• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Crystallization evolution and relaxation behavior of high entropy bulk metallic glasses using microalloying process

    2021-06-26 03:05:00DanhongLi李丹虹ChangyongJiang江昌勇HuiLi栗慧andMahanderPandey
    Chinese Physics B 2021年6期

    Danhong Li(李丹虹) Changyong Jiang(江昌勇) Hui Li(栗慧) and Mahander Pandey

    1Changzhou Institute of Technology,Changzhou 213000,China

    2Department of Materials Science and Metallurgical Engineering,Heydarabad 502258,India

    Keywords: metallic glasses,disordered structures,amorphous materials,relaxation

    1. Introduction

    High entropy bulk metallic glasses (HEBMGs) are a new class of metallic alloys that simultaneously inherit the unique properties of crystalline high entropy alloys and attractive structural features of metallic glasses.[1–5]Compared to conventional BMGs, this novel metallic alloy has a more homogeneous atomic arrangement with large configuration entropy.[6–8]Moreover, the serration sizes in loaddisplacement curves,which are an indicator of shear band formation and propagation,are significantly smaller,showing the homogenous plasticity of HE-BMGs.[9,10]However,considering the same constituents, the HEBMGs possess a low glassforming ability (GFA) and marred thermal stability. Due to this fact, the design of HE-BMGs has been restricted to few chemical compositions. Therefore, the identification of the glass formation mechanism and relaxation behavior of HEBMGs is of great importance for engineering novel materials with varied alloying compositions and outstanding properties.There are several works focusing on the study of inherent features of HEBMGs.[11–15]Duanet al.[16]indicated that the shear modulus relaxation data could be employed to evaluate the effects of structural relaxation, glass transition, and crystallization in TiZrHfCuNiBe alloy. Guet al.[17]found that the relaxation enthalpy monotonically enhanced with the application of cryogenic cycling treatment. Yinet al.[18]investigated the atomic structure of GdTbCoAl alloy and found that the cryogenic environment would decrease the bond lengths of the large atom–small atom and small atom–small atom pairs,while large atom–large atom pairs unexpectedly enhanced.

    In order to evaluate a septenary HEBMG,Wadaet al.[19]fabricated a ZrHfTiAlCoNiCu BMG system with excellent GFA, which makes the critical thickness of 18 mm possible. Tonget al.[20]discovered that the tiny defect concentration in the HEBMGs led to the small Newtonian viscosities compared to their conventional counterparts. Jinet al.[21]reported that the substitution of Cu by Ni in TiZrHfBeCu alloy could improve the GFA properties. However, it deteriorates the thermal stability and introduces undesired crystalline phases.Bizhanovaet al.[22]designed a near-equiatomic HEBMG with excellent GFA and revealed that the crystallization evolution shows both characteristics of traditional BMGs and equiatomic HEBMGs. In another study, it was unveiled that the low fragility in HEBMGs hampers micro-forming and thermoplastic formability.[23]The evaluation of physical properties and plasticity are other topics,which have been investigated by researchers.[24,25]

    Although several works have investigated the inherent properties of HEBMGs,their crystallization evolution and relaxation behaviors are still research highlights in this field.The minor addition process is one of the main techniques providing novel BMGs with improved characteristics.[26,27]For example, Samavatianet al.[28]added different elements with negative heat of mixing into the Zr-Co-Al system and found that the minor addition improved the GFA of ZrCoAl BMGs; however, the level of improvement strongly relied on the atomic size of trace element. On the other hand,an added element with positive heat of mixing might also enhance the GFA in BMGs. It was revealed that Nb minor addition into the ZrCu-based metallic glass enhanced the GFA by strong interaction between Zr and Nb atoms causing shorter metallic bonds.[29,30]In another work, it was reported that the Sn minor addition into TiZrHfCuBe BMG led to the improvement of GFA and plasticity through the promotion of chemical heterogeneity.[7]Positive heat of mixing in Sn–Cu(Be)pairs is the main reason for the intensification of chemical heterogeneity in this system.Liet al.[31]also showed that the minor addition improved the mechanical properties of HEBMGs. Consequently,in this work,we try to show that how the minor addition of elements,including positive or negative heat of mixing,into a high entropy system alters the dynamic relaxation and crystallization evolution in a HEBMG system.

