| 全区人妻精品视频| 3wmmmm亚洲av在线观看| 欧美一区二区亚洲| 久久九九热精品免费| 中文字幕免费在线视频6| 欧美高清成人免费视频www| 12—13女人毛片做爰片一| 久久精品久久久久久噜噜老黄 | 一夜夜www| 日韩 亚洲 欧美在线| 国产日韩欧美在线精品| 国产高清不卡午夜福利| 搡女人真爽免费视频火全软件| 卡戴珊不雅视频在线播放| 亚洲欧美中文字幕日韩二区| 久久久a久久爽久久v久久| 人体艺术视频欧美日本| 免费av不卡在线播放| 色哟哟哟哟哟哟| 久久精品夜夜夜夜夜久久蜜豆| 国产成人福利小说| 美女黄网站色视频| 在线免费观看的www视频| 亚州av有码| 亚洲国产精品成人综合色| 亚洲成人久久爱视频| 成人二区视频| 蜜桃亚洲精品一区二区三区| 日本一本二区三区精品| 亚洲最大成人中文| 日本与韩国留学比较| 中文字幕熟女人妻在线| 少妇人妻精品综合一区二区 | 精品不卡国产一区二区三区| 国产一区二区在线观看日韩| 国产成人福利小说| 久久久久网色| 黄色欧美视频在线观看| 国产精品1区2区在线观看.| 国产不卡一卡二| 91在线精品国自产拍蜜月| 桃色一区二区三区在线观看| 免费观看精品视频网站| 天堂中文最新版在线下载 | 国产精品久久久久久av不卡| 久久久久网色| 国产高清三级在线| www.av在线官网国产| 国产人妻一区二区三区在| 国产高清视频在线观看网站| 国产精品精品国产色婷婷| 国产淫片久久久久久久久| 精品久久久久久久久久久久久| 国产免费男女视频| av在线观看视频网站免费| 国产成人精品婷婷| 亚洲va在线va天堂va国产| 国产精品久久电影中文字幕| 精品少妇黑人巨大在线播放 | 国产伦在线观看视频一区| 久久欧美精品欧美久久欧美| 国产精品三级大全| 一本一本综合久久| 级片在线观看| 小说图片视频综合网站| 久久精品夜夜夜夜夜久久蜜豆| 日韩av在线大香蕉| 精品日产1卡2卡| 特级一级黄色大片| 蜜臀久久99精品久久宅男| 国产精品国产三级国产av玫瑰| 欧美在线一区亚洲| 男人狂女人下面高潮的视频| 日韩亚洲欧美综合| 亚洲精品色激情综合| 国产伦一二天堂av在线观看| 国内揄拍国产精品人妻在线| 插阴视频在线观看视频| 小蜜桃在线观看免费完整版高清| 观看免费一级毛片| 九草在线视频观看| 日韩中字成人| 亚洲aⅴ乱码一区二区在线播放| 高清毛片免费看| 99久久九九国产精品国产免费| 亚洲国产精品sss在线观看| 一夜夜www| 精品日产1卡2卡| 久久久久国产网址| 99久久精品热视频| 国产精品久久视频播放| 亚洲精品乱码久久久v下载方式| 国产精品.久久久| 国产一区二区在线观看日韩| av卡一久久| 乱码一卡2卡4卡精品| av.在线天堂| 国产精品人妻久久久影院| 能在线免费观看的黄片| 国产伦精品一区二区三区四那| 中文字幕av成人在线电影| 综合色av麻豆| 热99re8久久精品国产| 中文字幕av在线有码专区| 2021天堂中文幕一二区在线观| 青春草亚洲视频在线观看| 啦啦啦啦在线视频资源| 尾随美女入室| 成人国产麻豆网| 一级毛片我不卡| 乱码一卡2卡4卡精品| 国产免费一级a男人的天堂| 国产国拍精品亚洲av在线观看| 久久国内精品自在自线图片| 国产高清三级在线| 欧美精品一区二区大全| 国产视频首页在线观看| 欧美成人免费av一区二区三区| 婷婷精品国产亚洲av| 国产一区亚洲一区在线观看| 麻豆国产av国片精品| 欧美变态另类bdsm刘玥| 人人妻人人澡欧美一区二区| 亚洲av一区综合| 国产久久久一区二区三区| 99视频精品全部免费 在线| 91麻豆精品激情在线观看国产| 亚洲国产精品成人久久小说 | 亚洲成人精品中文字幕电影| 午夜亚洲福利在线播放| 99久国产av精品| 亚洲中文字幕日韩| 久久久精品94久久精品| 国产日本99.