• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Aperture-averaged scintillation index and fade statistics in weak oceanic turbulence?

    2021-06-26 03:03:54HaoWang王昊FuZengKang康福增XuanWang王瑄WeiZhao趙衛(wèi)andShuWeiSun孫樞為
    Chinese Physics B 2021年6期

    Hao Wang(王昊) Fu-Zeng Kang(康福增) Xuan Wang(王瑄)Wei Zhao(趙衛(wèi)) and Shu-Wei Sun(孫樞為)

    1State Key Laboratory of Transient Optics and Photonics,Xi’an Institute of Optics and Precision Mechanics,Chinese Academy of Sciences,Xi’an 710119,China

    2University of Chinese Academy of Sciences,Beijing 100049,China

    3Beijing National Laboratory for Condensed Matter Physics,Institute of Physics,Chinese Academy of Sciences,Beijing 100190,China

    4Songshan Lake Materials Laboratory,Dongguan 523808,China

    Keywords: underwater optical communication(UOC),aperture-averaged scintillation index,fade statistics

    1. Introduction

    Underwater optical communication(UOC)has gained increasing attention in recent years for the increasing demand of military applications.[1–3]It has obvious advantage over the underwater acoustic communication in many aspects,etc.,large data capacity, and low-time delay in short to medium distance. However,propagation of a laser beam used in UOC is seriously limited by oceanic turbulence,causing the degradation of UOC performance. To tackle this issue, Nikishov and Nikishov firstly proposed an oceanic turbulence spectrum, providing a foundation for further analysis of oceanic turbulence.[4]Since then,there have been some studies on“the aperture-averaged scintillation index”(SI)and performance of UOC in oceanic turbulence based on Nikishov’s spectrum.For example, Korotkova presented numerical simulation of SI of both plane and spherical waves in weak oceanic turbulence.[5]Wanget al.[6]gave an analytical expression of SI by geometrical optics approximation. Yiet al.[7,8]also analyzed SI of both plane and spherical waves in weak oceanic turbulence and showed that using large-aperture receiver can remarkably decrease SI and consequently improve the system performance significantly. Recently,Gokce and Baykal[9,10]systematically studied how the aperture’s size of the receiver affects SI in strong oceanic turbulence.

    Although much progress has been made in this field,the validity of them in real situation is strongly restricted by Nikishov’s spectrum,which is over-simplified in describing turbulence in several aspects. For example,it assumes that seawater has a stable stratification,that is,the larger the density is,the lower it lies,so that the eddy diffusivity ratio is equal to unity.However, because the surface water is affected by winds and heat exchanges with atmosphere, it is usually neither stable nor layered. Especially at medium and high latitude on earth,the density stratification is reduced or even disappeared.[11]Awareness of such a problem in Nikishov’s spectrum, Yueet al.[12]proposed a modified power spectrum model,which took the instability of stratification into account. Furthermore,their spectrum considered the outer scale of the turbulence as a variable rather than setting it to be infinite. Based on this new model,they investigated how laser beam wanders in weak turbulence. Their results are very different from those using Nikishov’s spectrum. They also showed that the wander of a laser beam with Gaussian intensity profile is significantly reduced by decreasing the outer scale of turbulence. It seems promising that Yue’s spectrum can bring new insight to the theoretical studies of UOC systems. However,to our knowledge,no such research of UOC systems by applying Yue’s spectrum is available yet.

    In this study, we present an improved model of a UOC system in weak oceanic turbulence based on Yue’s spectrum.[12]We derive the analytic expressions of SI in weak oceanic turbulence and carry out a numerical simulation. It is found that spherical wave is preferable in the UOC system in weak turbulence compared to plane wave,and the apertureaveraged effect has a significant impact on UOC system’s performance. We further discuss some typical fade statistics of the UOC system including the probability of fade, the expected number of fades per time and the mean fade time,signal-to-noise ratio(SNR)and bit error rate(BER),according to the numerical simulation. Particularly,the eddy diffusivity ratio and the outer scale of the turbulence are considered[11]in our model and their effect on SI is discussed.

    2. Theory

    2.1. The oceanic turbulence power spectrum with the eddy diffusivity ratio and the outer scale

    Let us firstly briefly introduce Yue’s spectrum used in our model. In 2019,Yueet al.[12]presented an oceanic turbulence power spectrumΦn(κ),which includes the temperature spectrumΦT(κ), the salinity spectrumΦS(κ), and the coupling spectrumΦTS(κ). The power spectrum of oceanic turbulence is expressed as

    whereκis the magnitude of the spatial frequency;αis the thermal expansion coefficient,which is related to the temperature and salinity of the marine environment;κ0=2π/L0(L0is the outer scale of turbulence);εis the dissipation rate of turbulent kinetic energy per unit mass of fluid in the range from 10?1m2/s3to 10?10m2/s3.C0is a constant equal to 0.72.In Eqs. (2)–(4),ηis Kolmogorov microscale length (inner scale);χTis the dissipation rate of mean-squared temperature,varying from 10?4K2/s to 10?10K2/s;wis a dimensionless parameter providing the ratio between temperature and salinity that contributions to the refractive index spectrum ranging from?5 to 0.PT,PSandPTSare the Prandtl number of temperature,salinity,and the coupled temperature salinity,respectively,wherePTS=2PTPS/(PT+PS).Ci(i=T,S or TS)is a constant related toΦi.Niis a function of the Prandtl numberPi, governing the upper bound for the inertial-diffusive range ofΦi,which can be written as

    From Eq.(7),it can be seen thatdris a segmented function ofw.However,in previous studies using Nikishov’s spectrum,dris treated as unity,independent ofw.

