• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Fabrication of microresonators by using photoresist developer as etchant?

    2021-06-26 03:04:04ShuQingSong宋樹清JianWenXu徐建文ZhiKunHan韓志坤XiaoPeiYang楊曉沛YuTingSun孫宇霆XiaoHanWang王曉晗ShaoXiongLi李邵雄DongLan蘭棟JieZhao趙杰XinShengTan譚新生andYangYu于揚(yáng)
    Chinese Physics B 2021年6期
    關(guān)鍵詞:建文新生

    Shu-Qing Song(宋樹清), Jian-Wen Xu(徐建文), Zhi-Kun Han(韓志坤), Xiao-Pei Yang(楊曉沛),Yu-Ting Sun(孫宇霆), Xiao-Han Wang(王曉晗), Shao-Xiong Li(李邵雄), Dong Lan(蘭棟),Jie Zhao(趙杰), Xin-Sheng Tan(譚新生), and Yang Yu(于揚(yáng))

    National Laboratory of Solid State Microstructures,School of Physics,Nanjing University,Nanjing 210093,China

    Keywords: superconducting qubit,microresonator,easy-to-implement,high quality factors

    1. Introduction

    Through two decades development, the superconducting transmon qubit system has enable demonstrations of quantum supremacy,[1,2]quantum algorithms,[3–6]quantum error correction,[7–9]and quantum chemical simulation.[10,11]Nevertheless, in order to realize fault tolerant quantum computing,people pursue longer decoherence time for implementing more high fidelity gate operations before significant error ruins the information. An important source of decoherence is the energy ralaxation. Great efforts have been made to improve the relaxtion timeT1.[12–15]In general, superconducting quantum circuits consist not only the Josephson junctions as the key parts to supply the nonlinearity and constitute the artificial atom, but also microwave resonators to protect and readout the qubit. Additionally, capacitors are usually used to minimize the charge dispersion.[16]Recent investigations show thatT1can be limited by possible imperfections in the Josephson junctions and microwave dielectric losses.[17–21]In general process,superconducting 2D transmon qubits are fabricated by depositing aluminum film on high-purity sapphire substrate.Aluminum has a dense oxidation layer and a reasonable superconducting transition temperature, while sapphire has a low loss tangent less than 10?9.[22]Due to the coupling of the qubits and microwave resonator, it is usual that the the upper limit ofT1is set by the resonator internal quality factorQi,i.e.,T1<Qi/ω10,whereω10is the qubit angular frequency, andω10is the energy difference of qubit states.Therefore, a high quality microwave resonator is indispensable for a high performance qubit system. During the fabrication,the resonators are defined by lithography and etch. These processes produce defects which form the two-level systems(TLS).[23,24]The loss resulting from the coupling between the qubits and TLS is thought to be the dominate source of the energy relaxation. It is known that TLS loss is generated mainly in bulk dielectrics and at the interfaces between materials.[25]

    Traditionally,resonators are fabricated by either dry etching or wet chemical etching. Dry etching with chlorine and boron trichloride is considered as a very efficient method.However,the photoresist is hard to remove after reacting with chlorine ions. The residue resist will cause energy loss. Subsequent treatments have to be applied and complicated the fabrication process,resulting a dramatic decrease of the yield of a perfect chip. On the other hand,traditional wet chmical etching brings extra acidic ions that add more uncertainty to the system. Exploring new etching technique is helpful for fabricating high quality superconducting quantum circuits.

    Here we develop a novel wet chemical etch process to define the microwave resonators and capacitors using photoresist developer ZJX-238 (tetramethyl ammonium hydroxide)instead of traditional wet etch chemicals with aluminum etch type A. Moreover, etch can be done with developer immediately after development. We use a standard Xmon design[26]to compare the three processes with the same treated sapphire substrate and aluminum film.The quality factors of resonators from three different processes are measured in a dilution refrigerator. The results indicate that the resonators etched by ZJX-238 perform similar or better than that fabricated by the other two processes.It provides an alternative method of fabricating high quality microwave resonators for superconducting qubits.