免费观看| h日本视频在线播放| 亚洲精品色激情综合| 国产美女午夜福利| 国产探花极品一区二区| 男人舔女人下体高潮全视频| 国产成人影院久久av| 国产探花在线观看一区二区| 亚洲精品亚洲一区二区| av在线播放精品| 特大巨黑吊av在线直播| 国产黄片美女视频| 91麻豆精品激情在线观看国产| 成人av在线播放网站| 欧美人与善性xxx| 菩萨蛮人人尽说江南好唐韦庄 | 色综合站精品国产| 国产视频内射| 岛国毛片在线播放| 国产精品一及| 亚洲人成网站在线播| 国产亚洲精品av在线| 国产三级在线视频| 美女内射精品一级片tv| 日韩一区二区视频免费看| 91aial.com中文字幕在线观看| 卡戴珊不雅视频在线播放| 日韩欧美国产在线观看| 国产一级毛片七仙女欲春2| 国产精品日韩av在线免费观看| 久久精品国产亚洲网站| 国产伦一二天堂av在线观看| 免费av毛片视频| 韩国av在线不卡| 岛国毛片在线播放| 亚洲av免费在线观看| 中文字幕精品亚洲无线码一区| 中国美白少妇内射xxxbb| 国产一区二区三区av在线 | 国产白丝娇喘喷水9色精品| 我的女老师完整版在线观看| 午夜爱爱视频在线播放| 日韩在线高清观看一区二区三区| 一区福利在线观看| 老司机影院成人| 内射极品少妇av片p| 国产蜜桃级精品一区二区三区| 国产真实乱freesex| 日韩欧美在线乱码| 亚洲美女视频黄频| 男人和女人高潮做爰伦理| 欧美变态另类bdsm刘玥| 少妇被粗大猛烈的视频| 春色校园在线视频观看| 国产午夜精品一二区理论片| 日韩精品有码人妻一区| 国产真实乱freesex| 岛国毛片在线播放| 综合色av麻豆| 直男gayav资源| 精品人妻偷拍中文字幕| 一级毛片久久久久久久久女| 高清在线视频一区二区三区 | 一个人看视频在线观看www免费| 国产精品久久久久久精品电影| 国产精品一区www在线观看| 国产伦理片在线播放av一区 | 久久午夜亚洲精品久久| 日韩欧美国产在线观看| 男人舔奶头视频| 精品久久久久久久末码| 97超碰精品成人国产| 国内揄拍国产精品人妻在线| 国产淫片久久久久久久久| 人妻制服诱惑在线中文字幕| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 99久久无色码亚洲精品果冻| 国产在线男女| 久久久久久伊人网av| 国产日本99.免费观看| 成人亚洲欧美一区二区av| 九色成人免费人妻av| 亚洲图色成人| 国产伦理片在线播放av一区 | 天天躁日日操中文字幕| 亚洲精华国产精华液的使用体验 | 又爽又黄a免费视频| 亚洲精品久久久久久婷婷小说 | 狂野欧美激情性xxxx在线观看| 午夜久久久久精精品| 成人国产麻豆网| 免费看av在线观看网站| 91久久精品电影网| 在线免费观看的www视频| 三级毛片av免费| 人体艺术视频欧美日本| 乱人视频在线观看| 国产精品麻豆人妻色哟哟久久 | 看黄色毛片网站| 久久精品国产亚洲av香蕉五月| 好男人视频免费观看在线| 特级一级黄色大片| 中文精品一卡2卡3卡4更新| 欧美成人免费av一区二区三区| 边亲边吃奶的免费视频| 国产高清有码在线观看视频| 成人欧美大片| 99热网站在线观看| 蜜桃亚洲精品一区二区三区| 久久久久久九九精品二区国产| 欧美xxxx黑人xx丫x性爽| 伦精品一区二区三区| 长腿黑丝高跟| 亚洲精品乱码久久久v下载方式| 亚洲精品日韩在线中文字幕 | 日本成人三级电影网站| 狠狠狠狠99中文字幕| 亚洲成av人片在线播放无| 国产成人福利小说| 黑人高潮一二区| 国产精品久久电影中文字幕| 2022亚洲国产成人精品| 给我免费播放毛片高清在线观看| 大香蕉久久网| 美女xxoo啪啪120秒动态图| 国产成人精品一,二区 | 麻豆国产av国片精品| 99精品在免费线老司机午夜| 婷婷色综合大香蕉| 非洲黑人性xxxx精品又粗又长| 寂寞人妻少妇视频99o| 成人亚洲欧美一区二区av| 欧美三级亚洲精品| 欧美在线一区亚洲| 中国美白少妇内射xxxbb| 亚洲欧洲日产国产| 日韩大尺度精品在线看网址| 国产高清激情床上av| 久久久久网色| 免费无遮挡裸体视频| 99九九线精品视频在线观看视频| 欧美潮喷喷水| av免费在线看不卡| 亚洲人成网站在线播| 91aial.com中文字幕在线观看| 简卡轻食公司| 精品不卡国产一区二区三区| av卡一久久| 岛国毛片在线播放| 免费看美女性在线毛片视频| 日韩一区二区视频免费看| 五月玫瑰六月丁香| 别揉我奶头 嗯啊视频| 国产一区二区三区av在线 | 国产女主播在线喷水免费视频网站 | 亚洲高清免费不卡视频| 国产免费男女视频| a级毛片a级免费在线| 亚洲在线观看片| 精品一区二区免费观看| 亚洲av电影不卡..