• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Behaviors of thermalization for the Fermi–Pasta–Ulam–Tsingou system with small number of particles?

    2021-06-26 03:03:34ZhenjunZhang張振俊JingKang康靜andWenWen文文
    Chinese Physics B 2021年6期
    關(guān)鍵詞:文文

    Zhenjun Zhang(張振俊), Jing Kang(康靜), and Wen Wen(文文)

    College of Science,Hohai University,Nanjing 210098,China

    Keywords: FPUT system,thermalization,small number of particles

    1. Introduction

    To confirm the connection between nonlinearity and ergodicity in a classical Hamiltonian system with many degrees of freedom, Fermi in collaboration with Pasta, Ulam, and Tsingou(FPUT)performed the first numerical experiment via a one-dimensional harmonic chain coupled with cubic or quartic potentials.[1]They expected that the nonlinearity would lead to a thermalized state,i.e., a state in which the influence of the initial modes disappears and all modes are excited equally on average. Instead of the expected irreversible process of thermalization,the system exhibits a quasiperiodic recurrences to the initial state. Their work has stimulated prolific activities for several decades in the study of the temporal evolution of an initially localized energy excitation in various nonlinear systems.[2–38]

    Izraielev and Chirikov predicted there is an energy threshold, above which the FPUT system can reach thermalization.[3]Such concept, also known as the Chirikov overlap criterion, is based on the fact that the nonlinearity changes the linear dispersion relation, and the resonant condition in frequency is then modified. When the nonlinearity becomes large enough, a mechanism of “overlap of frequencies”may happen. Fast thermalization has been subsequently confirmed by different numerical studies.[4,8,9,14,15]However,whether the FPUT system can be thermalized for arbitrary small nonlinearity has not been settled clearly. Recently,resonant wave–wave interaction theory has been applied to discuss this problem.[39–47]According to this theory,the long time dynamics is ruled by exact resonances in weak nonlinear regime.Thermalization is achieved by the nontrivial resonances.In the thermodynamic limit,if the nontrivialn-wave resonances exist and dominate the thermalization,the thermalization time-scale should be the derivation of the correspondingn-wave kinetic equation, which lead to the thermalization timeteqdepending on system’s energy densityεscales asteq∝ε?(n?2).[41,45]For the FPUT system in the thermodynamic limit, the lowest order nontrivial resonances are four-wave resonances, which result inteq∝ε?2. Numerical simulations for large number of particles show that the results are mostly consistent with theoretical predictions.[45,46]Besides, the thermalization behaviors for one-dimensional disordered lattices systems in the thermodynamic limit have been studied recently.[48,49]For the FPUT system with small number of particles using periodic boundary conditions, the lowest order nontrivial resonances were found to be six-wave resonances.[42,43,46]However, then-wave kinetic equation can be rigorously derived only in the thermodynamic limit. For the FPUT system with small number of particles,deriving a discrete version of the kinetic equation poses significant mathematical problems.[46]Therefore,they made the conjecture that the time scale of thermalization corresponding to the six-wave interaction for small number of particles is equivalent to that for the thermodynamic limit,which leads toteq∝ε?4. This scaling law has been verified by their numerical simulations in the range of nonlinearity they studied.[42,43,46]Obviously, the discrete case stands on a less rigorous ground and further work is definitely needed.

    In this paper, we study the behaviors of thermalization for the FPUT system in a wider range of weak nonlinearity compared with previous studies.[42,43]We find the scalingteq∝ε?4observed in Refs. [42,43] is only established within a certain range of nonlinearity. In this range of nonlinearity, energies can transfer from the initial excited modes to other modes continuously. This energy transport process happens via the nontrivial six-wave resonances,[42,43]which hence lead toteq∝ε?4. With a further decreasing nonlinearity, a crossover fromteq∝ε?4to a steeper growth will appear. In the very weakly nonlinear regime, energy transport process becomes obviously different. Energies on low frequency modes are found to be frozen on large time scales. It indicates that these low frequency modes cannot take part in the energy sharing for a long time. Therefore,resonant wave–wave interaction theory no longer works for energy transport in the very weakly nonlinear regime. In this case, redistribution of mode energies happens through the resonances of high frequency modes,which lead to the deviation fromteq∝ε?4.

