• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Synthesis and Characterization of Palladium Nanoparticles with High Proportion of Exposed(111)Facet for Hydrogenation Performance

    2021-06-19 07:33:46LUZhangYinHONGYunYangDAIYuYuLIXiaoQingYANXinHuan
    無機化學學報 2021年6期

    LU Zhang-Yin HONG Yun-Yang DAI Yu-Yu LI Xiao-Qing YAN Xin-Huan

    (State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology,Zhejiang University of Technology,Hangzhou 310014,China)

    Abstract:Pd nanoparticles with different(111)facet proportions were prepared at by a liquid phase hydrogen reduction method,then preparing corresponding Pd/C catalysts.The results of transmission electron microscopy(TEM),fast Fourie transition(FFT),and X-ray diffraction(XRD)revealed that the proportion of the(111)facets on the Pd surface was higher at lower temperatures.Hydrogen oxygen pulse titration(H2-O2)and H2-temperature programmed desorption(H2-TPD)showed that the hydrogen adsorption volume of Pd/C catalysts was correlated linearly with the Pd(111)facet proportions.All Pd/C catalysts had an average particle size of 4.3 nm with narrow particle size distribution,which could eliminated the effect of particle size.The similar pore parameters and Pd loading of all catalysts allowed the reasonable comparison for Pd(111)facet proportions influenced the hydrogenation performance in three typical reactions.Moreover,linear correlations were found between the H2 consumption rate with Pd(111)facet proportions in each of styrene,cyclohexene,and p-nitrotoluene hydrogenation.The good catalytic performance of high Pd(111)facet proportion catalyst for hydrogenations could be attributed to the H2 molecule prior to absorbed the Pd(111)facet promoting the formation of dissociated hydrogen atoms.These results above indicated that Pd-based catalysts with high(111)facet proportion facilitated hydrogenation performance.

    Keywords:palladium;single crystal;Pd(111)facet;hydrogen dissociation;hydrogenation

    0 Introduction

    Nanoparticles(NPs)surface faceting has profound effect for chemical transformations,such as heterogeneous catalysis[1-3],hydrogen storage[4-5],and fuel cells[6].Recently,a growing number of reports from academia and industry demonstrate that noble metals′facet plays crucial roles in hydrogen dissociation for catalytic hydrogenation[7-11].For example,in alkyne hydrogenation,which is a selective reaction used in the food industry,palladium(111)-octahedra have higher catalytic activity than(100)-cubes[12].Similarly,surface faceting has been reported to control hydrogen sensors.For example,in TiO2nanocrystal,H2tend to be adsorbed and dissociated on the(002)and(101)surface,leading to high sensitivity and short response time[13].

    The nature of hydrogen dissociation on Pd surface faceting for the reaction is a longstanding scientific question.Up to now,it remains a major challenge to discover the consensus of dominant catalytic facet for the hydrogenation by Pd nanocatalysts.The previous study of the Kim group reported that the Pd(100)has easier decomposition of hydrogen than the Pd(111)contributed to high performance for selective hydrogenation of acetylene[14].On the other hand,Yarulin et al.thought that the Pd(111)is more active than the Pd(100)[15].Moreover,DFT(density functional theory)calculations suggested that the styrene hydrogenation activity of the clean Pd(111),Pd(100),and Pd(110)surfaces decrease in the order of Pd(111)>Pd(100)>Pd(110)[16].Yang et al.revealed that performance for selective hydrogenation of acetylene to ethylene on several Pd surfaces is Pd(211)>Pd(111)> Pd(100)[17].In addition,to our best knowledge,the discrimination of the hydrogen dissociation for each Pd surface is rarely studied from experimental observations.

    Most studies comparing particle morphology are performed over an ensemble of NPs with varied size and shape[18-19].While NPs synthesis have different shape with facet distributions,the bigger sizes lead to lower atom efficiency[20-22].On the other hand,single crystal particle studies can identify facet-specific activity and give better insight in the role of hydrogen dissociation on facets.

    In this work,we use the hydrogenation of single crystal Pd NPs to investigate the hydrogen dissociation on three low-index facets.Single crystal Pd NPs with different proportions of Pd(111),Pd(100),and Pd(110)facets were prepared at temperatures of 10,15,25,30,and 35℃.The Pd NPs were then loaded onto activated carbon and labeled Pd/C-x,wherexdenoted the temperature value at which the Pd NPs were prepared.The Pd/C-xcatalysts were characterized by performing transmission electron microscopy(TEM),X-ray diffraction(XRD),N2adsorption-desorption,inductively coupled plasma-optical emission spectroscopy(ICP-OES),hydrogen oxygen pulse titration(H2-O2),and H2temperature programmed desorption(H2-TPD)analysis.Finally,we evaluated these catalysts for their styrene,cyclohexene,andp-nitrotoluene hydrogenation activities.We confirmed that Pd(111)facet proportion was linear with the hydrogenation activity of these Pd/C-xcatalysts.These call for better understanding on improvement of hydrogenation activity by increasing the Pd(111)facet proportion,aiming to guide the rational design and facet optimization of the Pd-based catalyst.