在线观看| av天堂在线播放| 51国产日韩欧美| ponron亚洲| 99久国产av精品国产电影| 三级经典国产精品| 精品免费久久久久久久清纯| 亚洲人成网站在线观看播放| 精品午夜福利在线看| 十八禁国产超污无遮挡网站| 日韩制服骚丝袜av| 中文字幕免费在线视频6| 亚洲欧美日韩无卡精品| 美女 人体艺术 gogo| 两个人的视频大全免费| 久久国内精品自在自线图片| 女同久久另类99精品国产91| 欧美成人a在线观看| 黄色一级大片看看| 欧美日韩乱码在线| 久久久欧美国产精品| 国产一区二区亚洲精品在线观看| 日本一本二区三区精品| 久久婷婷人人爽人人干人人爱| 久久草成人影院| 村上凉子中文字幕在线| 99热全是精品| 此物有八面人人有两片| 精品人妻熟女av久视频| 身体一侧抽搐| 老司机影院成人| 国产极品精品免费视频能看的| 在线观看午夜福利视频| 黄色日韩在线| 国产高清有码在线观看视频| 亚洲,欧美,日韩| 麻豆国产97在线/欧美| 亚洲精品456在线播放app| 国产午夜福利久久久久久| 亚洲精品影视一区二区三区av| 黄色欧美视频在线观看| 91av网一区二区| 精品日产1卡2卡| 18禁黄网站禁片免费观看直播| 国产精品蜜桃在线观看 | or卡值多少钱| 久久久欧美国产精品| av在线天堂中文字幕| 欧美日韩国产亚洲二区| 美女xxoo啪啪120秒动态图| 国产成人一区二区在线| 青春草亚洲视频在线观看| 在线播放无遮挡| 一级毛片久久久久久久久女| 成人永久免费在线观看视频| 免费大片18禁| 国产免费男女视频| 美女xxoo啪啪120秒动态图| 熟妇人妻久久中文字幕3abv| 国产黄色小视频在线观看| 亚洲国产日韩欧美精品在线观看| 欧美性猛交黑人性爽| 亚洲丝袜综合中文字幕| 久久精品综合一区二区三区| 看片在线看免费视频| 美女xxoo啪啪120秒动态图| 日韩国内少妇激情av| 日日摸夜夜添夜夜爱| 国产精品.久久久| 欧美成人一区二区免费高清观看| 成人亚洲欧美一区二区av| 99久久无色码亚洲精品果冻| 亚洲色图av天堂| 欧美在线一区亚洲| 在线a可以看的网站| 69av精品久久久久久| 天天一区二区日本电影三级| av视频在线观看入口| 成年版毛片免费区| 欧美在线一区亚洲| 三级经典国产精品| 亚洲五月天丁香| 国产精品一区二区在线观看99 | 赤兔流量卡办理| 中文字幕熟女人妻在线| 中国美白少妇内射xxxbb| av在线天堂中文字幕| 亚洲成av人片在线播放无| 亚洲av第一区精品v没综合| 黄色配什么色好看| videossex国产| 身体一侧抽搐| 久久午夜福利片| 国产精品一区二区在线观看99 | 成人一区二区视频在线观看| 久久久久久国产a免费观看| 日韩在线高清观看一区二区三区| 精品免费久久久久久久清纯| 三级经典国产精品| 国产精华一区二区三区| 国产精品综合久久久久久久免费| 最近2019中文字幕mv第一页| 亚洲欧美日韩无卡精品| 亚洲美女搞黄在线观看| 日韩三级伦理在线观看| 亚洲人成网站在线观看播放| 综合色丁香网| 欧美最新免费一区二区三区| 亚洲四区av| 日韩精品青青久久久久久| 久久久国产成人精品二区| avwww免费| 国模一区二区三区四区视频| 亚洲中文字幕一区二区三区有码在线看| 久久久久网色| 国产亚洲5aaaaa淫片| 午夜福利成人在线免费观看| 国产成人91sexporn| 欧美一级a爱片免费观看看| 久久精品综合一区二区三区| 国产伦一二天堂av在线观看| 国产精品久久久久久av不卡| 亚洲欧美精品自产自拍| 三级毛片av免费| 97人妻精品一区二区三区麻豆| 国内久久婷婷六月综合欲色啪| 久久精品影院6| 中文资源天堂在线| а√天堂www在线а√下载| 亚洲经典国产精华液单| 久久久色成人| 日产精品乱码卡一卡2卡三| 成熟少妇高潮喷水视频| 免费电影在线观看免费观看| 美女被艹到高潮喷水动态| 一个人免费在线观看电影| 夫妻性生交免费视频一级片|