    2. Model and method of numerical experiments

    Hereqjis the displacement of the particlejfrom its equilibrium position andpjis the associated momentum.Nis the particle number of the system.αandβare positive constants.α/=0,β=0 andα=0,β/=0 correspond to theα-FPUT model andβ-FPUT model, respectively. The relevant quantities determining the dynamics areα2ε[30]andβε[31]forα-FPUT model andβ-FPUT model, respectively. A more systematic definition of nonlinearity strength for one-dimensional lattices can be found in Ref. [50]. In the linear case (α=0,β=0)with periodic boundaries(qN=q0),the normal modes are given by

    wherePkandQkare the momentum and amplitude of thek-th normal mode,respectively.

    The dispersion relation(frequencyversusmode indexk)i

    We introduce the following quantity as an indicator of thermalization[8]

    where

    in which

    We use an SABA2C symplectic algorithm[51]to integrate the equations of motion derived by the Hamiltonian (1). Energy is initially equidistributed among some of the lowest frequency linear modes. The time step was set to 0.1 in all simulations, and it was checked that from beginning to the end of the simulation the relative energy error keeps smaller than 10?5. Note that the relevant quantities determining the strength of nonlinearity areα2ε[30]andβε[31]forα-FPUT model andβ-FPUT model,respectively.Therefore,it is equivalent to study the scaling ofα(β)by fixingεor that ofεby fixingα(β). Here,without loss of generality,we vary the energy densityεand fixα=0.33[30]andβ=1.0 forα-FPUT model andβ-FPUT model, respectively. Particle number of the system isN=32. In order to suppress fluctuations, the result ofξ(t) is averaged on 50 different random phases for eachε. We use〈ξ(t)〉to denote the averaging results.

    3. Numerical results

    In Fig. 1(a), we show the results of〈ξ(t)〉for different energy densityεforα-FPUT model in semilog scale. Modesk=1,2,30,31 are initially excited for allε. The curves start at the value 4/(N ?1) then settle to intermediate values for a transient interval of time that increases as the energy densityεdecreases. After that, the curves grow gradually and finally tend to 1.0 with the time increasing. In order to obtain the scaling law of thermalization timeteqdepending onε,we introduce a threshold〈ξ〉eqto estimate the time it takes for the system to reach thermalization. Specifically, we have defined the time asteqin which〈ξ(t)〉reaches the value of〈ξ〉eq=0.99. We find the scaling law ofteqdepending onεis quite insensitive to the choice of the value of〈ξ〉eq. This can be seen from the rescaled results of〈ξ(t)〉for differentεshown in Fig. 1(b). We rescale〈ξ(t)〉for differentεas the time is divided by a suitable factor so that they superpose at〈ξ(t)〉=0.9. One can see that all curves nearly collapse to a single one when〈ξ(t)〉is greater than 0.7.

    Fig. 1. (a) The dependence of 〈ξ(t)〉 on time t for different energy density ε for α-FPUT model in semilog scale. The curves from left to right at 〈ξ(t)〉=0.8 are for ε =0.1, 0.08, 0.05, 0.035, 0.025, 0.02, and 0.015,respectively. Modes k=1,2,30,31 are initially excited for each ε. (b)The curve of ε=0.035 is kept fixed. The other curves are rescaled as the time is divided by a suitable factor so that they superpose at〈ξ(t)〉=0.9.

    Fig.2.The results of thermalization time teq depending on ε in log–log scale for α-FPUT model.

    The results ofteqdepending onεforα-FPUT model are shown in Fig.2.One can see that a power law scalingteq∝ε?4is observed within a certain range ofε. This scaling has been found in Ref.[42]. However, a deviation fromteq∝ε?4will appear with a further decreasingε.This deviation has not been observed in Ref.[42]because the strength of nonlinearity they studied is not small enough. One can see from Fig.2 that an obvious deviation fromteq∝ε?4appears atεc≈0.025.Therefore,α2εc≈(0.33)2×0.025≈0.0027. A deviation fromteq∝ε?4can be observed only when the value ofα2εis less than 0.0027. However, one can see from Ref. [42] that the smallest value ofα2ε ≈(0.06)2×1.0=0.0036,above which only the scalingteq∝ε?4can be observed.The deviation fromteq∝ε?4is found to be independent of the number of the initially excited modes.

