• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Generation of multi-wavelength square pulses in the dissipative soliton resonance regime by a Yb-doped fiber laser?

    2021-06-26 03:04:04XudeWang汪徐德SiminYang楊思敏MengqiuSun孫夢秋XuGeng耿旭JieyuPan潘婕妤ShuguangMiao苗曙光andSuwenLi李素文
    Chinese Physics B 2021年6期
    關(guān)鍵詞:婕妤曙光

    Xude Wang(汪徐德) Simin Yang(楊思敏) Mengqiu Sun(孫夢秋) Xu Geng(耿旭) Jieyu Pan(潘婕妤)Shuguang Miao(苗曙光) and Suwen Li(李素文)

    1School of Physics and Electronic Information,Huaibei Normal University,Huaibei 235000,China

    2Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation,Huaibei Normal University,Huaibei 235000,China

    Keywords: fiber laser,dissipative soliton resonance,square pulse

    1. Introduction

    Yb-doped fiber lasers (YDFLs), as an excellent type of laser source for generating ultra-short pulses, have considerable potential for use in many scientific and industrial applications, such as bio-medicine, metrology, material processing, and telecommunications.[1,2]Due to the wide gain bandwidth and high gain of Yb-doped fiber, YDFLs are expected to be promising candidates for obtaining high-energy ultrashort pulses,which are more favorable for some practical applications. As opposed to conventional solitons formed by anomalous-dispersion fiber lasers, YDFLs operate in the allnormal dispersion regime, which can produce highly chirped dissipative solitons with energies of up to tens of nJ.[3]However, due to the pulse splitting that occurs in the fiber laser,the production of high-energy pulses by a laser oscillator is a challenge that still remains to be solved.

    Depending on the different pulse-shaping mechanisms and dynamics of fiber lasers, various temporally tailored pulses such as Gaussian pulses, step-like pulses, and square pulses have been formed by fiber lasers,[4–9]which can satisfy some demands in various application fields.Among these,square pulses have attracted considerable interest due to their ability to scale the pulse energy.[10]By means of the peak power-clamping effect, square pulses can achieve high pulse energies by broadening their pulse widths with the rising pump power. In particular, dissipative soliton resonance (DSR) is an efficient way to generate high-energy square pulses. As a new kind of soliton, DSR was first theoretically investigated by Changet al.in 2008.[11]In principle, DSR, as a single pulse,can increase the pulse width indefinitely while keeping its amplitude fixed,which consequently results in the generation of a pulse with infinite energy.[12,13]It has been demonstrated that using the appropriate cavity parameters, DSRs can be formed in various types of fiber laser,[14–20]regardless of mode-locking mechanisms and cavity dispersion regimes,even in all-normal dispersion YDFLs. Indeed, Wanget al.investigated unusual DSR pulse evolution in a YDFL mode locked by a nonlinear fiber loop mirror.[21]Yuet al.reported a high-energy DSR pulse in a YDFL using a nonlinear polarization rotation(NPR)technique.[22]The maximum output pulse energy was able to reach 34 nJ. Liet al.demonstrated the generation of an ultra-wide DSR pulse in a YDFL,which was achieved by the NPR technique.[23]The pulse width was able to be tuned from 58.6 ns to 431 ns. Nevertheless, most DSR pulse research has mainly focused on single-wavelength operation. In some applications, fiber lasers that generate multiwavelength pulses would be more advantageous. Therefore,multi-wavelength DSRs delivering at wavelengths of around 1μm need to be further investigated.

    It is well known that a lower repetition rate in a long ring cavity implies a higher pulse energy for a given average output power. In this paper, we report on the generation of multi-wavelength square pulses in the DSR regime in a passively mode-locked YDFL with a long cavity configuration.A 300-m single mode fiber(SMF,HI-1060)is inserted into a resonator to prolong the cavity length, so that the total cavity length reaches 311.3 m,corresponding to the low fundamental frequency of 661.6 kHz. Multi-wavelength operation is realized by an artificial comb filter,and is caused by stress birefringence of the fiber. The wavelength spacing is 1.8 nm. When the multi-wavelength DSR works in the 1038 nm waveband,the pulse width broadens linearly from 2 ns to 37.7 ns without wave breaking. The maximum output single-pulse energy is 15.27 nJ through a 10% fiber coupler. Moreover, by appropriately changing the cavity parameters,the multi-wavelength DSR pulse can also operate in dual wavebands,which are located at 1038 nm and 1080 nm, respectively. By increasing the pump power, the duration of the DSR can be tuned from 2.3 ns to 10.5 ns,and the pulse energy increased from 3 nJ to 9.7 nJ. Our work might help deeper insight to be gained into DSR pulses in all-normal-dispersion YDFLs.

