• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Synthesis of size-controlled carbon microspheres from resorcinol/formaldehyde for high electrochemical performance

    2021-06-18 02:23:52DUXuYANGHuiminZHANGYanlanHUQingchengLISongboHEWenxiu
    新型炭材料 2021年3期

    DU Xu ,YANG Hui-min,2,,ZHANG Yan-lan ,HU Qing-cheng ,LI Song-bo ,HE Wen-xiu

    (1.School of Chemistry and Chemical Engineering, Inner Mongolia University of Science & Technology, Baotou 014010, China;2.Inner Mongolia Key Laboratory of Coal Chemical Engineering & Comprehensive Utilization, Baotou 014010, China;3.Mining Research Institute, Inner Mongolia University of Science & Technology, Baotou 014010, China)

    Abstract:Nanostructured phenolic resin-based carbon aerogels with an extensive network structure are regarded as ideal energy storage materials for supercapacitors.However,the initial bulk form and low capacitance of previously reported porous carbon aerogels are problematic for practical use.Phenolic resin-based porous carbon spheres were synthesized by a simple hydrothermal process using ammonia,ethylenediamine or hexylenediamine as a catalyst.The porous carbon spheres were investigated by SEM,BET,XPS,etc.It was found that the number of ammonium groups,length of the alkyl chain and processing temperature play vital roles in determining the pore structure,size and uniformity of the carbon spheres.NH4+ is necessary to obtain the carbon spheres and but changing the other parameters has no obvious effect on their crystal structure.The sample prepared at a hydrothermal temperature of 80 °C using ammonia as the catalyst has the highest specific capacitance of 233.8 F g?1 at a current density of 1.0 A g?1.It has an excellent capacitance retention of 98% after 10 000 charge/discharge cycles at 7 A g?1,indicating its good cycling stability and rate capability.This result shows that a higher specific surface area,porosity and defect density are probably the crucial factors in improving the electrochemical capacitance.

    Key words:Carbon sphere;Porous material;Amino alkali;Capacitor

    1 Introduction

    Supercapacitors receive extensive attention as new energy storage devices because of the need in electric vehicles,power systems and portable electronics[1–3]. The electric double-layer capacitors(EDLCs) are important category of supercapacitors,and their high performance is mainly depended on the electrode materials[4–6].In the past decades,carbonbased materials such as activated carbon[7],graphene[8],aerogel carbon[9],porous carbon[10],carbon sphere[11,12],etc.have been reported as supercapacitors electrode due to their good electrical conductivity,high electrochemical stability and large specific surface area.However,major challenge for application of carbon materials is tuning the morphology and controlling pore structure effectively[13–16].Hence,to obtain high-performance electrode materials,continuous efforts have been devoted to optimize these parameters[17].

    Porous carbon sphere is of particular interest among various carbon structures.It exhibits fascinating properties,such as uniform geometry,tunable pore size,hollow space,and high surface area,which can provide sufficient space and transport channels for charge retention and high energy storage[18–21].To improve the electrochemical properties of porous carbon sphere,many preparation methods have been investigated by different groups.It is worth mentioning that biomass materials are used as carbon precursor to synthesis porous carbon spheres for electrodes[22].Nevertheless,the process of biomass carbonization is complex,which generally requires further activation process in the presence of chemical agent to obtain unique pore structure and larger specific surface area[23–25].Complicated procedures not only increase the cost of production,but also impose a burden on environment.Besides,the structure of carbon material is difficult to be controlled during the activation.

    In recent years,the research on porous carbon preparation based on phenolic resin has been in progress[26–29].Traditionally,the monolithic or continuous matrix materials are obtained by the hydrothermal polymerization of resorcinol and formaldehyde(RF) using base/acid as catalyst.To get porous carbon sphere,hard templating approaches are used as a tool for structuring spherical morphology in sol-gel process[30–32].But it needs further extensive template removal steps.In this regard,the synthesis of carbon spheres by self-assembly of block copolymers with RF polymer route has created tremendous opportunities in designing of micropores,mesopores,or both carbon spheres.Furthermore,carbon precursors can be also facilely modified due to the flexibility in solgel process[33–35].In order to further improve the electrochemical performance of carbon materials,the incorporation of heterozygotes during in the sol-gel of RF is an interesting method to increase the hydrophilic and electrical conductivity of the electrodes[36–38].In addition,controlling synthetic route is also beneficial to match pores size of carbon with the dimension of the electrolyte ionic species,and thus more electrochemical accessible sites can be provided to accelerate electron and ion transport[39–41].