    2.2. Aperture-averaged SI and fade statistics

    SI of plane and spherical waves in weak turbulence is defined as[13]

    Substituting Eq.(1)into Eqs.(8)and(9),SI of plane and spherical waves can be expressed as

    We leave the detailed calculation of SI in the Appendix.

    Referring to the mathematical model for the probability density function(PDF)of the randomly fading irradiance signal,we discuss the probability of fade,the expected number of fades per time,the mean fade time below a prescribed threshold,SNR and BER.

    The probability of fade can be expressed as[13]

    wherej=pl or sp represents plane and spherical waves, respectively; erf(x) is the error function. The fade parameterFT, given in decibels (dB), represents the dB level below the on-axis mean irradiance.

    The number of negative crossing of a prescribed threshold〈n(IT)〉characterizes the expected number of fades per time,which can be expressed as

    where〈···〉represents the ensemble average andv0is the quasi-frequency.

    Mean fade time〈t(IT)〉can be written as

    For a shot-noise-limited system,the SNR at the output of the detector can be written as[5,7,8]

    where SNR0is the SNR in the absence of turbulence.

    In the presence of oceanic turbulence, the probability of error is considered to be a conditional probability that must be averaged over the PDF of the random signal to determine the unconditional mean BER.In terms of a normalized signal with unit mean,it leads to the expression[5,7,8]

    3. Result and discussion

    In this section, we present some numerical results based on our model. All the expressions developed in the paper are restricted to weak turbulence,so we limit the SI below 1.[7]A typical marine environment is considered,in which the salinity is 35% and temperature is 20?C,[10]α=2.56×10?4L/?C,PT= 7,PS=700,PTS=13.86,CT= 2.18,CS= 2.22 andCTS=2.21,[10]χT=10?7K2/s,ε=10?4m2/s3. We set the wavelengthλ= 532 nm in the calculation, which is in the range of light window[14](470–580 nm)for the seawater.

    Notably,although we introduce outer scaleL0in the analytical expression of SI for both plane and spherical waves in Eqs. (10) and (11),L0has negligible effect on SI (details are not shown here)similar to that in atmosphere turbulence. This justifies setting it to be infinite in previous studies.[15]

    Fig. 1. SI of plane wave (a) and spherical wave (b) versus w for various receive aperture diameters. The solid lines are with dr calculated by Eq.(7),while dotted lines are with dr=1. The red solid/dotted lines represent D=0 mm,the green solid/dotted lines represent D=1 mm,the blue solid/dotted lines represent D=3 mm and the magenta lines represent D=5 mm, respectively. For all the curves, L=20 m and η =10?3 m.

    Firstly, we study how SI varies according tow,ηandLone by one.Figure 1 showsσ2I,plandσ2I,spas functions ofwfor variousDin two cases (drcalculated by Eq. (7) anddr=1).D=0 mm corresponds to the point receiver. Sincedris separated into three pieces in Eq.(7),the curves ofσ2I,plandσ2I,sp(solid line)in this case can also be divided into three sections.In the first section,σ2I,plandσ2I,spinitially increase aswincreases,reaching a maximum whenwis about 1.15,and then decreases aswapproaches?1. However,the overall changes ofσ2I,plandσ2I,spare small.The second section is fromw=?1 tow=?0.5,whereσ2I,plandσ2I,spdecrease parabolically. The third section is fromw=?0.5 tow=0,whereσ2I,plandσ2I,spincrease sharply with the increase ofw. Since?5<w <?1 and?1<w <0 are dominated by temperature fluctuations and salinity fluctuations, respectively, from these curves, we may conclude that salinity fluctuations have greater impact than temperature fluctuations on oceanic turbulence.However,their influences onσ2I,plandσ2I,spare not trivial particularly in the second section. In addition,increasingDwill reduceσ2I,plandσ2I,sp, which is more noticeable when the salinity fluctuations dominate the underwater turbulence (?1<w <0). On the other hand,σ2I,plandσ2I,spwithdr=1 show different trends,namely, they monotonically increase aswincreases from?5 to 0,though from these two curves,it also seems that salinity fluctuations have greater impact than temperature fluctuations on oceanic turbulence. At a fixed receive aperture diameter,Nikishov’s spectrum underestimates turbulence strength than Yue’s spectrum with?1<w <0, while it overestimates turbulence strength with?5<w <?1.[15]In both the cases,SI of plane wave is larger than that of spherical wave indicating that spherical wave is less affected by oceanic turbulence.