    1 Experimental

    1.1 Materials

    Tris-(dibenzylideneacetone) dipalladium(0)(Pd2(dba)3,AR)was purchased from Sigma-Aldrich Co.,Ltd.Propylene carbonate(PC,AR)was purchased from Dongguan Youte environmental protection materials Co.,Ltd.Active carbon(AR)was brought from Shanghai Lvqiang New Material Co.,Ltd.Styrene(C8H8,AR),cyclohexene (C6H12,AR),andp-nitrotoluene(C7H7O2N,AR)were purchased from Shanghai Aladdin Reagent Co.,Ltd.

    1.2 Preparation of Pd nanoparticles

    Pd nanoparticles with different Pd(111)proportion were synthesized by the methods in different temperatures.Specifically,a measured amount of Pd2(dba)3as a precursor and 100 mL PC were added into a 250 mL stainless steel stirred reactor.The reactor was initially purged with H2for 6 times,then slowly heated until the desired reaction temperature of 10,15,25,30,and 35℃.After pressurized to 4.0 MPa with H2,the reaction was started with a stirring rate of 500 r·min-1for 3 h.Then the prepared black Pd reactant was adsorbed by quantitative activated carbon for 24 h until the solution was colorless and transparent after filtration.The samples were washed by ethanol and acetone,then natural dried for 24 h.All these materials were defined as Pd/C-10,Pd/C-15,Pd/C-25,Pd/C-30,and Pd/C-35,respectively.

    1.3 Catalysts characterization

    TEM was taken on a JEOL JEM-1200EX with an accelerating voltage of 200 kV.Before being transferred into the TEM chamber,the samples dispersed in ethanol were deposited onto holey carbon films supported on Cu grids.

    Fast Fourier transformation(FFT)was performed on Digital-Micrograph software.The selected area of the high resolution TEM(HRTEM)images was treated by FFT,thus the reciprocal lattices corresponding to the reciprocal space were obtained.Then the distance from different lattices to the origin of reciprocity was measured,and the countdown of the distance was the actual interplanar distance.Referring to PDF card data,the specific crystal plane of corresponding substance was gained.

    The XRD patterns of the Pd/C-xwere performed on a Rigaku D/Max-2500 X-ray diffractometer,which used a CuKαradiation(λ=0.154 nm)in the 2θscan range(40 kV and 100 mA)from 10°to 80°with a step of 0.05°.

    The Pd content of the prepared Pd/C-xcatalysts was determined by ICP-OES.The experiments were done by Aglient 720ES.

    N2adsorption at-196℃was measured using a Micromeritics ASAP 2010 system,the samples were degassed at 200℃for 6 h under high vacuum.The surface area was calculated by using the Brunauer-Emmett-Teller(BET)method.The total pore volume was determined by nitrogen adsorption at a relative pressure of 0.99,and the pore size distributions were calculated from the nitrogen adsorption isotherms by the Barrett-Joyner-Hallenda(BJH)method.

    The H2-O2and H2-TPD experiments were done by Micromeritics Autochem 2920 with a TCD detector.The principle of H2-O2was as follows,the routine of“pre-reduction(adsorption of hydrogen)→titrated oxygen→titrated hydrogen→titrated oxygen→titrated hydrogen”was measured sequentially.As shown in Eq.1~3,titrating a single palladium atom requires three hydrogen atoms.Specifically,loop ring(a quantitative loop,the volume was 0.5 mL)titration was performed with 5% H2/Ar by injection,until the peak height remained constant,indicating that hydrogen adsorption on the Pt surface had reached saturation,hydrogen titration operation was completed.The adsorbed hydrogen volume on the Pd/C-xwas calculated by Formula 4,whereAH2,Vr,Vm,andmrepresent quantity of adsorbed H2,H2titration volume,molar volume of gas(22.4 L·mol-1),and quality of sample,respectively.

    1.4 Catalytic test

    In each experiment,the autoclaves were purged 6 times with H2to remove air.After a fixed reaction time,the autoclaves were cooled down to room temperature and H2pressure was carefully released.In the hydrogenation process,stirring speed was kept at 1 200 r·min-1to avoid mass transfer limitations.The H2pressure changes of the 250 mL gas tank was recorded automatically with a pressure sensor,which connected to the autoclaves.

    The hydrogenation reaction rates were computed based on calculated H2consumption per unit time(r)using the equation given by Formula 5.Thet2-t1represents the time period when hydrogenation reaction is stable.Then2-n1represents variable quantity in amount of substance of H2.The amount of substance of H2were calculated by Redlich-Kwong Eq.6~8,whereP,V,T,R,Pc,andTcrepresent the H2pressure in storage tank,H2molar volume,H2temperature,thermodynamic constant(8.314 J·mol-1·K-1),critical condition pressure and temperature,respectively.

    2 Results and discussion

    2.1 Characterization results

    We investigated the Pd NPs of Pd/C-10,Pd/C-15,Pd/C-25,Pd/C-30,and Pd/C-35 by TEM,and the results are shown in Fig.1.Spherical Pd nanocrystals were observed in each image.The size of the Pd NPs was approximately 4.3 nm.As shown in Fig.2,three typical Pd NPs were magnified by HRTEM,which were characterized by eight triangular(111)facet,six square(100)facet,and dodecahedron(110)facet,respectively.For each sample,50 Pd crystals chosen randomly from several HRTEM images were examined and classified into three categories:Pd crystals exposed only(111),(100)and(110)facets(Fig.S1~S5).Based on statistical analysis,the proportion of Pd(111)facet in the Pd/C-10,Pd/C-15,Pd/C-25,Pd/C-30,and Pd/C-35 catalyst were 84%,75%,63%,55%,and 43%,respectively.This suggests that the reaction temperature influences the formation of Pd crystals exposed by only the(111)facet.