    The results ofteqdepending onεforβ-FPUT model in log–log scale are shown in Fig.3.The scalingteq∝ε?4,which has been found in Ref.[43], is observed only when the value ofεis grater thanεc≈0.014. With a further decreasingε, a deviation fromteq∝ε?4appears.Therefore,this deviation can be observed only when the value ofβεis less than 0.014. In Ref.[43],the smallest value ofβε ≈0.02,above which only the scalingteq∝ε?4can be observed.

    Fig.3.The results of thermalization time teq depending on ε in log–log scale for β-FPUT model.

    According to the resonant wave–wave interaction theory,[41]all modes of the FPUT system with small number of particles for periodic boundary conditions are interconnected via the nontrivial six-wave resonances.[42,43]Therefore, energies can exchange among all modes continuously through the nontrivial wave–wave interaction until reaching the thermalized state. In other words,energy on each mode should varies continuously with time until reaching the thermalized state if energy can spread via the nontrivial wave–wave interaction.Figure 4(a)gives the results ofEk(t)depending ontwith differentkforα-FPUT model atε=0.05. It is seen that the energy on each mode varies continuously with time,and fnially approaches to the expected value 0.05,which means thermalization has reached. Figure 4(b) gives the results ofEk(t)versus kforε=0.05 at different timetforα-FPUT model.One can see that each mode at different time owns different energy. The above results indicate that energies can interchange among all modes continuously. This energy transfer behavior is consistent with the resonant wave–wave interaction theory. Therefore,resonant wave–wave interaction theory works well in this range of nonlinearity. The lowest order nontrivial resonances have been found to be six-wave resonances,[42,43]which hence lead to the power law scalingteq∝ε?4. However,energy transport process becomes obviously different in

    Fig.4. (a)TheresultsofEk(t)dependingont withdifferent k for α-FPUT model at ε=0.05. Thecurves fromtop tobottomatt =104 are fork=1,5,10,and 16,respectively. Modes k=1,2,30,31 are initially excited. (b)Parameters are the same as those in panel(a),but now for the results of Ek(t)versus k at different time t.

    Fig.5. (a)The resultsofEk(t)depending on twithdifferent k for α-FPUT model atε=0.01.The curvesfromtop to bottom att=104 are for k=1,5,10,and 16,respectively. Modes k=1,2,30,31 have been initially excited.(b)Parameters are the same as those in panel(a),but now for the results of Ek(t)versus k at different time t.

    In order to obtain the scaling law in the very weakly nonlinear regime,we study the normalized high frequency energyσ(t)=∑21k=11Fk(t), as has been studied in Ref. [30] for theα-FPUT system with fixed boundary conditions. For theα-FPUT system with fixed boundary conditions, the results ofσ(t) for differentεare found to be fitted by a power lawσ(t)∝Dtγ.[30]Both the exponentγand the coefficientDdepend onε.According to this power law,the values ofteqcan be obtained only via relatively short time scales even in the very weakly nonlinear regime. The thermalization timeteqdepending onεis found to beteq∝10c/εb, with suitable constantscandb, in the very weakly nonlinear regime.[30]However,the dynamical results ofσ(t)for the FPUT system with periodic boundary conditions are different from those with fixed boundary conditions. In Fig. 6, we plot the results ofσ(t)versus tfor two values ofε=0.008, 0.004. Forε=0.008,one can see thatσ(t) does not grow with time with a period of time. It suggests that even the high frequency modes are frozen for a period of time. Afterwards,σ(t)grows continuously with time.Forε=0.004,σ(t)keeps unchanged even up tot=1010.σ(t)no longer displays a power law for the FPUT system with periodic boundary conditions in the very weakly nonlinear regime. Therefore, we cannot obtain the values ofteqthrough relatively short time scales for very weak nonlinearity throughσ(t). The scaling law for the FPUT system with small number of particles for periodic boundary conditions in the very weakly nonlinear regime remains a very difficult problem.

    Fig. 6. The results of σ(t) depending on t in log–log scale for α-FPUT model. The curves from top to bottom at t =106 are for ε =0.008, and 0.004,respectively.