    Although the extension of the st?ber recipe to the synthesis of uniform microporous carbon spheres with fine-tuned particle size have been reported,it was not promising candidate for EDLC because of the low specific surface area,low pore volume and poor electrical conductivity[42].Typically,to preserve the pore structure,the as-prepared wet gel needs solvent exchange and special drying method (such as supercritical or freeze drying) to minimize the surface tension and keep porous structure.The complex synthesis and expensive drying equipment preclude the largescale commercial application[43,44].Therefore,an attempt is necessary to find optimal parameters in synthetic process and improve the capacitance of electrode.

    Herein,porous carbon spheres with large specific surface area and abundant porosity were successfully fabricated by a simple synthetic strategy through polymerization of RF.The effects of several bases containing amino group such as ammonia,ethylene diamine (EDA),and 1,6-hexylene diamine (DAH) as catalyst on the morphology and pore structure of carbon spheres were studied in detail.Furthermore,the synthesis temperature was also investigated systematically.Then,three-electrode configuration measurements were performed to fully characterize the electrochemical behavior of the as-prepared carbon spheres.

    2 Experimental

    2.1 Chemicals and materials

    Resorcinol (>99%),formaldehyde (>37%),ammonium (25%),ethylenediamine (EDA,>98%),1,6-hexylenediamine (DAH,>99%),were purchased from aladdin,and deionized water was used after purification on a reverse osmosis system.

    2.2 Preparation of carbon microspheres

    Porous carbon spheres were synthesized based on a hydrothermal process followed by carbonization method.The detail on experimental procedure was described as follows,typically,2.2 g resorcinol and 3.4 g formaldehyde (37 wt%) were first dissolved in 400 mL deionized water to form a clear solution,then 0.32 g polyethylene glycol (PEG-2000) and ammonia aqueous solution (NH4OH,0.02 mL,25 wt%) were added as emulgator and catalyst,respectively.The solution was kept at 80 °C for 16 h under hydrothermal condition.The obtained brick red polymer was carbonized under 800 °C for 3 h in N2atmosphere,and then 400 °C for 2 h in furnace.The obtained black carbon material was named CN-80.When the catalyst was EDA or DAH,the corresponding samples were named CE-80 and CD-80,respectively.When the preparation temperature of hydrothermal process was 70 °C or 90 °C,the prepared samples were named CN-70 and CN-90,respectively.

    2.3 Structure characterizations

    The morphology and structure of the samples were tested by SEM of JSM-6700 microscope (JEOL,Japan) and TEM of FEI Tecnai G2 F20 microscope(FEI,America).The Raman spectra were recorded with a LabRAMHR Evolution (HORIBA JobinYvon)using a wavelength laser of 532 nm.N2adsorption-desorption isotherms were tested by Micromeritics ASAP2020 (Norcross,GA).X-ray diffraction (XRD)patterns were obtained between scattering angles (2θ)of 10°–80° at a scanning rate of 8° min?1(Ultima Ⅳ,Japan).X-ray photoelectron spectroscopy (XPS) determined surface structure of the samples on a VG ESCALAB 210 instrument,using AlKα as an X-ray excitation source.Thermogravimetric analysis (TG) was performed using STA2500 Regulus.