    Fig.2. SI of plane wave(a)and spherical wave(b)versus Kolmogorov microscale length for various receive aperture diameters. For all the curves,L=20 m and w=?1.

    Next, we showσ2I,plandσ2I,spas a function ofηat certainDin Fig. 2. For eachD,σ2I,plandσ2I,spfirst increase and then decrease with increasingη,and finally saturate at a level commonly described as the saturation regime.[5,13]The peak values ofσ2I,plandσ2I,spshould occur when the random focusing due to large-scale inhomogeneities achieves its strongest effect.[13,14]Then such a focusing effect reduces due to multiple scattering asηfurther increases. Whenηis fixed, lowerσ2I,plandσ2I,spare observed for largerD. Such a trend is most obvious whenσ2I,plandσ2I,spare around their peak values. Plane wave is quite sensitive to theη,leading to a higher value ofσ2I,plthan the correspondingσ2I,sp. This is consistent with the case of atmosphere turbulence.[6]

    Figure 3 presents SI of plane and spherical wave through oceanic turbulence with respect toLfor variousD. It can be seen that for eachD,σ2I,plandσ2I,spincrease quadratically with increasingL, indicating that UOC system works well only in short to medium distance. There is a significant drop inσ2I,plandσ2I,spwhenDincreases from 0 mm to 5 mm due to the effect of aperture averaging, especially in long propagation distance, because an increase inLcauses a decrease in the receiver intensity correlation and thus the receiver aperture successfully averages all the intensity fluctuations. Given the sameLandD,σ2I,plis larger thanσ2I,sp,which means spherical wave is less affected by oceanic turbulence than plane wave.Particularly,σ2I,plwith point receiver is about 2.5 timesσ2I,sp.The result is similar to that in atmosphere turbulence.[6]

    Fig.3. SI of plane wave(a)and spherical wave(b)versus propagation distance for various receive aperture diameters. For all curves,w=?1 and η =10?3 m.

    In order to demonstrate the validity of our analytic method, SI of plane wave withD=0 mm at different propagation distances is simulated by Monte Carlo simulation,[5]as shown in Fig. 4 (spherical wave is difficult to simulate by Monte Carlo because its infinite beam width). Table 1 gives a comparison between the SI’s extracted from the analytic method and the Monte Carlo method. The relative error between the them is less than 10%,proving the rationality of our analytic method.

    Next, performance of the UOC system is evaluated for different aperture diameters by investigating typical fade statistics includingPr(I ≤IT),〈n(IT)〉and〈t(IT)〉as functions ofFTfor variousDbased on the SI.We chooseυ0=550 Hz in our analysis for the convenience of making comparison between different conditions.[13,16,17]

    Fig.4. Plane wave at 0 m(a),10 m(b),20 m(c),30 m(d),40 m(e)and 50 m(f).

    Table 1.SI of plane wave at different propagation distances(SI1 is from this paper and SI2 is calculated by the Monte Carlo method).

    As shown in Fig.5,Pr(I ≤IT)decreases with increasingFTandD. Particularly, increasingFTby several dB can substantially reducePr(I ≤IT) by several orders of magnitude,especially with largeD.[18]Pr(I ≤IT) of spherical wave is lower than that of plane wave under the sameFTandD. To achieve the samePr(I ≤IT)of 10?6under the sameD,FTfor spherical wave is again lower than the plane wave. These results indicate that spherical wave is better than the plane wave for UOC.

    Fig. 5. Probability of fade of plane wave (a) and spherical wave (b)versus FT for various receive aperture diameters. For all the curves,L=20 m,w=?1 and η =10?3 m.

    Next,the effect of receiving aperture diameter on〈n(IT)〉for plane and spherical wave is shown in Fig.6. It can be seen that〈n(IT)〉firstly reaches the peak value with increasingFT,then rapidly decreases to low level; and〈n(IT)〉of the point receiver is the smallest whenFTis set to less than 1dB. On the contrary,if anFTof more than 1dB is chosen,〈n(IT)〉decreases with increasingD. To achieve the same〈n(IT)〉, the requiredFTvalue decreases with an increase inD, consistent with the previous studies.[19–22]For example, to achieve the〈n(IT)〉of 100,FTof 4.3, 6.1, 8.1 and 9 dB are required forD=0, 1, 3 and 5 mm for plane wave, respectively, where it reduces to 2.8, 4, 5.1 and 5.5 dB, forD=0, 1, 3 and 5 mm for spherical wave, respectively. This means that under the same oceanic turbulence and system parameters,the UOC system with spherical wave has the lower requirement forFTthan that with plane wave. These results also indicate that spherical wave is better than the plane wave for UOC.

    Fig.6.Expected number of fades versus FT of plane wave(a)and spherical wave (b) for various receive aperture diameters. For all curves,L=20 m,w=?1 and η =10?3 m.