    2. Fabrication and experiment

    The resonators are fabricated onc-plane sapphire substrate(Roditi)that are 0.43 mm thick and single-side polished.The wafer is cleaned with UV ozone cleaner immediately before loading into the electron beam evaporation. Then 100 nm aluminum is deposited on the sapphire substrate at high vacuum environment(approximately 10?9mbar).

    Details of the process to form the microwave resonators are illustrated in Fig. 1. Due to the size and resolution of the coplanar waveguide cavity,we use a standard S1805 resist(≈500 nm thickness). As shown in Fig.1(a),the resist is patterned using a direct-write process which has 5 mm write head on Heidelberg DWL 66+ laser writer. After developing 30 s in ZJX-238 developer(Fig.1(b)), the resist is hard-baked for 2 min at 115?C.Next,the aluminum is etched in ZJX-238 for about 4 min at room temperature(Fig.1(c)).Figure 1(d)shows a complete coplanar waveguide resonator after stripping resist,then the chips are diced into 10 mm×10 mm squares. At last the completed devices are packaged into a sample holder and measured in a dilution refrigerator which has a base temperature about 20 mK.

    Figures 2(a)and 2(b)show the images of our device and schematic of our measurement setup. The tenλ/4 coplanar waveguide resonators (ωR/2πranging from 6.62–6.87 GHz)are inductively coupled to readout transmission line. Attenuators and low-pass filters are installed in the microwave input line to prevent leakage of thermal radiation into the resonator.The signal, after passing the sample, is amplified by a cryogenic high-electron mobility transistor (HEMT) and roomtemperature amplifier.

    Fig.1. Fabrication process flow of the resonators. (a)3D view of the device exposed by direct laser writing after evaporation of Al with photoresist.(b) Form a pattern of resonators while the exposed resist is removed by developer (ZJX-238). (c) Etching by ZJX-238 immediately defines the electrode of the chip. (d)Complete resonators after the resist-removing process.

    Fig.2. Micrographs and measurement of the resonators. (a)Optical images of our ten transmon qubits device,the resonator is realized in microstrip geometry with a measured frequency ωR/2π range from 6.62–6.87 GHz. (b)Circuit schematic of the red frame above. (c)S21 of the ten resonators measured by network analyzer. (d)Qi of the resonator in the blue frame is fitted to be about 270000 at high power.

    As shown in Fig. 2(c), we measured the magnitude and phase of the transmitted signalS21using a network analyzer to extract the quality factors.Normally,an asymmetry in the coupling of a resonator to the input and output ports results in deviation of the resonator response from a symmetric Lorentzian function.[27]Note the slight asymmetry about the resonators,which can be attributed to a small impedance mismatch in the central transmission line on either side of the resonator,likely originated from the sample imperfections, wirebond connections, or the transmission line geometry.[28]Quality factor of the resonator is fitted by the following equation at resonance frequency:

    3. Characterizations and results

    We spray a thin layer of gold to improve the contrast between aluminum and sapphire and show scanning electron microscopes(SEM)images of the fabricated coplanar waveguide resonator in Fig.3(a)from 45?above the slop. It is clear that there is no visible contaminant at the micron scale. Atomic force microscope(AFM)images in Fig.3(b)as the supplement of SEM enable us to characterize the interface. The graph at right depicts the morphology of the interface and the altitude variation along the horizontal axis. The left panel shows the 1D plot along the white dotted line.

    The inverse of resonatorQiis represented as the loss tangent

    Loss is a convenient metric for distinguishing between multiple contributions to performance whileQiis used to compare general performance,especially for high performance devices. Etching brings loss thought to be dominated by coupling to two-level systems(TLS).Therefore,the interface between the superconductor and the substrate may be the largest source of TLS loss. According to the TLS model,[29]the resonator lossδTLSat low constant temperature follows the empirical formula

    wherePinputis the actual input power to the resonator that can be calculated by the power input from the network analyzer minus the attenuation on the line,Nis a constant related to the characteristic photon number of TLS saturation. With the input power increasing, theδTLSdecreases and the impact of TLS on the system is reduced. Therefore, we can measure the effect of TLS contributing to the system by comparing the internal quality factors between low power and high power.