    2. Materials and methods

    The ingots with nominal chemical compositions of Zr20Cu20Ni20Ti20Hf20?x(Al,Nb)x=2were prepared by arc remelting process with high-purity elements under a Ti-gettered argon environment. As observed in Table 1, the Al and Nb elements were selected to induce negative and positive heat of mixing in the master alloying composition, respectively.The copper mold suction casting was then used to fabricate HEBMGs in the form of rods with 3 mm diameter and 4 cm length. X-ray diffraction (XRD) test was performed to ensure the amorphousness of samples. Using a differential scanning calorimeter (DSC), the thermal behavior of samples under a heating rate of 20 K/min and an argon atmosphere was evaluated. Applying the DMA Q800 TA instrument, the dynamic mechanical analysis (DMA) was carried out under a nitrogen atmosphere. In this test, the loss modulus (E'') and storage modulus(E')were measured in the temperature range of 350 K to 700 K at the frequency of 1 Hz and a constant heating rate of 3 K/min, where the sample was bent by the drive shaft. Moreover,a frequency range of 1 Hz to 16 Hz was applied to obtain activation energy of relaxation in HEBMGs. In the current test, BMG samples were provided by electric discharge machining with dimensions of 30 mm×2 mm×1 mm from the reference rod. To measure the viscosity changes in the super-cooled liquid region,a thermal mechanical analyzer(TMA)under purified nitrogen, a constant load of 5 N,and a heating rate 10 K/min was performed. It should be noted that the diameter and length of samples in the TMA test were 3 mm and 6 mm,respectively.

    Table 1.The heat of mixing(KJ/mol)for Al,Nb–X pairs in the alloying compositions.

    3. Results and discussion

    3.1. Primary characterizations

    The initial step in our work is to justify that the microalloying process does not alter the microstructural features of HEBMGs. As given in Fig. 1(a), the XRD patterns show a diffuse scattering trend with a broad peak in the range of 2θ=37?–40?for all samples. Hence, it can be concluded that the structure remains amorphous after a minor addition.Figure 1(b) shows the DSC curves for all the samples under a heating rate of 20 K/min in the temperature range of 500–900 K. According to thermal properties, it was detected that the microalloying process changed the crystallization behavior in the amorphous system. Al element with negative heat of mixing altered the crystallization evolution so that the low-temperature crystallization peak was intensified,while Nb addition with positive heat of mixing strengthened the hightemperature crystallization peak and led to the appearance of a third crystallization peak at 827 K in the DSC curves. In the following, the crystallization behaviors will be discussed in detail. As given in Table 2,it is observed that the minor addition leads to improvement of thermal stability in the HEBMGs. Although the crystallization peaks shift to the higher temperatures, the glass transition temperature shows a slight decrease, which is an indicator of thermal stability in the designed HEBMGs.

    Fig. 1. (a) XRD patterns and (b) DSC curves for HEBMG samples.

    Table 2. Thermal characteristics extracted from DSC curves.

    3.2. Structural relaxation features

    Under a driving frequency of 1 Hz and a heating rate of 3 K/min, the DMA analysis was carried out, and the relation between energy and temperature was obtained. Figure 2(a)indicates loss modulus variations of the HEBMG as a function of temperature. The hightemperature peak is related toαrelaxation, while the lowtemperature wing, adjacent toαrelaxation, indicates slowβrelaxation. It should be noted that there are limited chemical compositions showing distinctiveβrelaxation in their thermal spectra,[32]while a huge number of glassy compositions show a slight wing as the lowtemperature relaxation. To separate the relaxation events, we used a de-convoluting technique in the MATLAB environment based on peak positions and energy distribution(see Fig.2(a)).As illustrated in Figs.2(b)–2(c),the minor addition leads to a significant change in the relaxation intensification and the corresponding temperature. When Al or Nb elements are added to the system, the maximum temperatures ofα(i.e.,Tα) andβ(i.e.,Tβ) relaxation events shift to the lower temperatures.TheTα/Tβratio also increases in minor added samples,which shows the significant effects ofβrelaxation. In other words,theβrelaxation has sharper thermal changes compared toαevent. Moreover,it is observed that the peak ofβrelaxation is intensified after the microalloying process,while there are no significant changes in the peak intensification ofαrelaxation.The results also reveal that the Nb addition with positive heat of mixing has a more pronouncing effect on the relaxation behavior of HEBMG.In general,αrelaxation is correlated to the dynamics of the supercooled liquid and the quench-in defects,whileβrelaxation energy is consistent with the nanoscale source of dynamics in the system and induces partial devitrification and deformation.[33]Moreover,βrelaxation is principally due to the localized cooperative movement of atoms in the loosely packed structures.[34]Hence, it can be concluded thatβrelaxation determines the level of structural heterogeneity and potential plastic deformation in the glassy alloys.[35]According to our results,the microalloying process intensifies the structural heterogeneity in the material. In other words,the added element is able to enhance the variety of clusters at shortrange order (SRO) and consequently manifold mediumrange order(MRO)arrangements in the atomic system.[36]This event enhances the structural confusion in the system and induces heterogeneity through atomic rearrangement.[2]On the other hand,the minor addition with positive heat of mixing provides more structural heterogeneity in the material. However,crystallization may have priority when the added element reaches a certain value.[37]In our case,the Nb addition is low enough to induce any crystallization in the microstructure. It is suggested that the Nb atoms are able to improve structural heterogeneity in the glassy systems,as that occurred under Al addition. However, the positive heat of mixing in the system also provides conditions for nanoscale glassy phase separation in the material.[38]Hence, the structural heterogeneity is more intensified andβrelaxation is more strengthened in the thermal curves. In summary,it is concluded that a certain amount of minor addition with positive heat of mixing is more effective for inducing structural heterogeneity in HEBMGs.For some BMG compositions with pronouncedβrelaxation such as La-based alloys,it was derived that the large negative heat of mixing in the system, as a chemical effect, leads to the intensification ofβrelaxation peaks in the dynamic loss spectra, while microalloying with large positive heat of mixing weakens theβrelaxation and changes theβpeak to a wing trend.[39]This result is inconsistent with studies on typical blendedα–βrelaxation spectra of BMGs, reporting that the minor addition with positive heat of mixing is able to improve the possible structural heterogeneity and plasticity behavior in the BMGs.[40]This event is due to the fact that the structural heterogeneity in a blendedα–βrelaxation BMGs is not maximum,and consequently,a modification in the alloying composition may induce the extra defects in the microstructure leading toβpeak intensification in the spectrum.