    Finally, we plot〈t(IT)〉againstFTwith variousDin Fig. 7. We can see that〈t(IT)〉monotonically decreases withFT. ForDless than 1 mm, increasingFThas no significant impact on〈t(IT)〉. However, whenDis larger than 3 mm,〈t(IT)〉reduces several orders of magnitude by increasingFT.To achieve a targeted〈t(IT)〉of 10?6s, theFTvalues of 4.3 and 6.9 dB are required forD=0 and 1 mm in the case of plane wave,respectively,while they reduce to 1.7 and 3.4 dB,respectively, forD= 0 and 1 mm in the case of spherical wave. If we want to achieve an acceptable〈t(IT)〉(for example, 10?6s)[23,24]atFT=5 dB,Dmust be larger than 5 mm and 3 mm for plane wave and spherical wave, respectively.This means that spherical wave for UOC can achieve the same〈t(IT)〉with less difficulty and lower cost than plane wave.These results again indicate that spherical wave is better than the plane wave for UOC.

    Fig. 7. Mean fade time versus of plane wave (a) and spherical wave for various receive aperture diameters. For all the curves, L=20 m,w=?1 and η =10?3 m.

    In Fig. 8, we plot the SNR in dB as a function ofLfor variousD. SNR0is set as 10 dB[25]in our analysis for convenience of making comparison between different conditions.Unsurprisingly,turbulence causes a drop in SNR.[7,8]Particularly,SNR decreases with increasingLand decreasingD. Under the same oceanic condition,the SNR of spherical wave is only slightly better than that of plane wave.

    Finally, numerical calculation of the BER against theLfor variousDleads to the results shown in Fig. 9. These results indicate that to achieve an acceptable level of BER(typically around 10?6)[7,8,26]with a receive diameter of 5 mm in the presence of oceanic turbulence,Lis required to be limited in 40 m for spherical wave, while it reduces to 15 m for plane wave. This means that under the same BER, spherical wave for UOC can work in longer distance than plane wave,indicating that spherical wave is better than the plane wave for UOC.

    It is concluded that the performance of UOC with spherical wave is superior to that of plane wave due to the fact that lower SI leads to lower fade statistics.[27,28]We believe that our results provide a guidance for future UOC systems to choose best parameters such as propagation distance, receiving aperture diameter and fade threshold parameter to fit different ocean conditions.

    Fig.8. SNR of plane wave(a)and spherical wave(b)versus propagation distance for various receive aperture diameters. For all the curves,w=?1 and η =10?3 m.

    Fig.9. BER of plane wave(a)and spherical wave(b)versus propagation distance for various receive aperture diameters. For all the curves,w=?1 and η =10?3 m.

    4. Conclusion and perspectives

    In summary, we have adopted a spatial power spectrum model that considers the eddy diffusivity ratio and outer scale of turbulence and derived the analytical expressions of SI for plane and spherical waves based on the Rytov theory in weak turbulence.The numerical results show thatw,η,LandDplay an importance role in SI,whileL0does not. In many cases,SI based on our model is very different from that based on Nikishov’s spectrum.Based on SI,the typical fade statistics of the UOC system including thePr(I ≤IT),〈n(IT)〉,〈t(IT)〉, SNR and BER are discussed,clearly showing that the UOC system with spherical wave has advantage over that with plane wave.These results are helpful for design of UOC systems in future.

    Acknowledgement

    We would like to thank Professor Xiang Yi(Xidian University)and Professor Haiping Mei(Anhui Institute of Optics and Fine Mechanics)for helpful discussion and valuable suggestions.

    Appendix A

    Here, we would show how to calculateσ2I,plandσ2I,spin details based on Yue’s spectrum.The results are valid for weak oceanic turbulence where SI is below 1.

    SI of plane wave is expressed as[13]

    where Γ(···)represents the gamma function andU(···)represents the confluent hypergeometric function of the second kind.