    Fig.3. Characterization of the etched interface. (a)SEM images of our coplanar waveguide resonator from 45?above the slope. The figure on the right is magnified 100000 times and it shows smooth interface between sapphire and aluminum. (b)AFM images in the same place,colorbar indicates the relative altitude. The graph at right shows the altitude variation along the horizontal axis. The left panel shows the 1D height change along the white dotted line.

    As shown in Fig.4(a),we compare the quality factor gaps of high power and low power in ten resonators. The result indicates that there is a little TLS formed in the system during etching. To figure out whether this new process could be a substitute for dry etching or wet etching by aluminum etch type A, we make a comparison with the three processes by controlling variables with the same treated sapphire substrate and aluminum film evaporated by electron beam to fabricate 10 resonators. As shown in Fig.4(b),the internal quality factors of resonators etched by ZJX-238 are similar or even better than the other two. Considering that our novel wet etch omits the subsequent process,it is more convenient during the fabrication. The decrease of the time and complexity of fabrication will increase the yielding of the superconducting circuits.

    Fig. 4. Internal quality factor comparison. (a) High power quality factor versus low power of the ten resonators etched with ZJX-238. (b)Comparison of ten resonators of three different etching processes with quality factors variation, indicating that resonators etched by ZJX-238 have an advantage over the other two.

    4. Summary

    In conclusion,we presented an alternative method of fabricating microwave resonators and capacitors for superconducting qubits. This method only involves development process after lithography and etching with the same solution,which makes it compatible with a large scale fabrication process. We also demonstrated that a 2D transmon qubit made with ZJX-238 still has a high quality and higher yield. It provides an alternative fabrication process for microwave resonators and capacitors.