    Fig.2. (a)DMA curves of the as-cast sample,(b)de-convoluted relaxation curves of samples extracted from DMA spectra, (c) Tα/Tβ ratio for the samples.

    As given in Fig.3,the dynamic behavior of HEBMGs was studied under different applied frequencies, while the inset shows the fitted Arrhenius association of frequency and temperature related toβrelaxation. In general,atomic mobility is mainly dominated by thermal activation,which is the physical origin of the Arrhenius-type law.[41]It is believed that Arrhenius temperature dependence can be seen when dynamics are dominated by thermal fluctuations to prevail over the barrier.According to the results in Fig.3,the increase in applied frequency leads to the rise in the peak temperatures. The fitting of ln(f)–1/Tβcurves and their corresponding slope define the activation energy ofβrelaxation in the glassy system. According to the results,the activation energy is measured for the free-microalloying, Al-containing, and Nb-containing samples about 89±2 kJ/mol,107±3 kJ/mol,and 12±3 kJ/mol,respectively. This indicates that the HEBMG with a minor Nb addition has high structural heterogeneity. In other words,the nanoscale separation is increased in the system,and the atomic rearrangement is accompanied by the annihilation of ordered configurations in the structure.

    Fig.3. DMA curves of as-cast sample in different applied frequencies.Inset shows Arrhenius plots of ln(f)vs. 1000/T.

    3.3. Crystallization evolution

    Using thermal mechanical analysis(TMA),it is possible to evaluate the viscosity behavior of metallic glasses under the applied load. In the temperature range of the supercooled region,the crystallization evolution of BMG structures appears,which is due to their individual thermoplastic forming features. Figure 4 shows the viscosity behavior of HEBMGs as a function of temperature in the supercooled region. To obtain the viscosity changes, the sample height variation under the continuous loading was measured. According to the Stephen equation,the viscosity is attained[38]

    Herepdefines the applied load,randcintroduce the radius and height of the sample,respectively. As observed in Fig.4,with the temperature increasing to 700 K,the viscosity slightly decreases in all the samples, which is due to the inherent nature of glassy alloys. However, in the range of supercooled liquid region,the viscosity trend changes for each sample,owing to their crystallization behavior. For the as-cast sample,two peaks with significant viscosity alterations were detected,which are consistent with the crystallization peak temperatures in the DSC curves.

    Fig.4. Viscosity curves of samples as a function of temperature in the range of the supercooled liquid region.

    Fig.5. Schematic of energy states in HEBMG samples showing the structural heterogeneity.