    By performing the integral overκin Eq.(A3),we obtain

    最近在线观看免费完整版| 尾随美女入室| 国产亚洲av嫩草精品影院| 午夜亚洲福利在线播放| 日本精品一区二区三区蜜桃| av在线观看视频网站免费| 少妇丰满av| 天堂动漫精品| 国国产精品蜜臀av免费| 男女之事视频高清在线观看| 在线观看美女被高潮喷水网站| 男女视频在线观看网站免费| 午夜福利在线观看吧| 国产人妻一区二区三区在| 成人鲁丝片一二三区免费| 日韩欧美国产在线观看| 国产激情偷乱视频一区二区| 色5月婷婷丁香| 婷婷精品国产亚洲av| 大型黄色视频在线免费观看| 国产高清激情床上av| 亚洲综合色惰| 91麻豆精品激情在线观看国产| 免费看a级黄色片| 波多野结衣高清无吗| 国产熟女欧美一区二区| 亚洲色图av天堂| 精品福利观看| 精品一区二区三区人妻视频| 欧美+亚洲+日韩+国产| 久久精品久久久久久噜噜老黄 | 日本在线视频免费播放| 欧美潮喷喷水| 欧美激情国产日韩精品一区| 国产老妇女一区| 悠悠久久av| 少妇人妻一区二区三区视频| 精品乱码久久久久久99久播| 国产高清视频在线观看网站| 99在线视频只有这里精品首页| 国产大屁股一区二区在线视频| 国产白丝娇喘喷水9色精品| 精品久久久久久久久亚洲| 我要搜黄色片| 欧洲精品卡2卡3卡4卡5卡区| 九九在线视频观看精品| 国产伦精品一区二区三区视频9| 免费电影在线观看免费观看| 欧美日韩精品成人综合77777| 美女大奶头视频| 日本色播在线视频| 自拍偷自拍亚洲精品老妇| 日本与韩国留学比较| 黄片wwwwww| 国产精品国产三级国产av玫瑰| 九九热线精品视视频播放| 夜夜爽天天搞| 午夜激情欧美在线| 亚洲国产精品久久男人天堂| 国产精品野战在线观看| 国产精品1区2区在线观看.| av在线蜜桃| 欧美日韩在线观看h| 日韩欧美三级三区| 国内少妇人妻偷人精品xxx网站| 三级经典国产精品| 在线a可以看的网站| 大香蕉久久网| 成人美女网站在线观看视频| 国产亚洲精品综合一区在线观看| 国产午夜精品论理片| 熟女电影av网| 日日啪夜夜撸| 亚洲av免费在线观看| 超碰av人人做人人爽久久| 插阴视频在线观看视频| 免费在线观看成人毛片| 日本在线视频免费播放| 欧美日韩国产亚洲二区| 一进一出抽搐gif免费好疼| 亚洲自拍偷在线| 精品午夜福利在线看| 日本爱情动作片www.在线观看 | 亚洲精华国产精华液的使用体验 | 在线观看一区二区三区| or卡值多少钱| 亚洲四区av| 欧美国产日韩亚洲一区| 波多野结衣巨乳人妻| 亚洲在线观看片| 99热这里只有是精品50| 日韩成人伦理影院| 天天一区二区日本电影三级| 我的老师免费观看完整版| 亚洲成人精品中文字幕电影| 欧美精品国产亚洲| 99久久无色码亚洲精品果冻| 美女 人体艺术 gogo| 欧美中文日本在线观看视频| 丝袜喷水一区| 亚洲av电影不卡..在线观看| 精品99又大又爽又粗少妇毛片| 又爽又黄a免费视频| 天堂网av新在线| 在线播放无遮挡| 尾随美女入室| h日本视频在线播放| 色哟哟哟哟哟哟| 少妇被粗大猛烈的视频| 成年女人永久免费观看视频| 国模一区二区三区四区视频| 欧美中文日本在线观看视频| 国产精品野战在线观看| 亚洲专区国产一区二区| 亚洲自拍偷在线| 有码 亚洲区| 18禁裸乳无遮挡免费网站照片| 久久久国产成人精品二区| 可以在线观看毛片的网站| 变态另类成人亚洲欧美熟女| 国产午夜精品久久久久久一区二区三区 | 精品久久久久久久久久免费视频| 在线a可以看的网站| 亚洲精品成人久久久久久| 日韩强制内射视频| 日本三级黄在线观看| 高清午夜精品一区二区三区 | 日本欧美国产在线视频| 国产精品电影一区二区三区| 欧美又色又爽又黄视频| 久久天躁狠狠躁夜夜2o2o| 久久人妻av系列| 一进一出抽搐gif免费好疼| 黄色视频,在线免费观看| 欧美丝袜亚洲另类| 网址你懂的国产日韩在线| 黑人高潮一二区| 乱系列少妇在线播放| 欧美+日韩+精品| 少妇被粗大猛烈的视频| 亚洲国产精品成人久久小说 | 亚洲自拍偷在线| 夜夜爽天天搞| 人人妻人人看人人澡| 日本色播在线视频| 国产淫片久久久久久久久| 久久亚洲国产成人精品v| 国产不卡一卡二| 一本久久中文字幕| 尾随美女入室| 国产精品人妻久久久影院| 欧美xxxx性猛交bbbb| 国产伦一二天堂av在线观看| 