    猜你喜歡
    建文新生
    重獲新生 庇佑
    中國慈善家(2022年1期)2022-02-22 21:39:45
    冼建文
    南風(fēng)(2020年8期)2020-08-06 10:25:54
    Properties of intermediate-frequency vacuum arc in sinusoidal curved contact and butt contact
    Long-Time Dynamics of Solutions for a Class of Coupling Beam Equations with Nonlinear Boundary Conditions
    堅(jiān)守,讓百年非遺煥新生
    海峽姐妹(2017年7期)2017-07-31 19:08:23
    新生娃萌萌噠
    視野(2015年4期)2015-07-26 02:56:52
    Measurement and analysis of Doppler shift for high-speed rail scenario①
    海峽美食節(jié)
    新生改版
    中國記者(2014年1期)2014-03-01 01:37:29
    當(dāng)代書畫名家
    ——李建文
    在线亚洲精品国产二区图片欧美| 日韩精品有码人妻一区| 成人影院久久| 97人妻天天添夜夜摸| 亚洲美女搞黄在线观看| 捣出白浆h1v1| 99热国产这里只有精品6| www.熟女人妻精品国产 | 午夜日本视频在线| 日本猛色少妇xxxxx猛交久久| 咕卡用的链子| 黑人巨大精品欧美一区二区蜜桃 | 全区人妻精品视频| av又黄又爽大尺度在线免费看| 日本爱情动作片www.在线观看| 一级黄片播放器| 国产淫语在线视频| 母亲3免费完整高清在线观看 | 一级毛片电影观看| 99久久综合免费| 亚洲国产成人一精品久久久| 亚洲性久久影院| 1024视频免费在线观看| 中国国产av一级| av女优亚洲男人天堂| 又黄又爽又刺激的免费视频.| 国产一区二区三区综合在线观看 | 亚洲精品国产av蜜桃| 亚洲性久久影院| 免费人妻精品一区二区三区视频| 视频中文字幕在线观看| 国产精品久久久久久久久免| 国产精品.久久久| 哪个播放器可以免费观看大片| 久久午夜综合久久蜜桃| 水蜜桃什么品种好| 高清视频免费观看一区二区| 日产精品乱码卡一卡2卡三| 夫妻午夜视频| 丰满饥渴人妻一区二区三| av视频免费观看在线观看| 亚洲精品aⅴ在线观看| 少妇的丰满在线观看| videossex国产| 乱人伦中国视频| 日韩熟女老妇一区二区性免费视频| 国产熟女午夜一区二区三区| 男男h啪啪无遮挡| 久热久热在线精品观看| 90打野战视频偷拍视频| 少妇人妻久久综合中文| av国产久精品久网站免费入址| 九九爱精品视频在线观看| 久久鲁丝午夜福利片| 国产精品一国产av| 毛片一级片免费看久久久久| 国产精品久久久av美女十八| 一级片免费观看大全| 国产亚洲欧美精品永久| 侵犯人妻中文字幕一二三四区| 亚洲丝袜综合中文字幕| 伊人亚洲综合成人网| 一边亲一边摸免费视频| 麻豆乱淫一区二区| 亚洲国产日韩一区二区| 少妇被粗大猛烈的视频| 高清欧美精品videossex| 老女人水多毛片| 日本免费在线观看一区| 亚洲内射少妇av| 久久久久精品性色| 深夜精品福利| 免费观看a级毛片全部| 黄色怎么调成土黄色| 成人二区视频| 黄色配什么色好看| 国产精品国产三级国产av玫瑰| 91精品伊人久久大香线蕉| 久久精品国产鲁丝片午夜精品| 免费高清在线观看日韩| xxx大片免费视频| 免费日韩欧美在线观看| 两个人免费观看高清视频| 精品人妻偷拍中文字幕| 亚洲欧洲精品一区二区精品久久久 | 熟女电影av网| 国产精品免费大片| 亚洲精品456在线播放app| 99国产精品免费福利视频| 如日韩欧美国产精品一区二区三区| www.