    2. Experimental setup

    For the proposed YDFL, we implemented a ring cavity, as illustrated in Fig. 1. The gain section was a 62 cm YDF(Nufern, SM-YSF-HI),which was excited by a 976 nm pump source with a maximum launched power of 500 mW.The mode-locking operation was accomplished based on the NPR mechanism, comprising a polarization-dependent isolator (PD-ISO) and two polarization controllers (PCs). Meanwhile, two PCs were used to optimize the mode locking by adjusting the light polarization state, and a PD-ISO was employed to ensure the mono-directional transmission of the laser.In order to prolong the length of the cavity and lower the repetition rate, a piece of SMF 300 m long was spliced into the cavity. The whole cavity length was 311.3 m,corresponding to a fundamental frequency of 661.6 kHz. Approximately 10% of the laser output was extracted via a fiber coupler for analysis. An oscilloscope and an optical spectrum analyzer were utilized to measure the temporal and spectral properties of the output pulses. The operational stability was monitored by a radio-frequency(RF)spectrum analyzer.

    Fig.1. Experimental schematic of a YDFL with a long cavity configuration.

    3. Results and analysis

    Fig. 2. Generation of a square pulse at 1038 nm. (a) Square pulse;(b)pulse train;(c)spectrum;(d)RF spectrum(inset: RF spectrum over a 100 MHz span).

    Mode locking can be achieved at a forward pump power of 110 mW. With fine adjustment of the PCs, a lowrepetition-rate square pulse with a nanosecond width is observed from 150 mW to 500 mW. The characteristics of the typical square pulse at 350 mW are depicted in Fig. 2.Figure 2(a)shows a single mode-locked pulse. A single pulse from the fiber laser exhibits a rectangular shape. The edgeto-edge width of the square pulse is~25.9 ns. Figure 2(b)presents the pulse train. The interval is 1.5μs,corresponding to the cavity roundtrip time. We can see that each pulse appears as a square shape with equal amplitude. The spectrum is shown in Fig.2(c),which is different from the spectra of YDFLs reported before. The spectrum exhibits multi-wavelength lasing with a wavelength spacing of 1.8 nm and the central position of the waveband is 1038 nm. The multi-wavelength lasing in the experiment can be explained as the effect of filtering induced by fiber birefringence. In the experiment, we tried to measure the autocorrelation trace of this square pulse.However, no coherent peak was observed in the autocorrelation trace,indicating that this square pulse is a single DSR but not a bunch of pulses.[24]The fundamental frequency is measured by an RF analyzer, as shown in Fig. 2(d). The peak of the RF spectrum is located at 661.6 kHz with a signal-to-noise ratio(SNR)of~46.6 dB,which matches the 311.3-m cavity length. Moreover,the RF spectrum over a span of 100 MHz is shown in the inset of Fig.2(d).Here,it can clearly be seen that the envelope of the RF spectrum is periodically varied,and that the modulation period is 38.6 MHz, corresponding to a pulse width of~25.9 ns in the temporal domain. Note that routine dissipative solitons without multi-wavelength lasing are also observed in the experiment when the PCs are properly adjusted. However,the dissipative soliton does not operate in the DSR regime.

    To further verify that this square pulse is due to DSR,we fixed the PCs and gradually increased the pump power to characterize the pulse evolution features. The temporal and spectral evolutions are presented in Fig. 3. While the pump power is rising, the pulse keeps its square profile without shape distortion and the pulse amplitude remains constant,as presented in Fig. 3(a). The pulse duration broadens linearly with the pump power. The corresponding spectra at different pump powers are shown in Figs. 3(b) and 3(c). As the pump power increases, the emission spectrum bandwidth is gradually broadened, while the position of the central wavelength remains almost invariant (at~1038 nm). The number of multi-wavelength lasing peaks increases with the pump power,while the spacing is fixed at 1.8 nm for all pump powers. To better clarify the characteristics of the square pulse,the relationships between the pulse width and pulse energy with respect to the input pump powers are shown in Fig.3(c).When the pump power is increased from 150 mW to 500 mW,the pulse width linearly widens from 2 ns to 37.7 ns. Similarly,the single-pulse energy increases from 3 nJ to 15.27 nJ.Therefore,the evolutionary trend of the square pulse is in accordance with DSR theory.[25]The maximum output power is 10.1 mW, corresponding to a pulse energy of 15.27 nJ. Considering that 10%of the pulse energy is taken from the cavity,the intra-cavity pulse energy is around 152.7 nJ. It should be noted that the maximum pulse energy and pulse width in our experiment are primarily limited by the pumped power. Thus,we think that the pulse energy and width might be further increased if a higher-power pump source were to be used.