    Fig.1 TEM images and derived particle size distributions of Pd/C-x samples:(a)Pd/C-10,(b)Pd/C-15,(c)Pd/C-25,(d)Pd/C-30 and(e)Pd/C-35

    Fig.2 HRTEM and FFT images of single Pd NPs

    Fig.3 shows the XRD patterns of Pd/C-xcatalysts.In each XRD pattern,three diffraction peaks were observed at 2θ=40.1°,46.7°,and 68.1°,which are assigned to(111),(200)and(220)facet of face-centered cubic Pd,respectively;this suggests the formation of metallic Pd.The ratios of peak intensity of the(111)facet to that of the(220)facet for Pd/C-10,Pd/C-15,Pd/C-25,Pd/C-30,and Pd/C-35 were 16.7,11.2,9.7,6.5,and 4.3,respectively.This suggested that Pd NPs had a higher proportion of Pd(111)facet synthesized in lower temperature.Meanwhile,the particle size of Pd NPs of different catalysts,which calculated from FWHM of diffraction peaks according to Scherrer equation[23],are listed in Table 1,which is consistent with the TEM results.There is little difference in crystallinity between catalysts.Above results eliminated the possibility of a particle size effect and difference of crystallinity,allow us to directly compare their catalytic performance[24].

    Fig.3 XRD patterns of Pd/C-x catalysts

    Table 1 XRD analysis of the catalysts

    It is known that the surface of crystals can be easily controlled via adjusting supersaturation of crystal growth units during the crystal growth process[25].Xie et al.extensively proposed that the faster reduction rate results in the higher surface energy of crystallites[26].On the other hand,the surface energy on Pd single crystals has been reported to increase in the order of Pd(111)<Pd(100)<Pd(110)[27].The change in the temperature can exponentially influence reduction rate of metal precursor which explains the slower reduction rate lead to higher Pd(111)proportion in lower reaction temperature.

    The texture properties of different samples are measured by N2adsorption and desorption experiment and the results are summarized in Table 2.Compared to carbon,the mesoporous volume and mesporous area of different catalysts slightly decrease,which is attributed to Pd NPs clogged the pores of active support carbon during catalyst preparation process[28].However,the external surface area of all catalysts substantially remains unchanged.Based on the total amount of Pd in the impregnation solution,the theoretical Pd loading(mass fraction)was 1.00% of that in Pd/C-xcatalysts.The Pd loading of all catalysts varied from 0.90% to 0.95%(within the range of test errors).

    Table 2 Properties of the catalysts

    To explore effect of(111)facet proportion on H2adsorption capacity,H2-O2titration was performed for the Pd/C-xcatalysts.The adsorbed hydrogen volume of the Pd/C-xwas calculated by integral quantity of stable peak area(Fig.4a).Fig.4b shows that the quantity of adsorbed H2was plotted against the Pd(111)proportion(%).The amount of adsorbed H2on Pd/C-10 was 39.46 μmol·g-1,which was nearly 2.13 times greater than the amount of H2on Pd/C-35(18.54 μmol g-1).The Pd(111)proportion of Pd/C-10 was 1.95 times than that of Pd/C-35.The amounts of adsorbed H2on Pd/C-15,Pd/C-25,and Pd/C-30 were 34.92,25.47,and 22.84 μmol·g-1,respectively.It is clear that a linear relationship between the quantity of adsorbed H2and the Pd(111)proportion of each Pd/C-xcatalyst.The linear curve in Fig.4b had a high correlation coefficient(R2)of 0.98.It should be pointed out that the line through the origin point,indicating nonoccurrence H2dissociation with absence of Pd(111)facet.On the other hand,the volume of adsorbed H2was not positively correlated with the proportions of the Pd(100)and Pd(110)facets(Fig.S6).The results confirms that Pd(111)facet plays a central role in hydrogen dissociation.

    Fig.4 Results of H2-O2 titration of absorbed hydrogen for Pd/C-x catalysts:(a)H2-O2 titration peak map;(b)relationship between Pd(111)proportion and the quantity of adsorbed H2

    H2-TPD was used to detect the metal properties of the catalysts with Pd NPs of different(111)facet proportions,which is shown in Fig.5.Generally,the hydro-gen adsorbed on the Pd surface can be assigned to two kinds of hydrogen species,including the surface hydrogen adsorbed on the Pd surface and subsurface hydrogen adsorbed on the subsurface or the bulk of Pd[29].As shown in Fig.4,the desorption peak centered at 65℃can be assigned to the desorption of H2molecules from Pd surface[30-31],while the peak centred at 380℃can be assigned to the desorption of H2molecules from the active support carbon[32].The dissociation adsorption capacity of Pd for H2of Pd/C-35 was too weak,whereas that of Pd/C-10 was too strong,which suggests that the high Pd(111)proportion has stronger ability to activate H2.