熟女人妻精品国产 | 美女大奶头黄色视频| 日韩三级伦理在线观看| 99久久综合免费| 久久人人97超碰香蕉20202| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 久久久a久久爽久久v久久| 岛国毛片在线播放| 国产极品天堂在线| 国产片内射在线| 国产精品熟女久久久久浪| 国产乱人偷精品视频| 亚洲av电影在线进入| 日韩精品有码人妻一区| 亚洲高清免费不卡视频| 高清在线视频一区二区三区| videosex国产| 七月丁香在线播放| 日本欧美国产在线视频| 精品一区二区三卡| freevideosex欧美| 久久热在线av| 蜜桃国产av成人99| 国产精品一区二区在线观看99| 视频区图区小说| 久久国产亚洲av麻豆专区| 狠狠精品人妻久久久久久综合| 免费大片黄手机在线观看| 国产黄频视频在线观看| 亚洲国产精品一区三区| 亚洲精品456在线播放app| 免费看光身美女| 国产熟女午夜一区二区三区| 亚洲成人手机| 亚洲精品一区蜜桃| 大陆偷拍与自拍| 99热网站在线观看| 亚洲欧美中文字幕日韩二区| 18+在线观看网站| 国产精品偷伦视频观看了| 高清不卡的av网站| 国产色婷婷99| 亚洲天堂av无毛| 免费大片18禁| 久久久久久人人人人人| 亚洲经典国产精华液单| 最近最新中文字幕免费大全7| 婷婷色综合www| 秋霞伦理黄片| 国产欧美日韩综合在线一区二区| 色婷婷久久久亚洲欧美| 亚洲av电影在线观看一区二区三区| 久热久热在线精品观看| 高清黄色对白视频在线免费看| 丰满乱子伦码专区| 纯流量卡能插随身wifi吗| 亚洲人成77777在线视频| 国产一区亚洲一区在线观看| 久久精品久久久久久久性| 久久鲁丝午夜福利片| 99久久中文字幕三级久久日本| 日韩欧美精品免费久久| 国产成人午夜福利电影在线观看| 色婷婷av一区二区三区视频| 久久久久国产精品人妻一区二区| 日韩熟女老妇一区二区性免费视频| 免费不卡的大黄色大毛片视频在线观看| av女优亚洲男人天堂| 深夜精品福利| 啦啦啦在线观看免费高清www| 国产 精品1| 亚洲国产精品999| 街头女战士在线观看网站| 综合色丁香网| av在线app专区| 久久久亚洲精品成人影院| 免费观看性生交大片5| 亚洲国产精品国产精品| 亚洲精品乱码久久久久久按摩| 国产精品女同一区二区软件| 国产免费又黄又爽又色| 精品国产乱码久久久久久小说| 欧美日韩国产mv在线观看视频| 亚洲精品久久成人aⅴ小说| 国产黄频视频在线观看| www日本在线高清视频| 午夜免费男女啪啪视频观看| 菩萨蛮人人尽说江南好唐韦庄| 中文乱码字字幕精品一区二区三区| 午夜福利,免费看| 少妇人妻 视频| 国产精品嫩草影院av在线观看| 国产午夜精品一二区理论片| 亚洲美女视频黄频| 亚洲在久久综合| 一二三四中文在线观看免费高清| 国产又爽黄色视频| 五月伊人婷婷丁香| 亚洲精品第二区| 90打野战视频偷拍视频| 黑人欧美特级aaaaaa片| 男人添女人高潮全过程视频| 久久久久精品久久久久真实原创| 少妇人妻精品综合一区二区| 夫妻性生交免费视频一级片| 91久久精品国产一区二区三区| 九九爱精品视频在线观看| 成人毛片a级毛片在线播放| 日本av手机在线免费观看| 十八禁高潮呻吟视频| 伊人亚洲综合成人网| 免费观看无遮挡的男女| 成年动漫av网址| 一区在线观看完整版| 亚洲精品国产av成人精品| 欧美老熟妇乱子伦牲交| 欧美精品国产亚洲| av线在线观看网站| 91国产中文字幕| 最后的刺客免费高清国语| 免费人成在线观看视频色| 午夜av观看不卡| 国产精品熟女久久久久浪| 