    Fig. 3. Evolution of the properties of the square pulse at 1038 nm.(a) Pulse evolution versus pump power. (b) Corresponding spectral evolution. (c)Comparison of the spectra under different pump powers.(d)Pulse width and energy versus pump power.

    Fig.4. Generation of square pulses at 1038 nm and 1080 nm. (a)Spectrum;(b)square pulse;(c)pulse train;(d)RF spectrum(inset: RF spectrum over a span of 150 MHz).

    By rotating the PCs and changing the pump power, another type of square pulse with a different spectral structure is formed in the fiber laser. Compared to the multi-wavelength spectrum in the 1038 nm waveband region,here,the changes in spectrum are evident, as shown in Fig. 4(a). Figure 4(a)shows the typical spectrum of the multi-wavelength lasing operated in the 1038 nm and 1080 nm wavebands at a pump power of 500 mW. The spectral component in the waveband at approximately 1080 nm gradually emerges with an increase in pump power. The spacing between the two wavebands is~40 nm, thus, the generation of the secondary waveband is due to the stimulated Raman scattering (SRS) effect.[26]A quasi-square pulse with a flat-topped shape and a pulse width of 10.5 ns is generated, as shown in Fig. 4(b). It should be noted that the trailing edge of the pulse is not as steep,which might be affected by the SRS. Figure 4(c) presents a stable pulse train with a pulse-to-pulse interval of 1.5μs. The typical RF spectrum shown in Fig.4(d)has a SNR of around 47.9 dB at 661.6 kHz. The RF spectrum over a span of 150 MHz in the inset exhibits a modulation frequency of 95.2 MHz,corresponding to a pulse duration of 10.5 ns.

    Fig. 5. Evolution of the properties of a square pulse operating in dual wavebands. (a)Pulse evolution versus pump power. (b)Corresponding spectral evolution. (c)Comparison of the spectra under different pump powers. (d)Pulse width and energy versus pump power.

    In order to further verify the influence of pump power on this DSR pulse,we record the evolution of the characteristics of the pulses under different pump powers. The temporal evolution is shown in Fig.5(a). Under dual-waveband operation,the DSR pulse can still broaden with the pump power, while the pulse amplitudes remain almost invariable. The spectral evolution is shown in Figs. 5(b) and 5(c). Multi-wavelength lasing emerges simultaneously in the 1038 nm and 1080 nm wavebands. An increase in the pump power causes clear enhancement of the SRS components at 1080 nm. Figure 5(d)clearly shows the relationship between the pulse width and the output single-pulse energy as a function of the pump power.When the pump power is increased from 335 mW to 500 mW,the square pulses are broadened from 2.3 ns to 10.5 ns, and the single-pulse energy increases from 3 nJ to 9.67 nJ.These results are inconsistent with DSR theory. Compared with a DSR in the 1038 nm waveband,the square DSR pulse in dualwaveband operation has a narrower pulse duration and a lower pulse energy for the same pump power. This is partly because the cavity parameters are influenced by the orientation of PCs,and partly because the advent of SRS takes part of the pump energy. Thus, SRS imposes a limitation on the energy scalability of DSR in this experiment. It has been reported that SRS can cause DSR pulse instability.[21]However, the pulse still remains stable at the maximum pump power of 500 mW in our experiment.According to experimental observation,the fiber laser could sustain DSR operation for a long time if there were no environmental perturbations applied to the fiber laser.

    In previous literature, DSR operation under multiwavelength mode locking has rarely been reported. In our experiment,multi-wavelength square pulses are frequently observed in the fiber laser without the insertion of any external filter devices such as comb filters and polarization-maintaining fibers (PMFs). We attribute this to the birefringence-induced filtering effect. As we know, the NPR structure is composed of two PCs and a PD-ISO. By rotating the PCs, an artificial birefringence-induced spectral filter effect may be formed,originating from the weak intra-cavity birefringence of the passive fiber.[27]Therefore,NPR has a double role: it plays a role in mode-locking and a role in achieving multi-wavelength lasing. In order to confirm that multi-wavelength operation is caused by stress birefringence, we also measured the output spectra of multi-wavelength continuous-wave(CW)lasing by adjusting the pump powers.As can be seen in Fig.6,the wavelength spacing between adjacent CW lasing peaks is~1.8 nm,which is consistent with that in mode-locked lasing. The lasing peaks are located in the 1038 nm waveband,and the number of multi-wavelength peaks increases with the pump power.In addition, we use a self-consistent calculation to verify that the wavelength spacing is introduced by the stress birefringence due to the passive fiber. The wavelength spacing can be described by the formulaλ=λ2/(BL), whereλdenotes the central wavelength,Lis the cavity length andBis the strength of the SMF.[28]Accord to the experimental results,we are able to determine thatλ=1.8 nm,L=311.3 m, andλ=1038 nm. Thus, the birefringence should be 0.2×10?5,which is very close to the birefringence of the SMF. Therefore,the experimental and computational results show that the passive fiber with low stress birefringence is responsible for multi-wavelength lasing in this experiment.