    2.4 Electrochemical measurements

    All the samples were tested at a CHI660E electrochemical workstation (Chenhua,Shanghai) in electrolyte of 6 mol L?1KOH solution based on a standard three-electrode system.The carbon microsphere,Hg/HgO and Pt foil serve as active material in working electrode,reference electrode and counter electrode,respectively.To evaluate the working electrode,the electrochemical capacitance performance of the samples was studied by cyclic voltammogram (CV)and galvanostatic charge-discharge (GCD) method.The CV curves were obtained between ?0.9 and 0 V(vs.Hg/HgO) by varying scan rate from 5 to 100 mV·s?1.The GCD curves were recorded in potential range of ?0.9 to 0 V with a constant current densities changed from 1 to 20 A g?1.Electrochemical impedence spectroscopy (EIS) measurements were conducted over frequencies range from 100 kHz to 0.01 Hz.The practical capacitance (C,F g?1) could be calculated from GCD curves by using the equation:C=iΔt/mΔV,wherei(A) is the discharge current,Δt(s) is the discharge time,m(g) is the mass of active materials on the working electrode,and ΔV(V) is the potential window.

    3 Results and discussion

    3.1 Characterization of materials

    Fig.1 shows the SEM images of carbon microspheres with the diameters of about 0.3–1 μm,which are synthesized by using ammonia,EDA and DAH as catalysts,respectively.The high-magnification SEM image demonstrates that carbon microspheres have smooth surface and homogeneous size (mean diameters of~800 nm) when using ammonia as catalyst(Fig.1a and 1d).However,in the presence of EDA,the produced samples had uneven size and irregular spherical morphology (Fig.1b and 1e).When DAH is used,the obtained carbon spheres are about~300 nm in diameter,with severe spherical agglomeration and partial deviation from spheres (Fig.1c and 1f).Further studies indicate bulk materials can be obtained using other inorganic alkali source,for instance,Na2CO3(Supporting information,Fig.S1).Here,amino groups play a key role in the formation of carbon spheres.NH4+can not only accelerate the polymerization of RF,but also supply the positive charges that adhere to the outer surface of spheres to prevent the aggregation[42].According to the result that NH4+of organic amine also plays the same role,which accelerates the polymerization of RF,and the smaller sized carbon spheres are obtained.This result indicates that with the increasing of alkyl chain in N atoms,the catalytic ability of organic base enhances,and the size of carbon spheres is reduced.However,the proximity of the two amino groups in EDA makes strong alkalinity in local solution,resulting in the formation of the inhomogeneity of carbon spheres.

    Fig.1 SEM images of (a,d) CN-80,(b,e) CE-80 and (c,f) CD-80 at different magnifications.

    Furthermore,the hydrothermal temperature is also investigated,and the SEM images of samples are shown in Fig.2.Interestingly,the size and uniformity of the carbon sphere can be adjusted by temperature programming process.Indeed,by controlling the reaction temperature in the order of 70,80,90 °C,the sizes of the resultant spheres,denoted CN-70,CN-80 and CN-90,respectively,can be adjusted to 0.95±0.20,0.84±0.10 and 0.81±0.05 μm,and the size of carbon sphere tends to become uniform.The sizes of the carbon spheres decrease with the reaction temperature growing,which can be explained by that a lower reaction temperature will slow the reaction rate,presumably initiating fewer nuclei in the reaction solution.As a result,larger polymer nanospheres with uneven size are formed during the reaction.Besides,the higher temperature increases the chance of collision between particles,leading to the tendency of agglomeration.

    Fig.2 SEM images of the (a) CN-70, (b) CN-80 and (c) CN-90.

    Fig.3 shows the N2adsorption-desorption isotherms and pore-size distribution of the samples.A high N2uptake atp/p0< 0.05 reflectes the abundance of micropores in the carbon spheres as shown in Fig.3a.The continually increasing adsorption amount at higherp/p0(0.05-0.5) indicates there are some mesopores in the carbon materials.Remarkably,the adsorption capacity of samples CN-70 and CN-80 increases more significantly than that of other samples at the range of 0.05-0.5.The similar information can also be seen in Fig.3b that CN-70 and CN-80 show mesoporous pore size distribution of~4 nm.For CN-80,the TEM image and micropore size distribution curve are further tested (Fig.S2 and S3).The results reveal that CN-80 is microporous carbon sphere with hierarchical pore structure which is in agreement with the result of nitrogen adsorption measurement.The micropore size of 1-2 nm in sample CN-80 is favorable for the formation of electric double layer.The textural properties of the samples are summarized in Table S1.According to these data,theSBETandVmesoof CN-80 (1 835 m2g?1and 0.48 cm3g?1) are significantly larger than those of CE-80 (1 157 m2g?1and 0.06 cm3g?1) and CD-80 (1 117.4 m2g?1and 0.10 cm3g?1),indicating that catalyst plays an important role in the pore generation during the synthetic process.CN-90 (1 101.82 m2g?1) exhibites much lower specific surface areas than CN-70 (1 851.09 m2g?1and 0.28 cm3g?1) and CN-80 (1 835.22 m2g?1and 0.48 cm3g?1),probably due to the aggregation of carbon spheres with the increase of reaction temperature.Combined with SEM characterization,it can be concluded that adhesion and aggregation of carbon spheres are main reason for the decrease of specific surface area and pore volume of the samples.The highSBETandVmesoof CN-80 are mainly arising from the mesopores about~4 nm in sizes (Table S1),which can act an electrolyte reservoir to facilitate ion transport and the charge storage performance.