    The viscosities of 9.22×109Pa·s and 9.95×109Pa·s at the peaks of crystallization events show that the crystallization stages in the supercooled liquid region behave in the same trend and their energy release is at the same level. In other words, the portion of crystalline phase formation is generically and quantitatively identical in each crystallization stage.On the other side, the Al microalloying process led to the change of crystallization evolution. As observed, the Al minor addition changes the atomic structure somehow to induce the lowtemperature crystallization stage in the material. This means that the compositional heterogeneity under Al minor addition provides potential sites with lower energy barriers for crystallization at lower temperatures(see Fig.4). As schematically given in Fig. 5, Al minor addition increases the potential sites with higher energy states, i.e., free volumes, and induces more severe structural heterogeneity compared with the as-cast sample. On the other side,Nb microalloying not only intensifies the second peak but also creates a third one at the higher temperatures. According to the results, the Nb addition is accompanied by crystallization events with more varied energy levels in the structure. The intensified crystallization peaks at higher temperatures indicate that the structural change caused by Nb addition is significantly different from what happened under Al addition. In other words, the types of atomic arrangement, including SRO and MRO, are considerably affected by the certain added element. Moreover, one can see that the Nb minor addition manifold the crystallization stages in the supercooled liquid region. This means that the structural heterogeneity in this alloying composition is intensified,and consequently, several energy-level sites are provided for crystallization. In summary,one can see that the type of added element significantly affects the crystallization evolution and structural relaxation in HEBMGs, which is closely related to the change in the structural heterogeneity.

    4. Conclusion

    This study shows the effects of minor addition on the crystallization evolution and relaxation features of Zr20Cu20Ni20Ti20Hf20HEBMG. Al and Nb elements were separately added to the base alloying compositions to affect the heat of mixing in the master alloy negatively and positively,respectively. The results indicate that the added elements lead to a slight intensification ofβrelaxation. However, there is no obvious change inαrelaxation. The detailed DMA analysis also determines that the activation energy ofβrelaxation increases during the microalloying process,and this enhancement is optimum in the Nb-added sample with sharp structural heterogeneity. By evaluating the crystallization behavior,it is found that the microalloying process changes the crystallization enthalpy in the samples. For Nb added one,the two-peak crystallization curve changes to a three distinct peaks curve in the supercooled liquid region, which is due to the multiple energy states in the heterogeneous structure of Nb-added HEBMG.