    4. Conclusion

    In this paper, we studied numerically the behaviors of thermalization in the range of weak nonlinearity forα-FPUT model andβ-FPUT model withN=32. We find the scalingteq∝ε?4,which has been observed in Refs.[42,43],is only established within a certain range of nonlinearity for both models. In this range of nonlinearity, energies can transfer from the initial excited modes to other modes continuously. This energy transport process happens via the nontrivial six-wave resonances,which hence lead toteq∝ε?4. With a further decreasing nonlinearity, a crossover fromteq∝ε?4to a steeper growth will appear. Energies are found to be frozen on low frequency modes for large time scales in the very weakly nonlinear regime, which indicates that the resonant wave–wave interaction theory no longer works in the very weakly nonlinear regime. In this case, redistribution of mode energies happens through the resonances of the high frequency modes,which lead to the deviation from the scaling lawteq∝ε?4.Finally, we stress that the scaling law for the FPUT system with small number of particles for periodic boundary conditions in the very weakly nonlinear regime remains a very difficult problem. We hope our work can be useful in motivating more studies in this direction.

    猜你喜歡
    文文
    CLIMATE IN CRISIS
    TEA LEAVES
    Auto Ad Infringement
    Cash Withheld
    Breaking the Chain
    TEA LEAVES
    茶話(huà)會(huì)
    TEA LEAVES
    Power Down
    China’s Other Vaccine Drive
    成人亚洲欧美一区二区av| 人妻 亚洲 视频| 乱系列少妇在线播放| 色哟哟·www| 肉色欧美久久久久久久蜜桃| 成人免费观看视频高清| 亚洲精品一区蜜桃| 成人综合一区亚洲| 日韩成人伦理影院| 精品国产一区二区三区久久久樱花 | xxx大片免费视频| 免费人妻精品一区二区三区视频| h日本视频在线播放| 亚洲成人av在线免费| h日本视频在线播放| 波野结衣二区三区在线| 日本免费在线观看一区| 日韩一本色道免费dvd| 国产成人精品福利久久| 美女脱内裤让男人舔精品视频| av天堂中文字幕网| 在线观看av片永久免费下载| 男女免费视频国产| 肉色欧美久久久久久久蜜桃| 