国产精品,欧美在线| 国产真实乱freesex| 成人永久免费在线观看视频| 久久久成人免费电影| 91av网一区二区| 国产精品女同一区二区软件| 午夜福利在线在线| 少妇人妻一区二区三区视频| 听说在线观看完整版免费高清| 乱人视频在线观看| 日本一二三区视频观看| 国内久久婷婷六月综合欲色啪| 色5月婷婷丁香| 国产精品久久久久久亚洲av鲁大| 在线免费观看的www视频| 亚洲欧美成人综合另类久久久 | 日韩成人伦理影院| 国产av在哪里看| 国产欧美日韩精品亚洲av| 日韩欧美精品免费久久| 国产精品久久电影中文字幕| 国产激情偷乱视频一区二区| 99久久久亚洲精品蜜臀av| 天天一区二区日本电影三级| 国内精品一区二区在线观看| av在线老鸭窝| 婷婷亚洲欧美| 亚洲精品日韩av片在线观看| а√天堂www在线а√下载| 国产中年淑女户外野战色| 成人精品一区二区免费| 日产精品乱码卡一卡2卡三| 国产亚洲91精品色在线| 好男人在线观看高清免费视频| 国产精品久久电影中文字幕| 久久精品国产亚洲av涩爱 | 精品不卡国产一区二区三区| 香蕉av资源在线| 久久久久国内视频| 欧美国产日韩亚洲一区| 亚洲av二区三区四区| 亚洲美女视频黄频| 国产成人a∨麻豆精品| 蜜桃久久精品国产亚洲av| 久久久久国产精品人妻aⅴ院| 男人舔女人下体高潮全视频| 日日摸夜夜添夜夜爱| 国产单亲对白刺激| 精品少妇黑人巨大在线播放 | 国产麻豆成人av免费视频| 亚洲av成人精品一区久久| 国产一级毛片七仙女欲春2| 美女黄网站色视频| 国模一区二区三区四区视频| 日本在线视频免费播放| h日本视频在线播放| 九九久久精品国产亚洲av麻豆| 色播亚洲综合网| 精品午夜福利视频在线观看一区| 日日摸夜夜添夜夜添av毛片| 亚洲自拍偷在线| 日本爱情动作片www.在线观看 | 黄片wwwwww| av卡一久久| 久久精品国产亚洲av天美| 老熟妇乱子伦视频在线观看| 3wmmmm亚洲av在线观看| 欧美激情在线99| 九九爱精品视频在线观看| 成人亚洲欧美一区二区av| 九九久久精品国产亚洲av麻豆| 国产精品嫩草影院av在线观看| 欧美激情国产日韩精品一区| 综合色av麻豆| 精品国内亚洲2022精品成人| 美女大奶头视频| 精品一区二区三区视频在线| 人妻制服诱惑在线中文字幕| 日韩强制内射视频| 天堂网av新在线| 男人舔女人下体高潮全视频| 性欧美人与动物交配| 寂寞人妻少妇视频99o| 亚洲欧美日韩卡通动漫| a级一级毛片免费在线观看| 在线观看一区二区三区| 少妇人妻精品综合一区二区 | 日韩欧美 国产精品| av在线播放精品| 国产欧美日韩精品一区二区| 国内揄拍国产精品人妻在线| 最近2019中文字幕mv第一页| 午夜福利在线观看免费完整高清在 | 夜夜爽天天搞| 日韩,欧美,国产一区二区三区 | 在线免费观看的www视频| 久久草成人影院| 国产免费一级a男人的天堂| 久久6这里有精品| 99久久精品一区二区三区| 亚洲美女视频黄频| 女的被弄到高潮叫床怎么办| av中文乱码字幕在线| 久久午夜亚洲精品久久| 少妇高潮的动态图| 免费观看人在逋| 亚洲三级黄色毛片| 深夜精品福利| 99久久成人亚洲精品观看| 最好的美女福利视频网| 亚洲成人久久爱视频| 国产老妇女一区| 69人妻影院| 麻豆一二三区av精品| 日日撸夜夜添| 国产精品久久久久久久久免| 日本五十路高清| 毛片女人毛片| 日本成人三级电影网站| 日日摸夜夜添夜夜爱| 免费av观看视频| 国产精品国产三级国产av玫瑰| 午夜福利成人在线免费观看| 深夜a级毛片| 人妻少妇偷人精品九色| 两个人的视频大全免费| 午夜精品在线福利| 日本-黄色视频高清免费观看| 色播亚洲综合网| 搡老熟女国产l中国老女人| 亚洲熟妇熟女久久| 99热这里只有是精品50| 国产精品,欧美在线| 中文字幕免费在线视频6| 欧美又色又爽又黄视频| 国产片特级美女逼逼视频| 看十八女毛片水多多多| 91久久精品国产一区二区成人| 日日摸夜夜添夜夜添av毛片| 听说在线观看完整版免费高清| 99热精品在线国产| 国产精品福利在线免费观看| 99久久无色码亚洲精品果冻| 简卡轻食公司| 俺也久久电影网| 精品国内亚洲2022精品成人| 日本黄色视频三级网站网址| 一级毛片电影观看 | 美女被艹到高潮喷水动态| 一级黄色大片毛片| 丰满的人妻完整版| 国产精品爽爽va在线观看网站| 少妇熟女欧美另类| 