    Fig.6. Multiwavelength lasing at different pump powers.

    4. Conclusions

    In summary,multi-wavelength DSR pulses have been experimentally achieved in an all-normal-dispersion YDFL with a long cavity. Benefiting from the spectral filter effect induced by the low stress birefringence of the passive fiber in the NPR-based fiber laser,mode-locked and multi-wavelength lasing were achieved simultaneously. By adjusting the pump power and PCs,the multi-wavelength DSR can operate in different wavebands. When the DSR works in the region of the 1038 nm waveband,the pulse duration can broaden from 2 ns to 37.7 ns. The maximum output pulse energy is 15.27 nJ at 500 mW. When the multi-wavelength DSR works in the 1038 nm and 1080 nm wavebands, the pulse duration can be tuned from 2.3 ns to 10.5 ns and the pulse energy can be increased from 3 nJ to 9.7 nJ. The emergence of the 1080 nm waveband is attributed to the SRS effect. Our work might help a deeper insight to be gained into the nonlinear dynamics of square-wave pulses in all-normal-dispersion YDFLs.

    猜你喜歡
    婕妤曙光
    Real-time observation of soliton pulsation in net normal-dispersion dissipative soliton fiber laser
    曙光
    Theoretical investigation of ferromagnetic resonance in a ferromagnetic thin film with external stress anisotropy
    興業(yè)路的曙光
    瑞安市馬嶼鎮(zhèn)清祥小學“融適三原色”課程方案
    童心童繪
    楊曙光作品
    曙光
    赤水源(2018年6期)2018-12-06 08:38:12
    曙光照耀
    當代音樂(2018年6期)2018-10-21 21:28:01
    充電樁行業(yè)扭虧曙光初現(xiàn)?
    能源(2018年7期)2018-09-21 07:56:22
    国产有黄有色有爽视频| 日本爱情动作片www.在线观看| 免费观看性生交大片5| 夜夜骑夜夜射夜夜干| 男女午夜视频在线观看| 老汉色∧v一级毛片| 另类精品久久| 日韩免费高清中文字幕av| 久久久久久久久免费视频了| 亚洲av电影在线观看一区二区三区| 精品一区二区免费观看| 老汉色av国产亚洲站长工具| 国产日韩欧美在线精品| 中文字幕亚洲精品专区| 日韩中文字幕欧美一区二区 | 精品视频人人做人人爽| www.