    2.2 Catalyticactivity of Pd/C-x catalysts for hydrogenation

    Generally,the facet of Pd NPs may affect product conversion and selectivity using defined experiments and DFT simulations[33].Therefore,it is imperative to study the(111)facet proportion of Pd influence the hydrogenation activity.The performance of styrene,cyclohexene,andp-nitrotoluene hydrogenation were evaluated for the different catalysts prepared with Pd NPs of different(111)facet proportion.Fig.S7 presents the lines of hydrogen consumption curves for three hydrogenation reactions,suggests the first order reaction for styrene,cyclohexene,andp-nitrotoluene hydrogenation reactions[34-36].The curves in the initial time was not linear,due to the instability of system when the reaction started[37].As the Pd(111)proportion increased the hydrogen consumption gradually increased for all catalysts due to hydrogenation active sites on Pd(111)facet.Moreover,it can be found that the hydrogen consumption rate over different catalysts follows the Pd/C-10>Pd/C-15>Pd/C-25>Pd/C-30>Pd/C-35,in consistent with the results of H2-O2.

    Table 3 shows the hydrogen consumption rate for three reactions in Pd/C-xcatalysts with different Pd(111)proportions.All Pd/C-10 catalyst exhibited higher hydrogenation activity than other catalyst in every hydrogenation reaction.At styrene hydrogenation,the hydrogen consumption rate in Pd/C-xcatalysts were 9.17,8.11,7.30,5.68,and 4.59mmolH2·min-1for Pd(111)proportion of 84%,75%,63%,55%,and 43%,respectively.The hydrogenation activity of Pd/C-10 catalyst was 2.00 times that of the Pd/C-35 catalyst,in consistent with the 1.95 times of that Pd(111)ratios.The H2consumption rate in Pd/C-xcatalysts for cyclohexene hydrogenation were 0.59,0.54,0.47,0.40,and 0.34mmolH2·min-1for Pd(111)proportion of 84%,75%,63%,55%,and 43%,respectively,whereas 2.00,1.79,1.60,1.38,and 1.17mmolH2·min-1of that forpnitrotoluene hydrogenation.The data shown in Fig.6 clearly showed a linear relationship between the proportion of Pd(111)facet in Pd/C-xcatalysts and their H2consumption rate in every hydrogenation.Interestingly,each curve passed through the original point,and had a highR2of 0.99.This suggests that no hydrogenation occurred in the absence of Pd(111)under ideal conditions.In contrast,the proportion of Pd(100)and Pd(110)facets in Pd/C-xand their H2consumption rates were not positively correlated(Fig.S8).For the linear correlation between H2consumption rate and Pd(111)proportion,the dissociation adsorption capacity of Pd(111)for H2were further proved from hydrogenation aspects,suggesting that the hydrogenation active site originated from Pd(111)facet.

    Fig.6 Relationship between the Pd(111)proportion of the catalysts and H2 consumption rates in three hydrogenation reactions

    Table 3 Catalytic hydrogenation performance over different catalysts

    The reusability study was conducted with Pd/C-10 catalyst for thep-nitrotoluene hydrogenation.As shown in H2consumption curves(Fig.S9),the test was performed up to 10 successive cycles for the reactions.The catalyst stayed active and showed consistent performance(Fig.7).Interestingly,the catalyst was able to retain the activity after successive reuse.

    Fig.7 Recyclability test of Pd/C-10 catalyst for p-nitrotoluene hydrogenation

    Furthermore,XRD patterns of both fresh and recycled catalysts for thep-nitrotoluene hydrogenation indicated that there was no change in phase purity and the crystalline structure remained stable after ten recycles(Fig.8).In addition,FFT measurement of HRTEM images for recycled catalysts was performed(Fig.S10).The result indicated that the Pd(111)facet proportion could be substantially unchanged.About 82% of Pd(111)facet proportion in recycled Pd/C-10 was consistent with the result of 84% of that in fresh Pd/C-10.

    Fig.8 XRD patterns of fresh and recycled Pd/C-10 catalyst

    3 Conclusions

    In summary,we have described a method for the synthesis of different(111)facet proportions of Pd loaded active carbon catalysts with small size in well dispersion.Through systematic results of H2-O2,H2-TPD and three typical hydrogenation reactions,Pd NPs with high Pd(111)proportion were found to be remarkably active for catalyzing hydrogen.Therefore,we propose that H2molecules prior to adsorb on the Pd(111)facet and dissociate into individual H atoms,which then participate in hydrogenation reactions.This concept of hydrogenation active sites on Pd(111)unlocks the possibility for future nanocrystal catalyst design where the critical facet role can be optimized for a given catalytic reaction.

    Supporting information is available at http://www.wjhxxb.cn

    Acknowledgements:The authors gratefully acknowledge the National Key Research and D&P of China(Grant No.2017YFC0210900).