    久久久久久久精品吃奶| 两个人的视频大全免费| 亚洲一区中文字幕在线| 国产熟女xx| 国产精品一区二区免费欧美| 少妇的丰满在线观看| 别揉我奶头~嗯~啊~动态视频| 一边摸一边抽搐一进一小说| 国产伦人伦偷精品视频| 精品国产乱码久久久久久男人| 一二三四社区在线视频社区8| 男女午夜视频在线观看| 我的老师免费观看完整版| 欧美精品亚洲一区二区| 亚洲专区国产一区二区| 精品国产乱子伦一区二区三区| 国内精品久久久久精免费| 欧美大码av| 日本在线视频免费播放| 亚洲一区高清亚洲精品| 亚洲欧美激情综合另类| 午夜福利免费观看在线| 久久久久亚洲av毛片大全| 日韩国内少妇激情av| 天堂av国产一区二区熟女人妻 | 老汉色∧v一级毛片| 高潮久久久久久久久久久不卡| 国产av一区在线观看免费| 欧美成狂野欧美在线观看| 久久精品综合一区二区三区| 国产主播在线观看一区二区| 久久国产乱子伦精品免费另类| 久久精品91蜜桃| 久久 成人 亚洲| 色综合欧美亚洲国产小说| 给我免费播放毛片高清在线观看| 高清毛片免费观看视频网站| 黄色女人牲交| 97碰自拍视频| 国产亚洲精品久久久久久毛片| 欧美一级a爱片免费观看看 | 全区人妻精品视频| 韩国av一区二区三区四区| 夜夜夜夜夜久久久久| 国产精品 国内视频| 久久人妻福利社区极品人妻图片| 亚洲熟妇中文字幕五十中出| 丁香欧美五月| 亚洲 欧美 日韩 在线 免费| 国产午夜精品论理片| svipshipincom国产片| 精品久久久久久成人av| 久久香蕉激情| 男女视频在线观看网站免费 | 国产97色在线日韩免费| 亚洲成av人片免费观看| 免费看美女性在线毛片视频| 波多野结衣高清作品| 亚洲av成人不卡在线观看播放网| 夜夜看夜夜爽夜夜摸| 看黄色毛片网站| 国产高清videossex| 欧美色视频一区免费| 国产成人精品无人区| 精品乱码久久久久久99久播| 一级a爱片免费观看的视频| 久久精品91蜜桃| 亚洲国产精品合色在线| 久久久精品大字幕| 可以免费在线观看a视频的电影网站| 日韩高清综合在线| 国产成人影院久久av| 欧美性猛交黑人性爽| 香蕉av资源在线| 巨乳人妻的诱惑在线观看| 国产一级毛片七仙女欲春2| 成人永久免费在线观看视频| 91麻豆av在线| 久久精品国产99精品国产亚洲性色| 午夜福利视频1000在线观看| 久久人妻福利社区极品人妻图片| 丰满人妻一区二区三区视频av | 我的老师免费观看完整版| 欧美激情久久久久久爽电影| 欧美日本视频| 国产免费男女视频| 岛国在线观看网站| 国产精品1区2区在线观看.| 亚洲最大成人中文| 曰老女人黄片| 一二三四在线观看免费中文在| 亚洲色图av天堂| 在线观看66精品国产| 国产99久久九九免费精品| 黄色a级毛片大全视频| 国产精品一区二区免费欧美| 精品久久久久久久久久久久久| 欧美中文日本在线观看视频| 欧美日韩一级在线毛片| 最近最新免费中文字幕在线| 亚洲18禁久久av| 一二三四社区在线视频社区8| 18美女黄网站色大片免费观看| 长腿黑丝高跟| 丰满的人妻完整版| 亚洲av成人不卡在线观看播放网| 国产野战对白在线观看| 人妻夜夜爽99麻豆av| 国产免费男女视频| 国产亚洲精品综合一区在线观看 | 神马国产精品三级电影在线观看 | 国产真人三级小视频在线观看| 国产精品影院久久| 一区二区三区高清视频在线| 精品电影一区二区在线| 全区人妻精品视频| 国产精品久久久久久久电影 | 精品福利观看| 99国产精品一区二区三区| 窝窝影院91人妻| 日韩欧美国产在线观看| 欧美黄色淫秽网站| 国产成人一区二区三区免费视频网站| 91国产中文字幕| 亚洲一码二码三码区别大吗| 69av精品久久久久久| 日本a在线网址| 中文字幕熟女人妻在线| 精品国产乱码久久久久久男人| 欧美日韩中文字幕国产精品一区二区三区| 久久精品夜夜夜夜夜久久蜜豆 | 久久精品影院6| 少妇被粗大的猛进出69影院| 午夜福利欧美成人| 日韩欧美精品v在线| 亚洲乱码一区二区免费版| 伊人久久大香线蕉亚洲五| 我的老师免费观看完整版| 久久精品91蜜桃| 国产精品免费视频内射| 国内精品一区二区在线观看| 亚洲国产高清在线一区二区三| 777久久人妻少妇嫩草av网站| 9191精品国产免费久久| 日韩大尺度精品在线看网址| 免费在线观看黄色视频的| 午夜激情福利司机影院| 精品熟女少妇八av免费久了| 国产熟女午夜一区二区三区| 久久久久性生活片| 男插女下体视频免费在线播放| 亚洲五月天丁香| 