亚洲精品美女久久久久99蜜臀 | 少妇的逼水好多| 26uuu在线亚洲综合色| 五月天丁香电影| 国产在线视频一区二区| 97在线视频观看| 天天躁夜夜躁狠狠躁躁| 国产黄色免费在线视频| 男人爽女人下面视频在线观看| 日韩成人伦理影院| 欧美精品国产亚洲| 精品99又大又爽又粗少妇毛片| 天天操日日干夜夜撸| 亚洲色图综合在线观看| 免费人成在线观看视频色| 99热国产这里只有精品6| 熟女人妻精品中文字幕| 亚洲第一区二区三区不卡| 校园人妻丝袜中文字幕| 97超碰精品成人国产| 日本vs欧美在线观看视频| 免费黄色在线免费观看| 满18在线观看网站| 日韩免费高清中文字幕av| 高清视频免费观看一区二区| 激情五月婷婷亚洲| 亚洲国产看品久久| 26uuu在线亚洲综合色| 51国产日韩欧美| 99视频精品全部免费 在线| 国产精品一区二区在线不卡| 精品国产一区二区三区四区第35| 精品一区二区免费观看| 亚洲精品456在线播放app| 国产成人精品无人区| 国产成人a∨麻豆精品| 亚洲精品一二三| 亚洲伊人久久精品综合| 欧美 日韩 精品 国产| 日韩人妻精品一区2区三区| 好男人视频免费观看在线| 97超碰精品成人国产| 爱豆传媒免费全集在线观看| 国产精品久久久久久精品古装| 制服丝袜香蕉在线| 好男人视频免费观看在线| 国产毛片在线视频| 久久久久人妻精品一区果冻| 国产日韩欧美在线精品| 国产精品秋霞免费鲁丝片| 秋霞在线观看毛片| 最近最新中文字幕大全免费视频 | 欧美精品一区二区大全| 中文字幕av电影在线播放| 午夜视频国产福利| 2018国产大陆天天弄谢| 男女午夜视频在线观看 | 在线观看人妻少妇| 亚洲伊人久久精品综合| 国产精品蜜桃在线观看| 欧美日韩视频精品一区| 麻豆乱淫一区二区| www.色视频.com| 九色亚洲精品在线播放| 免费女性裸体啪啪无遮挡网站| 亚洲 欧美一区二区三区| 久久久精品免费免费高清| 亚洲综合色惰| 99久久人妻综合| 亚洲精品久久久久久婷婷小说| 99久国产av精品国产电影| 人人妻人人澡人人爽人人夜夜| 成人18禁高潮啪啪吃奶动态图| 日韩视频在线欧美| 777米奇影视久久| 伊人久久国产一区二区| 26uuu在线亚洲综合色| 久久99热6这里只有精品| 日本黄大片高清| 18禁在线无遮挡免费观看视频| 色5月婷婷丁香| 少妇的逼好多水| 久久久久国产精品人妻一区二区| 国产女主播在线喷水免费视频网站| 精品少妇内射三级| 国产欧美亚洲国产| 久久99热这里只频精品6学生| 久久精品aⅴ一区二区三区四区 | 观看美女的网站| 亚洲丝袜综合中文字幕| 亚洲精品乱久久久久久| 精品亚洲成国产av| 日韩制服骚丝袜av| 男人舔女人的私密视频| 免费在线观看黄色视频的| 在线观看www视频免费| 日韩一本色道免费dvd| 亚洲av免费高清在线观看| 国产av精品麻豆| 美女福利国产在线| 国产一区二区激情短视频 | 在线免费观看不下载黄p国产| 天堂中文最新版在线下载| 亚洲成人手机| 国产欧美亚洲国产| 黄色毛片三级朝国网站| 国产精品.久久久| 最近中文字幕高清免费大全6| 日韩在线高清观看一区二区三区| 国产亚洲欧美精品永久| 久久婷婷青草| av免费在线看不卡| 乱码一卡2卡4卡精品| 草草在线视频免费看| 飞空精品影院首页| 99热国产这里只有精品6| 国产成人欧美| 波多野结衣一区麻豆| 在线观看www视频免费| 亚洲精品久久久久久婷婷小说| 国产 精品1| 永久免费av网站大全| 日本欧美国产在线视频| 亚洲一码二码三码区别大吗| 国产精品嫩草影院av在线观看| 国产精品久久久久久久电影| 又黄又粗又硬又大视频| 中文字幕另类日韩欧美亚洲嫩草| 一本久久精品| 在线天堂最新版资源| 嫩草影院入口| 最近中文字幕2019免费版| 久久国产亚洲av麻豆专区| 在线天堂中文资源库| 