    男女免费视频国产| 国产精品国产av在线观看| 国产亚洲av高清不卡| 色婷婷久久久亚洲欧美| 免费黄色在线免费观看| 老司机深夜福利视频在线观看 | 久久久久久久大尺度免费视频| 天堂8中文在线网| 亚洲欧洲国产日韩| 亚洲精品视频女| 91aial.com中文字幕在线观看| 中文天堂在线官网| 高清不卡的av网站| 丰满乱子伦码专区| 久久久久视频综合| 久久久久视频综合| 久久久国产一区二区| 人人澡人人妻人| 亚洲一区中文字幕在线| 日韩视频在线欧美| 视频在线观看一区二区三区| 国产成人精品在线电影| 精品国产一区二区久久| 久久精品国产综合久久久| 18禁动态无遮挡网站| 午夜福利,免费看| 亚洲精品视频女| 国产精品三级大全| 亚洲欧美激情在线| 在线精品无人区一区二区三| 香蕉国产在线看| 国产一区二区 视频在线| 侵犯人妻中文字幕一二三四区| av在线老鸭窝| 欧美黑人欧美精品刺激| 人妻一区二区av| av国产久精品久网站免费入址| 2021少妇久久久久久久久久久| 一二三四在线观看免费中文在| 超碰97精品在线观看| 乱人伦中国视频| 巨乳人妻的诱惑在线观看| 欧美变态另类bdsm刘玥| 久热这里只有精品99| 亚洲国产看品久久| 精品亚洲成国产av| 在线亚洲精品国产二区图片欧美| 九九爱精品视频在线观看| 一边摸一边做爽爽视频免费| 麻豆乱淫一区二区| 国产精品一二三区在线看| 国产一级毛片在线| 国产无遮挡羞羞视频在线观看| 免费看av在线观看网站| 欧美日本中文国产一区发布| 大香蕉久久成人网| 在线观看三级黄色| 丰满迷人的少妇在线观看| 久久热在线av| 国语对白做爰xxxⅹ性视频网站| 黄网站色视频无遮挡免费观看| 国产精品麻豆人妻色哟哟久久| 国产午夜精品一二区理论片| 最近最新中文字幕大全免费视频 | 免费观看av网站的网址| 午夜福利网站1000一区二区三区| 久久久久精品久久久久真实原创| av网站在线播放免费| 久久人人爽av亚洲精品天堂| 人妻人人澡人人爽人人| 999精品在线视频| 国产欧美日韩一区二区三区在线| 美女午夜性视频免费| a级片在线免费高清观看视频| 国产xxxxx性猛交| 午夜福利视频在线观看免费| 热re99久久精品国产66热6| 免费黄色在线免费观看| 婷婷色综合www| netflix在线观看网站| 我的亚洲天堂| 777米奇影视久久| 少妇精品久久久久久久| 欧美黑人精品巨大| 欧美黑人欧美精品刺激| 成人毛片60女人毛片免费| 精品国产乱码久久久久久小说| 国产精品久久久久久人妻精品电影 | 久久久久国产一级毛片高清牌| xxx大片免费视频| 日韩中文字幕视频在线看片| 高清av免费在线| 最近中文字幕高清免费大全6| 婷婷色综合www| 免费看av在线观看网站| 黑人巨大精品欧美一区二区蜜桃| 一个人免费看片子| 一本一本久久a久久精品综合妖精| 肉色欧美久久久久久久蜜桃| 国产有黄有色有爽视频| 亚洲色图 男人天堂 中文字幕| 日韩制服骚丝袜av| svipshipincom国产片| 午夜福利视频精品| 777久久人妻少妇嫩草av网站| 亚洲国产成人一精品久久久| 欧美在线黄色| 久久精品国产亚洲av涩爱| 欧美日韩一区二区视频在线观看视频在线| 日韩大码丰满熟妇| 免费不卡黄色视频| 精品一区在线观看国产| 一区二区三区乱码不卡18| 少妇 在线观看| 国产爽快片一区二区三区| 日韩电影二区| 亚洲精品美女久久av网站| 免费女性裸体啪啪无遮挡网站| 哪个播放器可以免费观看大片| 国产精品亚洲av一区麻豆 | 人人妻,人人澡人人爽秒播 | 天天躁狠狠躁夜夜躁狠狠躁| 黄色一级大片看看| 欧美激情高清一区二区三区 | 国产在视频线精品| 国产亚洲一区二区精品| 欧美97在线视频| 看十八女毛片水多多多| 国产精品久久久久久人妻精品电影 | 久久久久久久久久久久大奶| 日韩av不卡免费在线播放| 国产精品国产三级专区第一集| 精品久久久久久电影网| 9色porny在线观看| 曰老女人黄片| 如何舔出高潮| 一区二区日韩欧美中文字幕| 色网站视频免费| 街头女战士在线观看网站| 一级片'在线观看视频| 欧美日韩国产mv在线观看视频| 亚洲精品国产区一区二| 在线观看一区二区三区激情| 美女高潮到喷水免费观看| 大香蕉久久成人网| 久久久久国产一级毛片高清牌| 好男人视频免费观看在线| 一边摸一边抽搐一进一出视频| 黄网站色视频无遮挡免费观看| 欧美在线黄色| 