国产精品久久视频播放| 亚洲精品久久国产高清桃花| 老鸭窝网址在线观看| 桃红色精品国产亚洲av| 欧美在线一区亚洲| 久久人妻福利社区极品人妻图片| 成在线人永久免费视频| 日本 av在线| 亚洲国产精品999在线| 国产亚洲精品第一综合不卡| 国产一区二区三区视频了| 欧美三级亚洲精品| 久久香蕉精品热| 久久久久久人人人人人| 亚洲一区二区三区色噜噜| 我的老师免费观看完整版| 亚洲精品中文字幕在线视频| 久久久久久九九精品二区国产 | 成在线人永久免费视频| 亚洲九九香蕉| 国产一区二区三区在线臀色熟女| 老鸭窝网址在线观看| 十八禁人妻一区二区| 在线观看免费日韩欧美大片| 午夜福利视频1000在线观看| 女警被强在线播放| 嫁个100分男人电影在线观看| 午夜免费激情av| 精品无人区乱码1区二区| av片东京热男人的天堂| 亚洲国产中文字幕在线视频| 两人在一起打扑克的视频| 亚洲国产中文字幕在线视频| 中文字幕精品亚洲无线码一区| 午夜成年电影在线免费观看| 久久久久久久久免费视频了| 国产免费男女视频| 曰老女人黄片| 亚洲中文字幕日韩| 亚洲乱码一区二区免费版| 嫩草影视91久久| 村上凉子中文字幕在线| 美女午夜性视频免费| www.999成人在线观看| 国产成年人精品一区二区| 在线a可以看的网站| 看片在线看免费视频| 成在线人永久免费视频| 一边摸一边做爽爽视频免费| 国产aⅴ精品一区二区三区波| 亚洲第一欧美日韩一区二区三区| 在线观看免费日韩欧美大片| 最近最新中文字幕大全免费视频| 香蕉av资源在线| 黑人巨大精品欧美一区二区mp4| 国产伦在线观看视频一区| 亚洲国产精品久久男人天堂| 1024视频免费在线观看| 亚洲成a人片在线一区二区| 精品高清国产在线一区| 午夜a级毛片| 91av网站免费观看| 久久午夜综合久久蜜桃| 每晚都被弄得嗷嗷叫到高潮| 欧美性猛交╳xxx乱大交人| 国产成人一区二区三区免费视频网站| 国产av麻豆久久久久久久| 国产精品久久久久久久电影 | 亚洲国产欧洲综合997久久,| 久久久久免费精品人妻一区二区| 国产欧美日韩一区二区精品| 久久性视频一级片| 长腿黑丝高跟| 亚洲欧美一区二区三区黑人| 国产久久久一区二区三区| 亚洲专区国产一区二区| 宅男免费午夜| 久久香蕉激情| 一级黄色大片毛片| 黄片小视频在线播放| 麻豆成人午夜福利视频| 一区二区三区国产精品乱码| 91麻豆精品激情在线观看国产| 色精品久久人妻99蜜桃| 中出人妻视频一区二区| 老汉色∧v一级毛片| 深夜精品福利| 99久久综合精品五月天人人| 国产精品99久久99久久久不卡| 99在线人妻在线中文字幕| 午夜福利视频1000在线观看| 久久热在线av| 久久精品亚洲精品国产色婷小说| ponron亚洲| 国产精品一区二区三区四区久久| 男插女下体视频免费在线播放| 欧美另类亚洲清纯唯美| 波多野结衣高清无吗| 男女床上黄色一级片免费看| 日韩欧美在线二视频| 亚洲一区中文字幕在线| 天堂√8在线中文| 麻豆国产av国片精品| 天天一区二区日本电影三级| 国产高清激情床上av| 国产精品爽爽va在线观看网站| 别揉我奶头~嗯~啊~动态视频| 精品久久久久久久久久久久久| 欧美+亚洲+日韩+国产| 一本精品99久久精品77| www.自偷自拍.com| 男人的好看免费观看在线视频 | 亚洲成人中文字幕在线播放| 国产成人影院久久av| 欧洲精品卡2卡3卡4卡5卡区| 一二三四在线观看免费中文在| av欧美777| 99国产精品一区二区蜜桃av| 性欧美人与动物交配| 亚洲国产精品合色在线| 人人妻人人澡欧美一区二区| 国产熟女午夜一区二区三区| 一本综合久久免费| 日韩三级视频一区二区三区| 亚洲欧美激情综合另类| 亚洲成人免费电影在线观看| 亚洲精品粉嫩美女一区| 午夜福利成人在线免费观看| 在线观看www视频免费| 免费在线观看完整版高清| 日本一二三区视频观看| 久久久久久久久中文| 色在线成人网| 国产黄色小视频在线观看| 日韩大尺度精品在线看网址| 日韩精品青青久久久久久| 母亲3免费完整高清在线观看| 亚洲国产欧美网| 五月玫瑰六月丁香| 午夜老司机福利片| 国产午夜精品论理片| 欧美av亚洲av综合av国产av| 日韩欧美免费精品| 国产aⅴ精品一区二区三区波| 每晚都被弄得嗷嗷叫到高潮| 51午夜福利影视在线观看| 成人欧美大片| 亚洲国产精品999在线| 国产真实乱freesex| 久久精品国产综合久久久| av福利片在线观看| 久久人妻福利社区极品人妻图片| 