自偷自拍.com| 日韩一区二区三区影片| 男女午夜视频在线观看| 亚洲第一青青草原| 一区在线观看完整版| 亚洲精品乱久久久久久| 啦啦啦在线免费观看视频4| 免费在线观看视频国产中文字幕亚洲 | 九草在线视频观看| 免费人妻精品一区二区三区视频| 在线观看三级黄色| 成人18禁高潮啪啪吃奶动态图| 日本欧美国产在线视频| 午夜精品国产一区二区电影| 久久亚洲国产成人精品v| 色网站视频免费| 18在线观看网站| 如日韩欧美国产精品一区二区三区| av一本久久久久| 欧美日韩国产mv在线观看视频| 一边摸一边抽搐一进一出视频| 午夜福利视频精品| 一区二区三区精品91| 黄频高清免费视频| 看十八女毛片水多多多| 久久av网站| 国产精品国产三级国产专区5o| 最近手机中文字幕大全| 日韩免费高清中文字幕av| 日韩 亚洲 欧美在线| 无限看片的www在线观看| av国产精品久久久久影院| av电影中文网址| 亚洲国产最新在线播放| 亚洲精品国产av蜜桃| 日本黄色日本黄色录像| 91aial.com中文字幕在线观看| 菩萨蛮人人尽说江南好唐韦庄| 在线观看免费高清a一片| 狂野欧美激情性bbbbbb| 免费看不卡的av| 成年美女黄网站色视频大全免费| 中文字幕人妻熟女乱码| 亚洲成人手机| 欧美 日韩 精品 国产| 精品亚洲成a人片在线观看| 精品人妻一区二区三区麻豆| 亚洲在久久综合| 美女大奶头黄色视频| 久久精品亚洲av国产电影网| av国产精品久久久久影院| 秋霞在线观看毛片| 青春草视频在线免费观看| 久久精品国产亚洲av高清一级| 精品国产乱码久久久久久小说| 欧美另类一区| 欧美国产精品va在线观看不卡| 欧美精品高潮呻吟av久久| 日韩,欧美,国产一区二区三区| 久久久亚洲精品成人影院| 国产一区二区在线观看av| 精品卡一卡二卡四卡免费| 国产日韩欧美视频二区| 80岁老熟妇乱子伦牲交| 亚洲色图 男人天堂 中文字幕| 国产激情久久老熟女| 我的亚洲天堂| av在线app专区| 尾随美女入室| 日韩熟女老妇一区二区性免费视频| 成人国产麻豆网| 欧美精品av麻豆av| 狠狠精品人妻久久久久久综合| 两个人免费观看高清视频| 欧美精品人与动牲交sv欧美| 色吧在线观看| 精品少妇久久久久久888优播| 亚洲精品成人av观看孕妇| 免费少妇av软件| 亚洲av电影在线进入| 免费高清在线观看视频在线观看| 男女边吃奶边做爰视频| 飞空精品影院首页| 日本黄色日本黄色录像| 18在线观看网站| 久久久精品国产亚洲av高清涩受| 精品久久久精品久久久| 亚洲精品一区蜜桃| 51午夜福利影视在线观看| 日韩一卡2卡3卡4卡2021年| 免费在线观看视频国产中文字幕亚洲 | 又大又爽又粗| 国产亚洲最大av| 我要看黄色一级片免费的| 免费黄网站久久成人精品| 黑丝袜美女国产一区| 在线观看免费午夜福利视频| 国产日韩一区二区三区精品不卡| 久久久久久久大尺度免费视频| 丝袜美足系列| 伊人久久国产一区二区| 狠狠婷婷综合久久久久久88av| 99香蕉大伊视频| 午夜福利视频精品| 日韩制服丝袜自拍偷拍| 成人午夜精彩视频在线观看| 天天操日日干夜夜撸| 免费不卡黄色视频| 国产精品99久久99久久久不卡 | 久久精品亚洲av国产电影网| 综合色丁香网| 亚洲欧美日韩另类电影网站| 久久亚洲国产成人精品v| 精品福利永久在线观看| 国产97色在线日韩免费| av卡一久久| 中文乱码字字幕精品一区二区三区| 老汉色∧v一级毛片| 亚洲视频免费观看视频| 欧美日韩成人在线一区二区| 制服人妻中文乱码| 精品卡一卡二卡四卡免费| 国产免费又黄又爽又色| 精品国产乱码久久久久久男人| 日韩精品有码人妻一区| 亚洲国产欧美网| 国产乱来视频区| 韩国av在线不卡| 久久狼人影院| 你懂的网址亚洲精品在线观看| 国产成人啪精品午夜网站| 又黄又粗又硬又大视频| 亚洲欧美色中文字幕在线| 欧美最新免费一区二区三区| 国产成人啪精品午夜网站| 亚洲自偷自拍图片 自拍| 极品少妇高潮喷水抽搐| 亚洲精品自拍成人| 国产精品一区二区在线不卡| 婷婷成人精品国产| 日韩电影二区| 欧美亚洲 丝袜 人妻 在线| 亚洲精品久久午夜乱码| 久久久久久人妻| 免费观看人在逋| 精品一区二区三区四区五区乱码 | 国产人伦9x9x在线观看| 久久人人97超碰香蕉20202| 日本黄色日本黄色录像| 欧美精品一区二区免费开放| 色播在线永久视频| 男女无遮挡免费网站观看| 在线天堂最新版资源| 中文字幕色久视频| 一区二区三区乱码不卡18| 