欧美日韩亚洲综合一区二区三区_| av免费观看日本| 免费av中文字幕在线| 久久韩国三级中文字幕| 热re99久久精品国产66热6| 日韩视频在线欧美| 你懂的网址亚洲精品在线观看| 天天躁日日躁夜夜躁夜夜| 亚洲四区av| 亚洲图色成人| 在线天堂中文资源库| 汤姆久久久久久久影院中文字幕| 亚洲欧洲日产国产| 美女国产高潮福利片在线看| 极品少妇高潮喷水抽搐| 女人久久www免费人成看片| 国产精品成人在线| √禁漫天堂资源中文www| 国产精品久久久久成人av| 99久久人妻综合| 青春草视频在线免费观看| 久久人妻熟女aⅴ| 视频区图区小说| 青春草亚洲视频在线观看| 亚洲一区中文字幕在线| 丁香六月天网| 亚洲人成77777在线视频| 国产熟女午夜一区二区三区| 亚洲精品国产色婷婷电影| 一级a爱视频在线免费观看| 两个人免费观看高清视频| 最近最新中文字幕大全免费视频 | 在线观看三级黄色| 大片免费播放器 马上看| 亚洲五月色婷婷综合| 天堂8中文在线网| 飞空精品影院首页| av有码第一页| 日日撸夜夜添| 一本大道久久a久久精品| 搡老岳熟女国产| 精品免费久久久久久久清纯 | 免费看不卡的av| 亚洲精品视频女| 精品一区二区三区av网在线观看 | 亚洲国产av影院在线观看| 欧美日韩成人在线一区二区| 欧美国产精品一级二级三级| 9热在线视频观看99| 亚洲欧美色中文字幕在线| 国产不卡av网站在线观看| 伊人亚洲综合成人网| 女人精品久久久久毛片| 精品国产国语对白av| 妹子高潮喷水视频| 亚洲视频免费观看视频| 亚洲一区二区三区欧美精品| 丰满乱子伦码专区| 建设人人有责人人尽责人人享有的| 亚洲,欧美精品.| 汤姆久久久久久久影院中文字幕| 国产一区二区 视频在线| 欧美精品亚洲一区二区| 午夜福利一区二区在线看| 亚洲av中文av极速乱| √禁漫天堂资源中文www| 侵犯人妻中文字幕一二三四区| 日韩欧美一区视频在线观看| a级毛片在线看网站| 久久午夜综合久久蜜桃| 韩国av在线不卡| 久久天堂一区二区三区四区| 电影成人av| av一本久久久久| 亚洲精品第二区| 国产毛片在线视频| 久久99精品国语久久久| 国产高清国产精品国产三级| 少妇 在线观看| 国产不卡av网站在线观看| 日韩一本色道免费dvd| 欧美精品av麻豆av| 99热全是精品| a级片在线免费高清观看视频| 一级,二级,三级黄色视频| 国产精品免费大片| 在现免费观看毛片| 国产又爽黄色视频| 老司机影院毛片| 日韩大片免费观看网站| 中文字幕精品免费在线观看视频| 国产亚洲精品第一综合不卡| 亚洲av电影在线进入| 一级毛片 在线播放| netflix在线观看网站| 国产野战对白在线观看| 丝袜美腿诱惑在线| 亚洲精品乱久久久久久| 超碰成人久久| 精品视频人人做人人爽| 亚洲国产欧美一区二区综合| 国产精品免费大片| 亚洲五月色婷婷综合| 深夜精品福利| 观看av在线不卡| av卡一久久| 高清在线视频一区二区三区| 在线天堂最新版资源| av网站在线播放免费| 精品少妇一区二区三区视频日本电影 | 亚洲国产成人一精品久久久| 亚洲av电影在线进入| 最近最新中文字幕免费大全7| 一边摸一边抽搐一进一出视频| 欧美老熟妇乱子伦牲交| 制服诱惑二区| 国精品久久久久久国模美| 天天躁夜夜躁狠狠躁躁| 国产在线免费精品| 色婷婷av一区二区三区视频| 在线 av 中文字幕| 考比视频在线观看| 制服诱惑二区| 啦啦啦中文免费视频观看日本| 在线亚洲精品国产二区图片欧美| 国产精品一区二区在线观看99| av片东京热男人的天堂| av福利片在线| 看免费av毛片| 老熟女久久久| 国产福利在线免费观看视频| 国产人伦9x9x在线观看| 欧美成人精品欧美一级黄| 五月开心婷婷网| 亚洲国产av影院在线观看| 久久精品亚洲熟妇少妇任你| 午夜福利一区二区在线看| 大香蕉久久成人网| 国产99久久九九免费精品| 在线亚洲精品国产二区图片欧美| 大陆偷拍与自拍| 日韩av免费高清视频| 久久人人爽人人片av| 欧美激情极品国产一区二区三区| 久久这里只有精品19| 国产老妇伦熟女老妇高清| 午夜免费男女啪啪视频观看| 国产精品国产三级专区第一集| 少妇猛男粗大的猛烈进出视频| 丁香六月天网| 伊人亚洲综合成人网| 黄色怎么调成土黄色| 777久久人妻少妇嫩草av网站| 一边摸一边做爽爽视频免费| 激情视频va一区二区三区| 欧美日韩亚洲高清精品| 十八禁高潮呻吟视频| 