日本三级黄在线观看| 2021天堂中文幕一二区在线观| 国产亚洲精品久久久久5区| av片东京热男人的天堂| 亚洲专区中文字幕在线| 欧美成人性av电影在线观看| 中文字幕高清在线视频| 午夜福利欧美成人| 桃色一区二区三区在线观看| 久久香蕉精品热| 国产精品一及| 午夜老司机福利片| 手机成人av网站| av在线天堂中文字幕| 精品日产1卡2卡| 亚洲精品在线观看二区| 亚洲国产欧美一区二区综合| 黑人欧美特级aaaaaa片| 制服人妻中文乱码| svipshipincom国产片| 美女扒开内裤让男人捅视频| 国产人伦9x9x在线观看| 亚洲欧美精品综合久久99| 国产视频内射| 欧美绝顶高潮抽搐喷水| 琪琪午夜伦伦电影理论片6080| www.精华液| 午夜激情av网站| 欧美日韩亚洲综合一区二区三区_| 欧美极品一区二区三区四区| 国产在线观看jvid| 亚洲一卡2卡3卡4卡5卡精品中文| 麻豆成人av在线观看| 视频区欧美日本亚洲| 18禁裸乳无遮挡免费网站照片| 欧美绝顶高潮抽搐喷水| 久久精品影院6| 国产精品一区二区免费欧美| 亚洲乱码一区二区免费版| 国产精品 国内视频| 国产亚洲精品一区二区www| 美女免费视频网站| 毛片女人毛片| 午夜精品久久久久久毛片777| 亚洲精品久久国产高清桃花| 最近最新中文字幕大全电影3| 国内揄拍国产精品人妻在线| 操出白浆在线播放| 色哟哟哟哟哟哟| 叶爱在线成人免费视频播放| 久久 成人 亚洲| 精华霜和精华液先用哪个| 琪琪午夜伦伦电影理论片6080| 麻豆国产97在线/欧美 | 成人国产一区最新在线观看| 香蕉丝袜av| 高清在线国产一区| 亚洲精品久久成人aⅴ小说| tocl精华| 欧美三级亚洲精品| 亚洲精品中文字幕一二三四区| 欧美日本视频| 久久天堂一区二区三区四区| 亚洲avbb在线观看| 日韩欧美国产一区二区入口| 波多野结衣高清作品| 99精品欧美一区二区三区四区| 老熟妇仑乱视频hdxx| 国产精品98久久久久久宅男小说| 国内精品久久久久精免费| 久久热在线av| 久久午夜综合久久蜜桃| 午夜日韩欧美国产| 亚洲 欧美 日韩 在线 免费| 好男人电影高清在线观看| 男女下面进入的视频免费午夜| 亚洲精品粉嫩美女一区| 99热只有精品国产| 美女午夜性视频免费| av视频在线观看入口| 免费看十八禁软件| 欧美黑人欧美精品刺激| 久久精品国产亚洲av香蕉五月| 国产精品久久久久久人妻精品电影| 别揉我奶头~嗯~啊~动态视频| 久久久精品国产亚洲av高清涩受| 夜夜躁狠狠躁天天躁| 成人特级黄色片久久久久久久| 日韩 欧美 亚洲 中文字幕| 欧美黑人精品巨大| av视频在线观看入口| 午夜福利视频1000在线观看| 欧美极品一区二区三区四区| 欧美日韩黄片免| 五月玫瑰六月丁香| 1024手机看黄色片| 国产aⅴ精品一区二区三区波| 欧美不卡视频在线免费观看 | 国产午夜福利久久久久久| 国产不卡一卡二| 欧美+亚洲+日韩+国产| 亚洲精品一区av在线观看| 久久久久久九九精品二区国产 | 最近最新中文字幕大全免费视频| 日韩大码丰满熟妇| 人成视频在线观看免费观看| 色综合欧美亚洲国产小说| 波多野结衣巨乳人妻| 伊人久久大香线蕉亚洲五| 国产欧美日韩精品亚洲av| 亚洲,欧美精品.| 国产成人欧美在线观看| 老司机福利观看| 日日爽夜夜爽网站| 欧美大码av| 久久精品亚洲精品国产色婷小说| 在线观看一区二区三区| 69av精品久久久久久| 日日夜夜操网爽| 日韩精品免费视频一区二区三区| 一边摸一边抽搐一进一小说| 啦啦啦韩国在线观看视频| 午夜免费成人在线视频| 男女视频在线观看网站免费 | 91字幕亚洲| 久久精品国产亚洲av高清一级| 亚洲男人的天堂狠狠| 国产精品亚洲一级av第二区| 欧美性猛交黑人性爽| 波多野结衣高清作品| 深夜精品福利| 制服丝袜大香蕉在线| 少妇的丰满在线观看| 日本免费一区二区三区高清不卡| 麻豆国产97在线/欧美 | 啪啪无遮挡十八禁网站| 一区二区三区国产精品乱码| 亚洲 国产 在线| 露出奶头的视频| 婷婷丁香在线五月| 久久久久久九九精品二区国产 | 欧美成人性av电影在线观看| 中出人妻视频一区二区| 久久国产精品影院| 在线永久观看黄色视频| 欧美成人免费av一区二区三区| 三级男女做爰猛烈吃奶摸视频| 精品乱码久久久久久99久播| 中出人妻视频一区二区| 国产精品一区二区精品视频观看| 亚洲成人国产一区在线观看| 国产单亲对白刺激| 亚洲欧美精品综合一区二区三区| 丰满人妻一区二区三区视频av | 