人人妻,人人澡人人爽秒播 | kizo精华| 精品一区二区免费观看| 女人爽到高潮嗷嗷叫在线视频| 日韩制服丝袜自拍偷拍| 亚洲欧美一区二区三区黑人| 国产97色在线日韩免费| 亚洲精品中文字幕在线视频| 老汉色av国产亚洲站长工具| 国产亚洲午夜精品一区二区久久| 国产精品久久久久久久久免| 亚洲av电影在线进入| 又粗又硬又长又爽又黄的视频| 2021少妇久久久久久久久久久| 国产爽快片一区二区三区| 免费观看av网站的网址| 欧美少妇被猛烈插入视频| 18禁观看日本| 国产有黄有色有爽视频| 丰满乱子伦码专区| 国产无遮挡羞羞视频在线观看| 男人添女人高潮全过程视频| 国产精品无大码| 久久久久久久精品精品| 天天躁夜夜躁狠狠躁躁| 国产伦人伦偷精品视频| 国产男女内射视频| 最近2019中文字幕mv第一页| 国产精品.久久久| 操出白浆在线播放| 麻豆乱淫一区二区| 欧美老熟妇乱子伦牲交| 成人三级做爰电影| 国产乱来视频区| 香蕉丝袜av| 中文精品一卡2卡3卡4更新| 建设人人有责人人尽责人人享有的| 亚洲成人国产一区在线观看 | 免费观看av网站的网址| 免费观看a级毛片全部| 99精品久久久久人妻精品| 亚洲免费av在线视频| 又粗又硬又长又爽又黄的视频| 亚洲色图综合在线观看| 亚洲四区av| 自线自在国产av| 欧美黑人精品巨大| a级片在线免费高清观看视频| 亚洲欧美一区二区三区国产| 久久久久久人人人人人| 久久狼人影院| 在线免费观看不下载黄p国产| 久久人人97超碰香蕉20202| h视频一区二区三区| 飞空精品影院首页| 在线免费观看不下载黄p国产| 亚洲av在线观看美女高潮| 国产成人欧美| 亚洲第一青青草原| 成年人免费黄色播放视频| 操出白浆在线播放| 色婷婷av一区二区三区视频| 国产人伦9x9x在线观看| 天美传媒精品一区二区| 国产99久久九九免费精品| 女人被躁到高潮嗷嗷叫费观| 午夜免费观看性视频| av有码第一页| 各种免费的搞黄视频| 黄片播放在线免费| 一级a爱视频在线免费观看| 99久久人妻综合| 精品亚洲成a人片在线观看| 国产精品二区激情视频| 一本一本久久a久久精品综合妖精| 国产伦理片在线播放av一区| 成年美女黄网站色视频大全免费| 99热国产这里只有精品6| 成人国语在线视频| 高清不卡的av网站| 婷婷色av中文字幕| 欧美激情 高清一区二区三区| 丝袜人妻中文字幕| 日本vs欧美在线观看视频| 成人18禁高潮啪啪吃奶动态图| av卡一久久| 亚洲av综合色区一区| 女人高潮潮喷娇喘18禁视频| 美女中出高潮动态图| 亚洲国产精品999| 交换朋友夫妻互换小说| av福利片在线| 亚洲精品国产一区二区精华液| 久久久久久久久免费视频了| 天堂俺去俺来也www色官网| 亚洲熟女毛片儿| 亚洲国产欧美日韩在线播放| 考比视频在线观看| a级毛片在线看网站| 1024视频免费在线观看| 国产成人免费观看mmmm| 日本vs欧美在线观看视频| 亚洲精品国产av成人精品| 亚洲精品中文字幕在线视频| kizo精华| 操美女的视频在线观看| av卡一久久| 欧美精品高潮呻吟av久久| 天堂中文最新版在线下载| 精品久久久久久电影网| 桃花免费在线播放| 看免费av毛片| 亚洲av综合色区一区| 成年动漫av网址| 国产免费现黄频在线看| 99久久精品国产亚洲精品| 精品卡一卡二卡四卡免费| 欧美97在线视频| 免费女性裸体啪啪无遮挡网站| 精品酒店卫生间| 交换朋友夫妻互换小说| 黑人欧美特级aaaaaa片| 天堂俺去俺来也www色官网| 波野结衣二区三区在线| 国产成人免费观看mmmm| 黄片播放在线免费| 亚洲图色成人| 午夜福利免费观看在线| 国产精品国产三级专区第一集| 欧美日韩视频高清一区二区三区二| 九色亚洲精品在线播放| 亚洲图色成人| 国产免费福利视频在线观看| 亚洲欧美成人综合另类久久久| 亚洲精品国产一区二区精华液| 在线 av 中文字幕| 男人添女人高潮全过程视频| 午夜福利免费观看在线| 99久久精品国产亚洲精品| 黄色怎么调成土黄色| 国产精品一区二区精品视频观看| 美女中出高潮动态图| 色94色欧美一区二区| 交换朋友夫妻互换小说| 两性夫妻黄色片| 成人国语在线视频| 免费观看性生交大片5| 中文字幕精品免费在线观看视频| 国产日韩欧美视频二区| 国产在线一区二区三区精| 80岁老熟妇乱子伦牲交| 国产免费现黄频在线看| 亚洲精品久久久久久婷婷小说| 国产成人啪精品午夜网站| 激情五月婷婷亚洲| 国精品久久久久久国模美| 国产精品熟女久久久久浪| 国产爽快片一区二区三区| 两个人免费观看高清视频| 国产精品.