在线观看免费日韩欧美大片 | 99久久综合免费| 97热精品久久久久久| 国产成人精品婷婷| 在线观看三级黄色| 欧美另类一区| 国产日韩欧美亚洲二区| 天美传媒精品一区二区| 黄色怎么调成土黄色| 国产免费一区二区三区四区乱码| 久久青草综合色| 国产成人a∨麻豆精品| 啦啦啦中文免费视频观看日本| 久久99热这里只频精品6学生| 大码成人一级视频| 欧美精品一区二区免费开放| 久久久亚洲精品成人影院| 国产爱豆传媒在线观看| 亚洲av中文av极速乱| 亚洲精品一二三| 在线播放无遮挡| 大香蕉久久网| 亚洲国产高清在线一区二区三| 国产女主播在线喷水免费视频网站| 免费人妻精品一区二区三区视频| 亚洲国产av新网站| 精品午夜福利在线看| 国产精品一区二区在线不卡| 久久影院123| 日本av手机在线免费观看| 高清欧美精品videossex| 在线免费观看不下载黄p国产| 中文字幕制服av| 日韩视频在线欧美| 人妻制服诱惑在线中文字幕| 欧美亚洲 丝袜 人妻 在线| 亚洲欧洲日产国产| 99热这里只有是精品在线观看| 在线播放无遮挡| 在线观看免费日韩欧美大片 | av国产免费在线观看| 午夜激情久久久久久久| 国产成人免费无遮挡视频| 免费黄色在线免费观看| 嘟嘟电影网在线观看| 精品视频人人做人人爽| 你懂的网址亚洲精品在线观看| 精品久久久久久久久亚洲| 丰满乱子伦码专区| 毛片女人毛片| 国产乱人偷精品视频| 欧美97在线视频| 久久久久久久久久人人人人人人| 2022亚洲国产成人精品| 国产精品国产三级国产av玫瑰| av国产精品久久久久影院| 黄色视频在线播放观看不卡| 国产色婷婷99| 亚洲av二区三区四区| 欧美精品一区二区大全| 久久久久视频综合| 校园人妻丝袜中文字幕| 国产精品一区www在线观看| 新久久久久国产一级毛片| 看免费成人av毛片| 久久99精品国语久久久| 黄片wwwwww| 久久久久久久精品精品| 99热这里只有是精品在线观看| 久热这里只有精品99| av福利片在线观看| 又大又黄又爽视频免费| 天美传媒精品一区二区| 久久久久网色| 人妻系列 视频| 18+在线观看网站| 欧美三级亚洲精品| 亚洲av成人精品一二三区| 亚洲,一卡二卡三卡| 国产中年淑女户外野战色| a级一级毛片免费在线观看| 寂寞人妻少妇视频99o| 免费人妻精品一区二区三区视频| 高清av免费在线| 春色校园在线视频观看| 18禁动态无遮挡网站| 久久婷婷青草| 国产免费一级a男人的天堂| 色婷婷av一区二区三区视频| 国产视频首页在线观看| 99久久综合免费| 免费在线观看成人毛片| 免费黄频网站在线观看国产| 国产成人一区二区在线| 人妻夜夜爽99麻豆av| 国内揄拍国产精品人妻在线| 嫩草影院新地址| 狂野欧美白嫩少妇大欣赏| 少妇精品久久久久久久| 亚洲在久久综合| 亚洲人成网站在线播| 另类亚洲欧美激情| 亚洲av中文av极速乱| 夫妻午夜视频| 麻豆精品久久久久久蜜桃| 国产毛片在线视频| 国产精品福利在线免费观看| 视频中文字幕在线观看| 日本黄色片子视频| 国产毛片在线视频| av国产免费在线观看| 高清不卡的av网站| 日本黄色片子视频| 久久精品国产亚洲av涩爱| 国产极品天堂在线| 久久久精品94久久精品| 青春草国产在线视频| 欧美人与善性xxx| 国产一区二区三区av在线| 免费大片18禁| 欧美成人精品欧美一级黄| 伦精品一区二区三区| 日韩av在线免费看完整版不卡| 热99国产精品久久久久久7| 下体分泌物呈黄色| 男女无遮挡免费网站观看| 在线看a的网站| 亚洲精品色激情综合| 国产精品熟女久久久久浪| 秋霞伦理黄片| 国产免费福利视频在线观看| 又粗又硬又长又爽又黄的视频| 最近手机中文字幕大全| tube8黄色片| 少妇高潮的动态图| 欧美精品一区二区免费开放| 久久影院123| 国产视频内射| 在线精品无人区一区二区三 | 男男h啪啪无遮挡| 国产欧美日韩一区二区三区在线 | 成人无遮挡网站| 妹子高潮喷水视频| 小蜜桃在线观看免费完整版高清| 老司机影院毛片| 中文欧美无线码| 亚洲精品国产色婷婷电影| 日韩亚洲欧美综合| 久久精品国产a三级三级三级| 日本黄色日本黄色录像| 亚洲激情五月婷婷啪啪| 