欧美激情国产日韩精品一区| 99热网站在线观看| 狂野欧美白嫩少妇大欣赏| 两性午夜刺激爽爽歪歪视频在线观看| 男女做爰动态图高潮gif福利片| 毛片一级片免费看久久久久| 十八禁国产超污无遮挡网站| 亚洲精品国产成人久久av| 国产成人aa在线观看| 久久精品国产亚洲av涩爱 | 国产一区亚洲一区在线观看| 狂野欧美白嫩少妇大欣赏| 大香蕉久久网| 亚洲熟妇中文字幕五十中出| 亚洲成a人片在线一区二区| 人人妻人人澡人人爽人人夜夜 | 女生性感内裤真人,穿戴方法视频| 国产精品久久久久久久久免| 亚洲国产高清在线一区二区三| 色综合站精品国产| 亚洲人成网站在线播| 亚洲一区二区三区色噜噜| 少妇裸体淫交视频免费看高清| 老女人水多毛片| 亚洲精品亚洲一区二区| 亚洲av熟女| 黄色欧美视频在线观看| 欧美日本亚洲视频在线播放| 亚洲五月天丁香| 美女被艹到高潮喷水动态| 久久人人精品亚洲av| 午夜老司机福利剧场| 波多野结衣巨乳人妻| 国产午夜精品久久久久久一区二区三区 | 久久精品综合一区二区三区| 欧美成人精品欧美一级黄| 你懂的网址亚洲精品在线观看 | 亚洲欧美精品自产自拍| 偷拍熟女少妇极品色| 人妻久久中文字幕网| 1000部很黄的大片| 丝袜美腿在线中文| 日韩一区二区视频免费看| 欧美日韩精品成人综合77777| 麻豆国产av国片精品| 久久亚洲国产成人精品v| 99久久中文字幕三级久久日本| 麻豆乱淫一区二区| 在线a可以看的网站| 18禁在线播放成人免费| 特级一级黄色大片| 搡老妇女老女人老熟妇| 伊人久久精品亚洲午夜| 卡戴珊不雅视频在线播放| 国产伦在线观看视频一区| 亚洲最大成人av| 国产精品人妻久久久久久| 综合色av麻豆| 伦精品一区二区三区| 欧美日韩乱码在线| 日韩精品中文字幕看吧| 久久午夜福利片| 成年版毛片免费区| 日韩欧美精品免费久久| 精品熟女少妇av免费看| 亚洲欧美中文字幕日韩二区| 此物有八面人人有两片| 麻豆精品久久久久久蜜桃| av中文乱码字幕在线| 国产亚洲欧美98| 日本免费一区二区三区高清不卡| 性色avwww在线观看| 国产伦在线观看视频一区| 国产一区二区亚洲精品在线观看| 久久久久久大精品| 成人无遮挡网站| 中文字幕av在线有码专区| 久久久久久伊人网av| 日韩欧美精品免费久久| 国产亚洲精品av在线| 99热只有精品国产| 精品人妻熟女av久视频| 国产免费男女视频| 亚洲av成人av| 九九爱精品视频在线观看| 神马国产精品三级电影在线观看| 欧美成人a在线观看| av在线亚洲专区| 国产精品三级大全| 国内久久婷婷六月综合欲色啪| 国产精品福利在线免费观看| 久久久色成人| 伦理电影大哥的女人| 欧美性猛交╳xxx乱大交人| 精品久久久久久久久久免费视频| 国产一区二区在线观看日韩| 午夜激情福利司机影院| 人妻夜夜爽99麻豆av| 久久午夜福利片| 久久精品国产亚洲av涩爱 | 国产精品人妻久久久影院| 内地一区二区视频在线| 蜜臀久久99精品久久宅男| 在现免费观看毛片| 熟女电影av网| 免费人成视频x8x8入口观看| 亚洲在线自拍视频| 男女做爰动态图高潮gif福利片| 成人二区视频| 国产精品久久久久久亚洲av鲁大| 国产淫片久久久久久久久| 亚洲国产高清在线一区二区三| 天天躁日日操中文字幕| 欧美激情国产日韩精品一区| 国产高清有码在线观看视频| 欧美区成人在线视频| 久久久色成人| 亚洲精品一区av在线观看| 久久久国产成人精品二区| 色噜噜av男人的天堂激情| 久久久久久久久久久丰满| 深夜精品福利| 97超碰精品成人国产| 我要搜黄色片| 一级黄色大片毛片| 人妻少妇偷人精品九色| 深夜a级毛片| 亚洲国产精品久久男人天堂| 国产亚洲91精品色在线| 日韩成人伦理影院| 男女视频在线观看网站免费| 精品一区二区三区人妻视频| a级毛色黄片| 精品久久久久久久久亚洲| 蜜桃久久精品国产亚洲av| 我的女老师完整版在线观看| 成人一区二区视频在线观看| 欧美日韩乱码在线| 小说图片视频综合网站| 可以在线观看的亚洲视频| av天堂在线播放| 久久草成人影院| 3wmmmm亚洲av在线观看| 成人鲁丝片一二三区免费| 午夜福利18| a级毛色黄片| 深夜a级毛片| 免费av毛片视频| 在线免费观看不下载黄p国产| 1024手机看黄色片| 日本免费一区二区三区高清不卡| 最近在线观看免费完整版| 你懂的网址亚洲精品在线观看 | 麻豆久久精品国产亚洲av| 