午夜影院在线不卡| 国产伦理片在线播放av一区| 丝袜美腿诱惑在线| 男女下面插进去视频免费观看| 午夜av观看不卡| 2018国产大陆天天弄谢| 久久热在线av| 精品卡一卡二卡四卡免费| 日韩一区二区三区影片| 在线观看一区二区三区激情| 免费高清在线观看视频在线观看| 王馨瑶露胸无遮挡在线观看| 国产精品香港三级国产av潘金莲 | 男女边摸边吃奶| 卡戴珊不雅视频在线播放| 亚洲人成网站在线观看播放| 69精品国产乱码久久久| 亚洲欧美清纯卡通| 亚洲人成网站在线观看播放| 在线观看免费午夜福利视频| 国产老妇伦熟女老妇高清| 男女床上黄色一级片免费看| 七月丁香在线播放| 一边摸一边做爽爽视频免费| www.av在线官网国产| 成年女人毛片免费观看观看9 | 日韩不卡一区二区三区视频在线| 高清欧美精品videossex| 亚洲人成网站在线观看播放| 亚洲欧洲国产日韩| a 毛片基地| 久久久国产精品麻豆| 日韩av免费高清视频| 中文字幕制服av| 国产精品 国内视频| 久久热在线av| 超碰97精品在线观看| 国产成人精品久久久久久| 中国国产av一级| 97在线人人人人妻| 久久99精品国语久久久| 一本大道久久a久久精品| 99re6热这里在线精品视频| 各种免费的搞黄视频| 热re99久久精品国产66热6| 免费女性裸体啪啪无遮挡网站| 欧美久久黑人一区二区| videos熟女内射| 日韩大码丰满熟妇| 一本久久精品| 国产一卡二卡三卡精品 | 我要看黄色一级片免费的| 深夜精品福利| 国产精品免费大片| 日韩制服丝袜自拍偷拍| 亚洲精品自拍成人| 咕卡用的链子| a级片在线免费高清观看视频| 亚洲国产av新网站| 曰老女人黄片| 99re6热这里在线精品视频| 大码成人一级视频| 久久久久久人人人人人| 男女下面插进去视频免费观看| 久久久久精品国产欧美久久久 | 电影成人av| 大片免费播放器 马上看| 国产午夜精品一二区理论片| 亚洲美女视频黄频| 亚洲欧美一区二区三区国产| videosex国产| 欧美另类一区| 老熟女久久久| 日韩一本色道免费dvd| 日本爱情动作片www.在线观看| av在线app专区| 亚洲人成电影观看| 夜夜骑夜夜射夜夜干| 深夜精品福利| 国产男女内射视频| 久久人人97超碰香蕉20202| 中文天堂在线官网| 高清不卡的av网站| 国产不卡av网站在线观看| 色吧在线观看| 麻豆乱淫一区二区| 色网站视频免费| 亚洲精品久久午夜乱码| 高清在线视频一区二区三区| 午夜日本视频在线| 欧美日韩国产mv在线观看视频| 亚洲,欧美精品.| 亚洲免费av在线视频| 亚洲精品中文字幕在线视频| 欧美激情高清一区二区三区 | 久久天堂一区二区三区四区| 菩萨蛮人人尽说江南好唐韦庄| 99久国产av精品国产电影| 九草在线视频观看| 久久久精品94久久精品| 精品亚洲乱码少妇综合久久| 婷婷色麻豆天堂久久| 中文字幕精品免费在线观看视频| 欧美日本中文国产一区发布| 国产精品免费大片| 亚洲少妇的诱惑av| 一区二区三区精品91| 老司机深夜福利视频在线观看 | 久热爱精品视频在线9| 欧美黄色片欧美黄色片| 中文字幕色久视频| 熟妇人妻不卡中文字幕| 亚洲精品,欧美精品| 国产精品嫩草影院av在线观看| 女性生殖器流出的白浆| 9色porny在线观看| 日韩欧美一区视频在线观看| 性少妇av在线| a 毛片基地| 黑丝袜美女国产一区| 国产精品一区二区在线不卡| 国产在线一区二区三区精| 亚洲一区二区三区欧美精品| 午夜福利影视在线免费观看| 国产成人一区二区在线| 精品久久蜜臀av无| 成年av动漫网址| 亚洲av中文av极速乱| 欧美乱码精品一区二区三区| 久久精品国产亚洲av涩爱| 国产成人91sexporn| 国产一级毛片在线| 18在线观看网站| 老司机亚洲免费影院| 99精国产麻豆久久婷婷| 亚洲精品av麻豆狂野| 宅男免费午夜| 夫妻午夜视频| 美女午夜性视频免费| 国产麻豆69| 超碰97精品在线观看| 久久久亚洲精品成人影院| 9色porny在线观看| 考比视频在线观看| 亚洲成国产人片在线观看| 国产无遮挡羞羞视频在线观看| 丝袜人妻中文字幕| 无限看片的www在线观看| 久久精品人人爽人人爽视色| 色视频在线一区二区三区| 亚洲,欧美精品.| 男女边吃奶边做爰视频| 日本欧美视频一区| 日本vs欧美在线观看视频| 国产精品久久久久久久久免| 国产女主播在线喷水免费视频网站| 夜夜骑夜夜射夜夜干| 99国产综合亚洲精品| 黑人欧美特级aaaaaa片| 日本爱情动作片www.