高清av免费在线| 一区二区三区乱码不卡18| 欧美极品一区二区三区四区| 国产伦在线观看视频一区| freevideosex欧美| 国国产精品蜜臀av免费| 嘟嘟电影网在线观看| 在线天堂最新版资源| 国产精品爽爽va在线观看网站| 在线亚洲精品国产二区图片欧美 | 黄色配什么色好看| 激情五月婷婷亚洲| 国产大屁股一区二区在线视频| 久久精品人妻少妇| 一二三四中文在线观看免费高清| 精品视频人人做人人爽| 日本wwww免费看| 人妻少妇偷人精品九色| 黄色日韩在线| 美女xxoo啪啪120秒动态图| 国产乱人偷精品视频| 亚洲激情五月婷婷啪啪| 国语对白做爰xxxⅹ性视频网站| 亚洲av中文字字幕乱码综合| 免费播放大片免费观看视频在线观看| a级毛色黄片| 国产男女超爽视频在线观看| 国产视频首页在线观看| 久久国产精品男人的天堂亚洲 | 国产乱人偷精品视频| 男女边摸边吃奶| 久久国产亚洲av麻豆专区| 免费人成在线观看视频色| 日本色播在线视频| 99久国产av精品国产电影| 欧美日本视频| 一边亲一边摸免费视频| 狠狠精品人妻久久久久久综合| 亚洲av日韩在线播放| 天堂8中文在线网| 乱码一卡2卡4卡精品| 日日啪夜夜撸| 日本欧美国产在线视频| 女人久久www免费人成看片| 亚洲欧洲日产国产| 伊人久久国产一区二区| 深夜a级毛片| 色婷婷久久久亚洲欧美| 国产在线免费精品| 色哟哟·www| 丝瓜视频免费看黄片| 男女边摸边吃奶| 国模一区二区三区四区视频| h视频一区二区三区| 欧美日韩精品成人综合77777| 亚洲欧美中文字幕日韩二区| 国产黄片美女视频| 青青草视频在线视频观看| 一级爰片在线观看| 亚洲伊人久久精品综合| 一级av片app| 纵有疾风起免费观看全集完整版| 高清不卡的av网站| 欧美人与善性xxx| 国产男人的电影天堂91| 精品人妻一区二区三区麻豆| 少妇人妻一区二区三区视频| 国产精品嫩草影院av在线观看| 日本黄色日本黄色录像| 青春草亚洲视频在线观看| 在线观看人妻少妇| 亚洲怡红院男人天堂| 免费在线观看成人毛片| 91久久精品电影网| 日本一二三区视频观看| 国产白丝娇喘喷水9色精品| 在线观看国产h片| tube8黄色片| 欧美日韩精品成人综合77777| 欧美精品亚洲一区二区| 国产免费一级a男人的天堂| 男男h啪啪无遮挡| 欧美日本视频| 国产亚洲午夜精品一区二区久久| 亚洲av在线观看美女高潮| 亚洲精品久久久久久婷婷小说| 日本一二三区视频观看| 亚洲成人av在线免费| 日韩成人av中文字幕在线观看| 日韩电影二区| 亚洲精品乱久久久久久| av黄色大香蕉| 亚洲国产av新网站| 久久久久久人妻| 一区二区三区精品91| 美女cb高潮喷水在线观看| www.av在线官网国产| 黑人猛操日本美女一级片| 老女人水多毛片| 看非洲黑人一级黄片| 青春草国产在线视频| 永久免费av网站大全| 六月丁香七月| 三级经典国产精品| 久久 成人 亚洲| 欧美变态另类bdsm刘玥| 日本猛色少妇xxxxx猛交久久| 亚洲国产精品国产精品| 久久精品久久久久久噜噜老黄| 人妻系列 视频| 国产免费一级a男人的天堂| 一区二区三区免费毛片| 国产精品一区二区三区四区免费观看| 欧美性感艳星| 久久精品熟女亚洲av麻豆精品| 国产伦精品一区二区三区视频9| 久久久久精品性色| 18+在线观看网站| av免费在线看不卡| 国产v大片淫在线免费观看| 国产成人精品福利久久| 一级毛片久久久久久久久女| 国产成人免费无遮挡视频| 在线播放无遮挡| 亚洲内射少妇av| 一个人免费看片子| 3wmmmm亚洲av在线观看| 免费在线观看成人毛片| 久久久午夜欧美精品| 久久久色成人| 男女免费视频国产| 在现免费观看毛片| 日本黄大片高清| 99久久综合免费| 国产一区二区三区综合在线观看 | 人人妻人人爽人人添夜夜欢视频 | 在线观看免费高清a一片| 中国美白少妇内射xxxbb| 国产精品免费大片| 成年女人在线观看亚洲视频| 在线观看三级黄色| 国产色爽女视频免费观看| 99久久精品热视频| 高清毛片免费看| 精华霜和精华液先用哪个| 久久人人爽人人片av| 久久热精品热| 少妇 在线观看| 