国产欧美日韩一区二区精品| 免费观看在线日韩| 国产精品,欧美在线| 少妇熟女欧美另类| 可以在线观看毛片的网站| 亚洲18禁久久av| 中文在线观看免费www的网站| 精品国产三级普通话版| 啦啦啦啦在线视频资源| 亚洲成人精品中文字幕电影| 亚洲成a人片在线一区二区| 大型黄色视频在线免费观看| 日韩欧美精品免费久久| 你懂的网址亚洲精品在线观看 | 看非洲黑人一级黄片| 成年av动漫网址| 一区福利在线观看| 99热这里只有是精品在线观看| 日本黄大片高清| 亚洲精品久久国产高清桃花| 日韩精品中文字幕看吧| 日韩成人av中文字幕在线观看 | 有码 亚洲区| 黄色欧美视频在线观看| 国产高清视频在线观看网站| 亚洲人成网站高清观看| 丰满人妻一区二区三区视频av| 又爽又黄a免费视频| 国产蜜桃级精品一区二区三区| 亚洲不卡免费看| 在线观看一区二区三区| 午夜福利成人在线免费观看| 3wmmmm亚洲av在线观看| 特大巨黑吊av在线直播| 五月伊人婷婷丁香| 国产单亲对白刺激| 欧美日韩在线观看h| 成人二区视频| 91av网一区二区| 精品日产1卡2卡| 22中文网久久字幕| 人妻少妇偷人精品九色| 大型黄色视频在线免费观看| 亚洲人与动物交配视频| 久久久午夜欧美精品| 麻豆乱淫一区二区| 2021天堂中文幕一二区在线观| 日本黄色片子视频| 日本与韩国留学比较| 日本黄色片子视频| 无遮挡黄片免费观看| 如何舔出高潮| 久久亚洲精品不卡| 高清毛片免费看| 91麻豆精品激情在线观看国产| 午夜福利视频1000在线观看| 亚洲不卡免费看| 免费av毛片视频| 又黄又爽又刺激的免费视频.| 亚洲一级一片aⅴ在线观看| 久久久a久久爽久久v久久| 在线免费观看的www视频| 国产高清三级在线| 国产成年人精品一区二区| 99久久精品一区二区三区| 露出奶头的视频| 日日摸夜夜添夜夜添av毛片| 国产精品爽爽va在线观看网站| 少妇的逼水好多| 女生性感内裤真人,穿戴方法视频| 日韩一区二区视频免费看| 亚洲熟妇中文字幕五十中出| 中文字幕久久专区| 成年女人永久免费观看视频| 在线国产一区二区在线| 深爱激情五月婷婷| 久久鲁丝午夜福利片| 男女视频在线观看网站免费| 欧美最新免费一区二区三区| 日韩欧美精品免费久久| 久久精品91蜜桃| 1024手机看黄色片| 又粗又爽又猛毛片免费看| 狂野欧美白嫩少妇大欣赏| 欧美日本亚洲视频在线播放| 精品午夜福利视频在线观看一区| 久久这里只有精品中国| av在线老鸭窝| 麻豆国产97在线/欧美| 国产亚洲精品av在线| av在线播放精品| 在线观看66精品国产| 亚洲高清免费不卡视频| 亚洲电影在线观看av| 麻豆国产av国片精品| 国产精品久久久久久亚洲av鲁大| 亚洲一区高清亚洲精品| 国产不卡一卡二| 国产大屁股一区二区在线视频| 18禁黄网站禁片免费观看直播| 精品99又大又爽又粗少妇毛片| 男女下面进入的视频免费午夜| 淫妇啪啪啪对白视频| 两个人视频免费观看高清| 日本免费一区二区三区高清不卡| 久久久久久久久久久丰满| 听说在线观看完整版免费高清| 欧美日韩一区二区视频在线观看视频在线 | 床上黄色一级片| 看十八女毛片水多多多| 麻豆乱淫一区二区| 亚洲精品色激情综合| 搞女人的毛片| 99在线视频只有这里精品首页| 成人国产麻豆网| 亚洲中文日韩欧美视频| 男女视频在线观看网站免费| av中文乱码字幕在线| 亚洲在线自拍视频| 免费人成视频x8x8入口观看| 人人妻,人人澡人人爽秒播| 国产在线精品亚洲第一网站| 欧美激情在线99| 久久热精品热| 国产大屁股一区二区在线视频| 国产黄色小视频在线观看| 国产免费一级a男人的天堂| 日本三级黄在线观看| 18禁在线播放成人免费| 亚洲成人久久性| 九九爱精品视频在线观看| 中国国产av一级| 国产免费一级a男人的天堂| 久久精品国产亚洲av天美| 免费看美女性在线毛片视频| 悠悠久久av| 尤物成人国产欧美一区二区三区| 观看美女的网站| 中文字幕av成人在线电影| 观看免费一级毛片| 欧美zozozo另类| 婷婷精品国产亚洲av在线| 国产精品一区二区免费欧美| 日日干狠狠操夜夜爽| 神马国产精品三级电影在线观看| 亚洲人成网站高清观看| 夜夜爽天天搞| 午夜福利18| 色尼玛亚洲综合影院| 成人特级av手机在线观看| 又黄又爽又免费观看的视频| 久久国内精品自在自线图片| 亚洲真实伦在线观看| 99国产精品一区二区蜜桃av| 午夜日韩欧美国产|