亚洲av第一区精品v没综合| 亚洲 欧美一区二区三区| 最好的美女福利视频网| 69av精品久久久久久| 一本大道久久a久久精品| 国产精品久久久av美女十八| 国产成人影院久久av| 亚洲avbb在线观看| 亚洲中文字幕一区二区三区有码在线看 | 国产v大片淫在线免费观看| 精品一区二区三区视频在线观看免费| 免费在线观看黄色视频的| 国产精品影院久久| 成人亚洲精品av一区二区| 欧美黄色片欧美黄色片| 韩国av一区二区三区四区| 成人午夜高清在线视频| 成人特级黄色片久久久久久久| bbb黄色大片| 黄色毛片三级朝国网站| 99国产综合亚洲精品| 国产精品99久久99久久久不卡| 狠狠狠狠99中文字幕| 小说图片视频综合网站| 99久久无色码亚洲精品果冻| 精品国产亚洲在线| 99riav亚洲国产免费| 伊人久久大香线蕉亚洲五| 午夜精品在线福利| 人人妻人人澡欧美一区二区| 欧美色欧美亚洲另类二区| 亚洲电影在线观看av| 又大又爽又粗| 一区二区三区国产精品乱码| 一个人观看的视频www高清免费观看 | 1024视频免费在线观看| 亚洲色图av天堂| 亚洲五月婷婷丁香| 好男人电影高清在线观看| bbb黄色大片| 美女免费视频网站| 中出人妻视频一区二区| 国产成年人精品一区二区| 91大片在线观看| 色综合站精品国产| 波多野结衣巨乳人妻| 欧美在线一区亚洲| 少妇熟女aⅴ在线视频| 国产亚洲av嫩草精品影院| 久久香蕉精品热| 免费在线观看亚洲国产| 国产av在哪里看| √禁漫天堂资源中文www| av国产免费在线观看| 欧美一级a爱片免费观看看 | 欧美大码av| 男女下面进入的视频免费午夜| www.www免费av| 婷婷精品国产亚洲av| 母亲3免费完整高清在线观看| 国产av一区在线观看免费| 日韩精品免费视频一区二区三区| 成人欧美大片| 变态另类丝袜制服| 激情在线观看视频在线高清| 12—13女人毛片做爰片一| 亚洲精华国产精华精| 伊人久久大香线蕉亚洲五| 久久香蕉激情| 日韩精品免费视频一区二区三区| 校园春色视频在线观看| 欧美黑人欧美精品刺激| 欧美绝顶高潮抽搐喷水| 国内毛片毛片毛片毛片毛片| 国产亚洲av高清不卡| a在线观看视频网站| 最好的美女福利视频网| 成人国语在线视频| 男女床上黄色一级片免费看| 精品第一国产精品| 国产伦人伦偷精品视频| 搞女人的毛片| 久久久国产成人免费| 身体一侧抽搐| 亚洲av电影不卡..在线观看| 成人三级黄色视频| 91老司机精品| 国产黄a三级三级三级人| 在线十欧美十亚洲十日本专区| 两个人视频免费观看高清| 成人av一区二区三区在线看| 最近在线观看免费完整版| 亚洲国产看品久久| 成人亚洲精品av一区二区| 女生性感内裤真人,穿戴方法视频| 中文字幕久久专区| av视频在线观看入口| 亚洲午夜精品一区,二区,三区| 日韩有码中文字幕| 精品电影一区二区在线| 久久久国产成人精品二区| 我的老师免费观看完整版| 1024手机看黄色片| 天天一区二区日本电影三级| 男女床上黄色一级片免费看| 亚洲在线自拍视频| av欧美777| 精品欧美一区二区三区在线| 国产av一区二区精品久久| 婷婷丁香在线五月| 久久亚洲精品不卡| 久久久久性生活片| 日韩欧美国产一区二区入口| 欧美丝袜亚洲另类 | 午夜福利视频1000在线观看| 亚洲一区二区三区不卡视频| 亚洲熟妇熟女久久| 99国产精品99久久久久| 久久精品夜夜夜夜夜久久蜜豆 | 免费看日本二区| 精品福利观看| 午夜免费激情av| 成人永久免费在线观看视频| 免费av毛片视频| 国产aⅴ精品一区二区三区波| 亚洲成人精品中文字幕电影| 亚洲九九香蕉| 99国产精品一区二区三区| 亚洲九九香蕉| 每晚都被弄得嗷嗷叫到高潮| 可以在线观看的亚洲视频| 亚洲美女视频黄频| 九色国产91popny在线| 成在线人永久免费视频| 亚洲专区字幕在线| 久99久视频精品免费| 我的老师免费观看完整版| 亚洲国产精品久久男人天堂| 男女下面进入的视频免费午夜| 丰满人妻熟妇乱又伦精品不卡| 免费在线观看完整版高清| 国内久久婷婷六月综合欲色啪| 18禁国产床啪视频网站| 国产免费男女视频| 欧美zozozo另类| av天堂在线播放| 免费在线观看成人毛片| 久久久久久久久久黄片| www.熟女人妻精品国产| 性色av乱码一区二区三区2| 欧美 亚洲 国产 日韩一| 毛片女人毛片| 国产精品av视频在线免费观看| 久久人妻av系列| 啪啪无遮挡十八禁网站| 免费在线观看视频国产中文字幕亚洲| 一本一本综合久久|