在线看a的网站| 日本一二三区视频观看| 久久人妻熟女aⅴ| 能在线免费看毛片的网站| 五月开心婷婷网| 免费观看性生交大片5| 熟女av电影| 男女边吃奶边做爰视频| 国产欧美日韩精品一区二区| 免费不卡的大黄色大毛片视频在线观看| 婷婷色av中文字幕| 国产真实伦视频高清在线观看| 99热6这里只有精品| 国产爱豆传媒在线观看| 黄色视频在线播放观看不卡| 国产高潮美女av| 我要看黄色一级片免费的| 久久女婷五月综合色啪小说| 美女内射精品一级片tv| 欧美日韩综合久久久久久| 美女福利国产在线 | 国产精品爽爽va在线观看网站| 在线观看免费视频网站a站| 久久久久视频综合| 中文字幕久久专区| 精品久久久久久久久av| 小蜜桃在线观看免费完整版高清| 欧美另类一区| 欧美老熟妇乱子伦牲交| 青青草视频在线视频观看| 中国美白少妇内射xxxbb| 搡老乐熟女国产| 久热这里只有精品99| 国产男女内射视频| 国产在线男女| 伦理电影免费视频| 在线播放无遮挡| 九色成人免费人妻av| 成年av动漫网址| 久久久久久久久久久免费av| 性高湖久久久久久久久免费观看| 一级毛片 在线播放| 美女高潮的动态| 国产精品一区二区性色av| 一级毛片久久久久久久久女| 久久婷婷青草| 高清日韩中文字幕在线| 国产精品久久久久久精品古装| 久久久久久久久久成人| 久久久精品94久久精品| 国产日韩欧美在线精品| 国产一区二区在线观看日韩| 麻豆乱淫一区二区| 欧美三级亚洲精品| 国产免费一区二区三区四区乱码| 国产深夜福利视频在线观看| 欧美日韩一区二区视频在线观看视频在线| 搡老乐熟女国产| 久久这里有精品视频免费| 高清日韩中文字幕在线| 久久精品久久久久久久性| 欧美三级亚洲精品| 好男人视频免费观看在线| 伦精品一区二区三区| 欧美另类一区| 一个人免费看片子| 日韩中字成人| 精品一区二区三区视频在线| 三级经典国产精品| 欧美一区二区亚洲| 久久毛片免费看一区二区三区| 一本色道久久久久久精品综合| 中文字幕亚洲精品专区| 久久热精品热| 在线 av 中文字幕| av天堂中文字幕网| 丰满迷人的少妇在线观看| 观看免费一级毛片| 欧美日韩精品成人综合77777| 亚洲欧美一区二区三区国产| 熟女电影av网| 一二三四中文在线观看免费高清| kizo精华| 日韩av免费高清视频| 久久精品国产鲁丝片午夜精品| 日本av免费视频播放| 黄色视频在线播放观看不卡| 美女脱内裤让男人舔精品视频| 亚洲aⅴ乱码一区二区在线播放| 18+在线观看网站| 美女国产视频在线观看| 免费看av在线观看网站| 人妻夜夜爽99麻豆av| 卡戴珊不雅视频在线播放| 欧美+日韩+精品| av一本久久久久| 国产一区有黄有色的免费视频| 久久99热这里只有精品18| 久久久久性生活片| 国产精品一区二区性色av| 美女内射精品一级片tv| 欧美激情国产日韩精品一区| 日本猛色少妇xxxxx猛交久久| 久久精品国产鲁丝片午夜精品| 亚洲欧美精品专区久久| 男人爽女人下面视频在线观看| 精品酒店卫生间| 亚洲av电影在线观看一区二区三区| 国产精品麻豆人妻色哟哟久久| 观看av在线不卡| 在线免费观看不下载黄p国产| 日本免费在线观看一区| 91久久精品国产一区二区成人| 国产精品不卡视频一区二区| 亚洲国产欧美在线一区| 精品99又大又爽又粗少妇毛片| 汤姆久久久久久久影院中文字幕| 国产精品熟女久久久久浪| 亚洲色图av天堂| 超碰av人人做人人爽久久| 日韩欧美一区视频在线观看 | 日本与韩国留学比较| 色婷婷久久久亚洲欧美| 欧美最新免费一区二区三区| 99九九线精品视频在线观看视频| 成人一区二区视频在线观看| 精品一区二区免费观看| 男人狂女人下面高潮的视频| 国内少妇人妻偷人精品xxx网站| 亚洲精品久久久久久婷婷小说| 美女主播在线视频| 亚洲国产精品999| 免费观看a级毛片全部| 人人妻人人看人人澡| 欧美最新免费一区二区三区| 成人黄色视频免费在线看| 精品久久国产蜜桃| 男人爽女人下面视频在线观看| 欧美日韩视频高清一区二区三区二| 久久97久久精品| 男人狂女人下面高潮的视频| 少妇人妻精品综合一区二区| 亚洲国产精品成人久久小说| 