久久久| 亚洲激情五月婷婷啪啪| 高清av免费在线| 精品少妇内射三级| 老司机在亚洲福利影院| 亚洲av在线观看美女高潮| 欧美日本中文国产一区发布| 久久99一区二区三区| 一区二区av电影网| 一区二区三区乱码不卡18| 亚洲男人天堂网一区| 十八禁人妻一区二区| netflix在线观看网站| 天天躁夜夜躁狠狠躁躁| 欧美日本中文国产一区发布| 亚洲激情五月婷婷啪啪| 色播在线永久视频| 午夜福利视频在线观看免费| 欧美日韩成人在线一区二区| 国产精品三级大全| 亚洲人成电影观看| 多毛熟女@视频| 下体分泌物呈黄色| avwww免费| 69精品国产乱码久久久| 亚洲色图综合在线观看| 2021少妇久久久久久久久久久| 久久毛片免费看一区二区三区| 亚洲七黄色美女视频| 99久久精品国产亚洲精品| 久久精品国产综合久久久| 蜜桃国产av成人99| 亚洲成人国产一区在线观看 | 最近的中文字幕免费完整| 亚洲男人天堂网一区| 这个男人来自地球电影免费观看 | 亚洲欧美一区二区三区久久| 欧美97在线视频| 51午夜福利影视在线观看| 亚洲国产av新网站| 亚洲欧美中文字幕日韩二区| 国产免费又黄又爽又色| av.在线天堂| 国产亚洲欧美精品永久| 咕卡用的链子| 日日啪夜夜爽| 国产伦人伦偷精品视频| 日日撸夜夜添| 嫩草影院入口| 日韩视频在线欧美| 亚洲精品aⅴ在线观看| 亚洲欧洲国产日韩| 日韩免费高清中文字幕av| 亚洲成人一二三区av| 考比视频在线观看| 亚洲av电影在线进入| 精品久久蜜臀av无| 国精品久久久久久国模美| 精品国产超薄肉色丝袜足j| 人人妻人人澡人人爽人人夜夜| 亚洲伊人久久精品综合| 我要看黄色一级片免费的| 国产毛片在线视频| 又大又黄又爽视频免费| 天堂俺去俺来也www色官网| 国产成人精品在线电影| 日韩一卡2卡3卡4卡2021年| 国产 精品1| 国产一区二区三区综合在线观看| 国产熟女午夜一区二区三区| 在线观看免费高清a一片| 在线观看人妻少妇| 一级,二级,三级黄色视频| 久久韩国三级中文字幕| 国产野战对白在线观看| 亚洲av电影在线进入| 国产亚洲欧美精品永久| 建设人人有责人人尽责人人享有的| 精品人妻熟女毛片av久久网站| 啦啦啦在线观看免费高清www| 丰满饥渴人妻一区二区三| 80岁老熟妇乱子伦牲交| 国产一区亚洲一区在线观看| 最近2019中文字幕mv第一页| 欧美日韩亚洲综合一区二区三区_| 日韩大片免费观看网站| 咕卡用的链子| 日韩精品免费视频一区二区三区| 天堂中文最新版在线下载| av网站在线播放免费| 另类精品久久| 国产一区二区三区综合在线观看| 黄片无遮挡物在线观看| 精品午夜福利在线看| 亚洲五月色婷婷综合| 国产欧美亚洲国产| 中文字幕人妻熟女乱码| 最近的中文字幕免费完整| 亚洲中文av在线| 久久久久久久久免费视频了| 久久久久久人妻| 亚洲精品aⅴ在线观看| 丰满少妇做爰视频| 国产日韩欧美在线精品| 色精品久久人妻99蜜桃| 熟女少妇亚洲综合色aaa.| 国语对白做爰xxxⅹ性视频网站| 一个人免费看片子| 高清不卡的av网站| 建设人人有责人人尽责人人享有的| 久久精品熟女亚洲av麻豆精品| 欧美激情高清一区二区三区 | √禁漫天堂资源中文www| 欧美 亚洲 国产 日韩一| av在线老鸭窝| 国产精品 国内视频| 色综合欧美亚洲国产小说| 精品久久久精品久久久| 国产精品女同一区二区软件| 免费观看a级毛片全部| 日韩成人av中文字幕在线观看| 啦啦啦啦在线视频资源| 中文字幕人妻丝袜一区二区 | 久久精品久久久久久噜噜老黄| 99九九在线精品视频| 国产精品一二三区在线看| 亚洲中文av在线| 操美女的视频在线观看| 久久精品久久久久久久性| 看十八女毛片水多多多| 最新在线观看一区二区三区 | 亚洲av日韩精品久久久久久密 | 欧美日韩av久久| 中文字幕制服av| 色网站视频免费| 日本一区二区免费在线视频| 国产成人av激情在线播放| 精品国产超薄肉色丝袜足j| 