在线观看| 一二三四中文在线观看免费高清| 国产伦理片在线播放av一区| 国产男女内射视频| 丝瓜视频免费看黄片| 亚洲天堂av无毛| 狂野欧美激情性bbbbbb| 国产成人精品久久二区二区91 | 纯流量卡能插随身wifi吗| 两性夫妻黄色片| 亚洲欧美一区二区三区国产| 亚洲七黄色美女视频| 亚洲,一卡二卡三卡| 男女床上黄色一级片免费看| 精品一区在线观看国产| 亚洲精品久久成人aⅴ小说| 中国三级夫妇交换| 乱人伦中国视频| 日韩精品有码人妻一区| 欧美 日韩 精品 国产| av在线观看视频网站免费| 国产日韩欧美视频二区| 亚洲av欧美aⅴ国产| 欧美国产精品va在线观看不卡| 99精国产麻豆久久婷婷| 午夜日韩欧美国产| 19禁男女啪啪无遮挡网站| 久久久久久久久免费视频了| 国产精品久久久人人做人人爽| 一边亲一边摸免费视频| 精品国产一区二区三区四区第35| 日韩中文字幕视频在线看片| 国产亚洲精品第一综合不卡| 色婷婷av一区二区三区视频| 精品亚洲乱码少妇综合久久| 亚洲av成人精品一二三区| 国产欧美日韩一区二区三区在线| 男人操女人黄网站| 亚洲av综合色区一区| 国产精品一国产av| 另类精品久久| 国产精品一国产av| 免费看av在线观看网站| 18在线观看网站| 亚洲一区中文字幕在线| 女人久久www免费人成看片| 国产成人av激情在线播放| 亚洲成av片中文字幕在线观看| 两个人看的免费小视频| 成年动漫av网址| www.精华液| 在线观看免费视频网站a站| www.精华液| 亚洲国产看品久久| 美女扒开内裤让男人捅视频| 久久婷婷青草| 亚洲国产中文字幕在线视频| 夜夜骑夜夜射夜夜干| 天堂中文最新版在线下载| 老司机亚洲免费影院| 天堂中文最新版在线下载| 国产精品熟女久久久久浪| 亚洲人成77777在线视频| 亚洲国产欧美网| 午夜福利在线免费观看网站| 大片免费播放器 马上看| 欧美日韩综合久久久久久| 一区二区三区乱码不卡18| 中文字幕人妻丝袜制服| 一本大道久久a久久精品| 欧美激情高清一区二区三区 | 天天添夜夜摸| 婷婷色综合www| 精品福利永久在线观看| 一边摸一边抽搐一进一出视频| 成人毛片60女人毛片免费| 欧美日韩精品网址| 麻豆av在线久日| 亚洲熟女毛片儿| 中文字幕人妻熟女乱码| 亚洲专区中文字幕在线 | 黑人巨大精品欧美一区二区蜜桃| 国产极品粉嫩免费观看在线| 中文字幕制服av| 日韩不卡一区二区三区视频在线| 三上悠亚av全集在线观看| 免费在线观看黄色视频的| 人人妻,人人澡人人爽秒播 | 这个男人来自地球电影免费观看 | 制服丝袜香蕉在线| 老司机影院成人| 亚洲欧美一区二区三区黑人| 中文乱码字字幕精品一区二区三区| 电影成人av| 国产乱来视频区| 91aial.com中文字幕在线观看| 中文字幕制服av| 精品一区二区三区四区五区乱码 | 2021少妇久久久久久久久久久| 亚洲国产看品久久| 国产精品一国产av| 丝袜脚勾引网站| 亚洲国产欧美一区二区综合| 午夜激情av网站| 国产av码专区亚洲av| 啦啦啦中文免费视频观看日本| videosex国产| 国产精品久久久久成人av| 交换朋友夫妻互换小说| 免费黄色在线免费观看| 国产精品成人在线| 纯流量卡能插随身wifi吗| 国产成人91sexporn| 亚洲国产精品国产精品| 国产一区亚洲一区在线观看| 亚洲精品久久成人aⅴ小说| 欧美国产精品一级二级三级| 亚洲精品一二三| 啦啦啦中文免费视频观看日本| 国产成人精品在线电影| 欧美乱码精品一区二区三区| 国产成人精品久久久久久| 国产 精品1| 日本av免费视频播放| 女人被躁到高潮嗷嗷叫费观| 免费在线观看黄色视频的| 国产野战对白在线观看| 又粗又硬又长又爽又黄的视频| avwww免费| 久久热在线av| 女人久久www免费人成看片| 亚洲综合精品二区| 交换朋友夫妻互换小说| 久久精品久久久久久久性| 日韩伦理黄色片| 午夜福利视频在线观看免费| 国产男人的电影天堂91| 午夜免费男女啪啪视频观看| 观看美女的网站| 久久国产精品大桥未久av| 国产老妇伦熟女老妇高清| 免费高清在线观看视频在线观看| 韩国高清视频一区二区三区| 少妇人妻 视频| 巨乳人妻的诱惑在线观看| 久久久精品94久久精品| 亚洲在久久综合| 国产免费一区二区三区四区乱码| 高清黄色对白视频在线免费看|