精品少妇久久久久久888优播| 国产成人午夜福利电影在线观看| 青春草亚洲视频在线观看| 80岁老熟妇乱子伦牲交| 亚洲精品国产色婷婷电影| 免费人成在线观看视频色| 亚洲av福利一区| 亚洲图色成人| 亚洲国产精品专区欧美| 极品少妇高潮喷水抽搐| 一级毛片 在线播放| 日日啪夜夜爽| 黑人高潮一二区| 亚洲国产毛片av蜜桃av| 日韩三级伦理在线观看| 男女无遮挡免费网站观看| 又粗又硬又长又爽又黄的视频| 亚洲第一av免费看| 一级a做视频免费观看| 成年动漫av网址| 有码 亚洲区| 精品一区二区三卡| 免费av中文字幕在线| 日韩精品免费视频一区二区三区 | 国产日韩欧美亚洲二区| 日韩大片免费观看网站| 国产精品久久久av美女十八| 免费久久久久久久精品成人欧美视频 | 久久国产精品大桥未久av| 亚洲成人手机| 肉色欧美久久久久久久蜜桃| 曰老女人黄片| 丝袜人妻中文字幕| 丰满饥渴人妻一区二区三| 成人手机av| 99热这里只有是精品在线观看| 超色免费av| 国产精品国产三级国产专区5o| 汤姆久久久久久久影院中文字幕| 婷婷成人精品国产| 日韩伦理黄色片| 18禁动态无遮挡网站| 69精品国产乱码久久久| 亚洲精品一区蜜桃| 在线观看三级黄色| 日韩欧美一区视频在线观看| 久久久久人妻精品一区果冻| 捣出白浆h1v1| 亚洲婷婷狠狠爱综合网| 永久网站在线| 97精品久久久久久久久久精品| 亚洲激情五月婷婷啪啪| 麻豆乱淫一区二区| 欧美日韩精品成人综合77777| 中文字幕亚洲精品专区| 七月丁香在线播放| 久久精品熟女亚洲av麻豆精品| 一边亲一边摸免费视频| 欧美老熟妇乱子伦牲交| 亚洲欧美日韩卡通动漫| 人体艺术视频欧美日本| 国产老妇伦熟女老妇高清| 亚洲av欧美aⅴ国产| 最近2019中文字幕mv第一页| 亚洲美女黄色视频免费看| 超碰97精品在线观看| 最黄视频免费看| 国产爽快片一区二区三区| 日本wwww免费看| 国产乱人偷精品视频| 各种免费的搞黄视频| 男女无遮挡免费网站观看| av一本久久久久| 宅男免费午夜| 亚洲 欧美一区二区三区| videosex国产| 老司机亚洲免费影院| a级毛片在线看网站| 建设人人有责人人尽责人人享有的| av播播在线观看一区| 纯流量卡能插随身wifi吗| 色婷婷av一区二区三区视频| 美女中出高潮动态图| 国产精品欧美亚洲77777| 国产不卡av网站在线观看| 日本av手机在线免费观看| 国产精品.久久久| 一区二区三区乱码不卡18| 久久99一区二区三区| 水蜜桃什么品种好| 亚洲熟女精品中文字幕| 亚洲伊人色综图| av片东京热男人的天堂| 午夜福利乱码中文字幕| 午夜免费鲁丝| 久久久久久久久久人人人人人人| 成年人午夜在线观看视频| 这个男人来自地球电影免费观看 | 一二三四在线观看免费中文在 | 曰老女人黄片| 中文欧美无线码| 18禁观看日本| 一本—道久久a久久精品蜜桃钙片| 日韩电影二区| 视频中文字幕在线观看| 成人亚洲欧美一区二区av| 国产亚洲一区二区精品| 日本午夜av视频| av在线app专区| 高清av免费在线| 亚洲国产精品999| 在线观看免费高清a一片| 中文字幕人妻丝袜制服| 最近2019中文字幕mv第一页| 欧美日韩精品成人综合77777| 高清在线视频一区二区三区| 有码 亚洲区| 欧美激情国产日韩精品一区| 精品卡一卡二卡四卡免费| 久久99一区二区三区| 人妻系列 视频| 日韩精品有码人妻一区| 精品一区二区三卡| 视频中文字幕在线观看| 国产av码专区亚洲av| 国产片特级美女逼逼视频| 亚洲av中文av极速乱| 如何舔出高潮| 日韩大片免费观看网站| 亚洲精品一二三| 国产免费视频播放在线视频| 在线看a的网站| 亚洲五月色婷婷综合| 26uuu在线亚洲综合色| 久久久久久久亚洲中文字幕| 亚洲国产精品一区三区| 