色网站视频免费| 亚洲欧美成人综合另类久久久| av国产精品久久久久影院| 精品国产超薄肉色丝袜足j| 久久久精品免费免费高清| 99香蕉大伊视频| 啦啦啦中文免费视频观看日本| 熟妇人妻不卡中文字幕| 国产成人精品在线电影| 久久人人爽av亚洲精品天堂| 日韩 亚洲 欧美在线| 一区福利在线观看| 精品免费久久久久久久清纯 | 极品人妻少妇av视频| netflix在线观看网站| 考比视频在线观看| 日韩av在线免费看完整版不卡| 欧美中文综合在线视频| 自线自在国产av| 91国产中文字幕| 婷婷色综合www| 国产一区二区激情短视频 | 精品亚洲成a人片在线观看| 在线观看免费日韩欧美大片| 9热在线视频观看99| 肉色欧美久久久久久久蜜桃| 亚洲国产精品一区三区| 亚洲欧美色中文字幕在线| 成人黄色视频免费在线看| 国产日韩欧美视频二区| 亚洲精品日韩在线中文字幕| 热99国产精品久久久久久7| 岛国毛片在线播放| 亚洲国产中文字幕在线视频| 亚洲图色成人| av.在线天堂| 菩萨蛮人人尽说江南好唐韦庄| 国产精品久久久久成人av| 日韩 欧美 亚洲 中文字幕| a级毛片在线看网站| 国产精品女同一区二区软件| 老司机靠b影院| 老司机影院毛片| www.熟女人妻精品国产| 老司机靠b影院| 天天添夜夜摸| 国产 一区精品| 高清欧美精品videossex| 三上悠亚av全集在线观看| 欧美最新免费一区二区三区| 亚洲av福利一区| 亚洲精品成人av观看孕妇| 精品国产露脸久久av麻豆| 精品午夜福利在线看| 亚洲精品日本国产第一区| 国产又色又爽无遮挡免| 亚洲精品aⅴ在线观看| 一本久久精品| 日韩欧美一区视频在线观看| 母亲3免费完整高清在线观看| 咕卡用的链子| 国产精品香港三级国产av潘金莲 | 欧美国产精品一级二级三级| 人人妻,人人澡人人爽秒播 | 王馨瑶露胸无遮挡在线观看| 免费在线观看完整版高清| 青草久久国产| 亚洲成人手机| 女人高潮潮喷娇喘18禁视频| 欧美人与性动交α欧美精品济南到| 日日摸夜夜添夜夜爱| 精品亚洲成a人片在线观看| 亚洲第一区二区三区不卡| 两个人看的免费小视频| 久久久久久久大尺度免费视频| 免费高清在线观看日韩| 欧美亚洲 丝袜 人妻 在线| 国产片特级美女逼逼视频| 国产伦理片在线播放av一区| 亚洲精品自拍成人| 老司机深夜福利视频在线观看 | 在线精品无人区一区二区三| 汤姆久久久久久久影院中文字幕| 操美女的视频在线观看| 亚洲精品国产av蜜桃| 午夜福利,免费看| 少妇人妻 视频| 我要看黄色一级片免费的| 久久久久视频综合| 亚洲欧美日韩另类电影网站| 夫妻性生交免费视频一级片| 国产成人免费无遮挡视频| 亚洲国产毛片av蜜桃av| 亚洲精品久久久久久婷婷小说| 亚洲av电影在线观看一区二区三区| 80岁老熟妇乱子伦牲交| 精品一区二区免费观看| 成年人午夜在线观看视频| 久久精品国产亚洲av高清一级| 久久影院123| 欧美97在线视频| 亚洲国产欧美在线一区| 激情视频va一区二区三区| 夫妻性生交免费视频一级片| 精品一区二区三区av网在线观看 | 午夜福利一区二区在线看| 777米奇影视久久| 在线观看一区二区三区激情| 国产成人欧美在线观看 | 日韩一本色道免费dvd| www日本在线高清视频| 亚洲,欧美,日韩| 观看美女的网站| 一级爰片在线观看| 婷婷色麻豆天堂久久| 侵犯人妻中文字幕一二三四区| 色94色欧美一区二区| 男女边吃奶边做爰视频| 午夜影院在线不卡| 国产精品无大码| 老司机深夜福利视频在线观看 | 久久99一区二区三区| 国产亚洲最大av| 在线精品无人区一区二区三| 国产精品人妻久久久影院| 超碰97精品在线观看| 久久精品亚洲av国产电影网| 高清欧美精品videossex| 亚洲成人国产一区在线观看 | 九九爱精品视频在线观看| 男女边摸边吃奶| 久久99热这里只频精品6学生| 久久婷婷青草| 制服诱惑二区| 国产免费一区二区三区四区乱码| 人妻 亚洲 视频| 国产亚洲最大av| 美女中出高潮动态图| 看非洲黑人一级黄片| 亚洲av成人不卡在线观看播放网 | 欧美黄色片欧美黄色片| 国产片内射在线| 免费黄频网站在线观看国产| 国产黄色免费在线视频| 久久精品久久久久久久性| 精品免费久久久久久久清纯 | 丝袜美足系列|