大又大粗又爽又黄少妇毛片口| av网站免费在线观看视频| 777米奇影视久久| 久久6这里有精品| 建设人人有责人人尽责人人享有的 | 人妻一区二区av| 久久久久久九九精品二区国产| 多毛熟女@视频| 成年免费大片在线观看| h日本视频在线播放| 少妇人妻久久综合中文| 女性被躁到高潮视频| 国产伦在线观看视频一区| 国产精品一及| 黄色视频在线播放观看不卡| 亚洲久久久国产精品| 国产精品av视频在线免费观看| av卡一久久| 亚洲av中文字字幕乱码综合| 少妇丰满av| 国产 精品1| 黄色配什么色好看| 2018国产大陆天天弄谢| 99热这里只有是精品在线观看| 精品国产露脸久久av麻豆| 少妇裸体淫交视频免费看高清| 国产亚洲av片在线观看秒播厂| 汤姆久久久久久久影院中文字幕| 天天躁日日操中文字幕| 国产精品国产av在线观看| 亚洲天堂av无毛| 在线免费十八禁| 精品酒店卫生间| 有码 亚洲区| av黄色大香蕉| 国产午夜精品久久久久久一区二区三区| 国产在视频线精品| 亚洲成色77777| 黄色怎么调成土黄色| 美女中出高潮动态图| 精品人妻视频免费看| 日本欧美国产在线视频| 国产毛片在线视频| 国产成人精品婷婷| 亚洲国产成人一精品久久久| 色网站视频免费| 青青草视频在线视频观看| 晚上一个人看的免费电影| 国产精品一区二区性色av| 深爱激情五月婷婷| 亚洲第一av免费看| av播播在线观看一区| 国产精品嫩草影院av在线观看| 亚洲,欧美,日韩| 国产男女内射视频| 久久精品国产鲁丝片午夜精品| 久久99蜜桃精品久久| 在线 av 中文字幕| 美女脱内裤让男人舔精品视频| 成人18禁高潮啪啪吃奶动态图 | 欧美最新免费一区二区三区| 久久99热这里只频精品6学生| 国产成人精品一,二区| 99热国产这里只有精品6| 久久人人爽人人片av| 欧美xxⅹ黑人| 国精品久久久久久国模美| 久久这里有精品视频免费| 高清日韩中文字幕在线| 国产无遮挡羞羞视频在线观看| 身体一侧抽搐| 91精品伊人久久大香线蕉| 日韩成人伦理影院| 亚洲内射少妇av| av线在线观看网站| 亚洲欧美日韩无卡精品| 简卡轻食公司| 永久网站在线| 欧美xxxx黑人xx丫x性爽| 久久鲁丝午夜福利片| 黑人猛操日本美女一级片| 免费少妇av软件| 少妇人妻久久综合中文| 国产爽快片一区二区三区| 欧美日韩在线观看h| 久久久色成人| 成年美女黄网站色视频大全免费 | 午夜福利在线在线| 性色av一级| 欧美精品一区二区免费开放| 色视频www国产| 日韩中字成人| 成年av动漫网址| 草草在线视频免费看| 久久精品国产a三级三级三级| 亚洲综合色惰| 又黄又爽又刺激的免费视频.| 一边亲一边摸免费视频| 另类亚洲欧美激情| 免费大片18禁| 久久鲁丝午夜福利片| 亚洲高清免费不卡视频| 最近中文字幕2019免费版| 亚洲综合精品二区| 身体一侧抽搐| 国产中年淑女户外野战色| 欧美亚洲 丝袜 人妻 在线| 成人二区视频| 九色成人免费人妻av| 国产成人精品福利久久| 少妇人妻精品综合一区二区| 我的女老师完整版在线观看| 日日摸夜夜添夜夜添av毛片| 最近手机中文字幕大全| 91aial.com中文字幕在线观看| av在线app专区| 人人妻人人添人人爽欧美一区卜 | 日本av手机在线免费观看| 男女免费视频国产| 亚洲av不卡在线观看| 亚洲内射少妇av| 国产男女超爽视频在线观看| 麻豆乱淫一区二区| 精品午夜福利在线看| 人妻制服诱惑在线中文字幕| 久久精品夜色国产| 亚洲精品乱久久久久久| 十八禁网站网址无遮挡 | 国产欧美日韩精品一区二区| av国产久精品久网站免费入址| 亚洲精品久久久久久婷婷小说| 久久久久久久亚洲中文字幕| 久久99热这里只频精品6学生| 在线观看av片永久免费下载| 亚洲精品一区蜜桃| 成人漫画全彩无遮挡| 成人毛片60女人毛片免费| 久久久久久人妻| 国产精品爽爽va在线观看网站| 插逼视频在线观看| 晚上一个人看的免费电影| 激情五月婷婷亚洲| 成年美女黄网站色视频大全免费 | 日本黄色片子视频| 黑人高潮一二区| 国产在线免费精品| 免费黄色在线免费观看| 日韩大片免费观看网站| www.av在线官网国产|