久久久久久久久久人人人人人人| 亚洲成人手机| 欧美精品一区二区大全| 女人被躁到高潮嗷嗷叫费观| 久久久久视频综合| 亚洲国产精品999| 18禁在线无遮挡免费观看视频| 纵有疾风起免费观看全集完整版| 在线观看www视频免费| 精品一区二区三区四区五区乱码 | 日韩不卡一区二区三区视频在线| 免费少妇av软件| 9色porny在线观看| 久久久久久久久久人人人人人人| 熟女人妻精品中文字幕| 国产欧美日韩综合在线一区二区| 免费少妇av软件| 国产精品女同一区二区软件| 国产高清不卡午夜福利| 97精品久久久久久久久久精品| 久久精品国产自在天天线| 老女人水多毛片| 国产精品一区二区在线不卡| 国产成人精品在线电影| 下体分泌物呈黄色| 中文欧美无线码| 乱码一卡2卡4卡精品| 亚洲欧洲精品一区二区精品久久久 | 我要看黄色一级片免费的| 1024视频免费在线观看| av线在线观看网站| 精品一区在线观看国产| 性高湖久久久久久久久免费观看| 曰老女人黄片| 欧美bdsm另类| 久久这里有精品视频免费| 免费观看无遮挡的男女| 男的添女的下面高潮视频| 亚洲国产成人一精品久久久| 欧美精品国产亚洲| 国产欧美亚洲国产| 亚洲欧美中文字幕日韩二区| 久久精品国产自在天天线| 男女无遮挡免费网站观看| 亚洲色图综合在线观看| 欧美精品一区二区大全| 久久人人97超碰香蕉20202| 男女边吃奶边做爰视频| 女性生殖器流出的白浆| 欧美xxxx性猛交bbbb| 日韩中字成人| 秋霞伦理黄片| av卡一久久| 国产永久视频网站| av线在线观看网站| av天堂久久9| 黑丝袜美女国产一区| 欧美成人午夜精品| 亚洲一级一片aⅴ在线观看| 国产精品人妻久久久久久| 欧美日韩国产mv在线观看视频| 丝袜人妻中文字幕| 久久久a久久爽久久v久久| 欧美日韩视频高清一区二区三区二| 中文字幕人妻丝袜制服| 国产一级毛片在线| 亚洲内射少妇av| 五月开心婷婷网| 久久精品夜色国产| 极品人妻少妇av视频| 少妇被粗大的猛进出69影院 | 日本黄色日本黄色录像| 在现免费观看毛片| 国产欧美日韩综合在线一区二区| 午夜福利乱码中文字幕| 亚洲婷婷狠狠爱综合网| 久久99精品国语久久久| 国产亚洲av片在线观看秒播厂| 久久综合国产亚洲精品| 久久人妻熟女aⅴ| 欧美 日韩 精品 国产| 一级a做视频免费观看| 亚洲av电影在线进入| 三级国产精品片| 亚洲精品色激情综合| 99re6热这里在线精品视频| 在线 av 中文字幕| 亚洲欧洲国产日韩| 18禁国产床啪视频网站| 又黄又粗又硬又大视频| 日韩中字成人| 国产午夜精品一二区理论片| 人妻人人澡人人爽人人| 日本色播在线视频| 日韩一区二区视频免费看| 毛片一级片免费看久久久久| 日产精品乱码卡一卡2卡三| 国产精品麻豆人妻色哟哟久久| 91在线精品国自产拍蜜月| 日韩人妻精品一区2区三区| 97在线人人人人妻| 日韩成人av中文字幕在线观看| 国产女主播在线喷水免费视频网站| 亚洲美女搞黄在线观看| 亚洲av电影在线观看一区二区三区| 精品熟女少妇av免费看| 欧美日韩亚洲高清精品| 97在线视频观看| 你懂的网址亚洲精品在线观看| 欧美 日韩 精品 国产| 男女国产视频网站| 亚洲第一区二区三区不卡| 午夜精品国产一区二区电影| 免费av中文字幕在线| 你懂的网址亚洲精品在线观看| 女人被躁到高潮嗷嗷叫费观| 激情五月婷婷亚洲| 午夜福利在线观看免费完整高清在| 国产一级毛片在线| 一级毛片电影观看| 免费女性裸体啪啪无遮挡网站| 中文字幕亚洲精品专区| 成人影院久久| 亚洲av日韩在线播放| 老熟女久久久| 色视频在线一区二区三区| 久久免费观看电影| 国产亚洲av片在线观看秒播厂| 亚洲欧美日韩卡通动漫| 日产精品乱码卡一卡2卡三| 精品国产一区二区三区四区第35| 99久久综合免费|