    Fig.3 (a) Nitrogen adsorption-desorption isotherms of the samples, (b) their pore size distribution curves and (c) the inset is the enlarged image of pore size distribution curves.

    The TG-DTG curves are carried out to check the thermal behavior of polymer RF spheres.The carbon yields are dependent on the kind of catalyst in the formation of carbon spheres as shown in Fig.4a.The TG curves of CN-80 and CD-80 exhibited~44% and~35% of the residual carbon at 800 °C,respectively,indicating CN-80 was excellent precursor for the production of carbonaceous material.However,CE-80 displayed a carbon conversion of 31% at 800 °C and it had poor stability because of there was no stable value until 1 000 °C.The DTG curves of the three materials had two sharp weight losses at~370 °C and~580 °C(Fig.S4).The first stage of weight losses could be attributed to the violent gasification of the organic volatiles (PEG and catalyst),and the second stage of weight loss might due to the decomposition of RF resin network,which forms a carbon materials of porous nature with good electrochemical properties.

    The XRD pattern is used to analyze the crystallite structure of carbon sphere samples.These three samples all have a broad diffraction peak of carbon(002) at 23°,and a relatively weak at 43° corresponding to (100) plane of graphitic structure (Fig.4b).The preparation temperature has little effect on the crystalline shape of carbon materials (Fig.S5).Raman spectroscopy is also a powerful technique to characterize the structures of carbon sphere.In the Raman spectra,Dpeak (disorder or defect carbonaceous structure) at~1 339 cm?1andGpeak(ordered graphite in-plane vibrations) at~1 592 cm?1(Fig.4c and Fig.S6) are observed for the five samples.ID/IGvalue is related to the structural disorder of carbon materials.The larger theID/IGvalue is,the more defects exist in the carbon materials.TheID/IGvalues of CN-80,CE-80,and CD-80 are 1.13,1.07 and 1.12,respectively.The highestID/IGratio of CN-80 implies the presence of abundant disorders and defects,most likely due to the attachment of more oxygen dopants on the carbon sphere.In addition,with increasing temperature from 70 to 90 °C,theID/IGvalue increases from 1.07 to 1.13 and then reduces to 1.08.The distinction between different temperatures is mainly due to the increasing formation of defects with temperature increasing.The uniform size of the carbon sphere at high temperature might be the reason for the reduction of its defects.The integral areas values ofDandGpeaks are summarized in Table S2 in the Supporting Information.In summary,the above Raman results suggests that the disorders and defects of CN-80 are beneficial to improve electrochemical performance of electrode.

    Fig.4 (a) TG curves,(b) XRD patterns and (c) Raman patterns of the CN-80,CE-80 and CD-80.

    The surface chemical compositions of the CN-70,CE-80 and CD-80 (Fig.5) are determined by XPS,and Fig.5(a) shows the wide scan XPS spectrum.Two peaks,C 1s and O 1s,can be clearly observed from all of the three samples.As the nitrogen content is extremely low,it can not be detected on the surface.The relative ratios of O and C (atomic ratio) are estimated to be approximately 15.3%,11.7% and 14.4% in CN-80,CE-80 and CD-80,respectively.It can be explained by the effect of catalyst in the preparation process.High-resolution O 1 s spectra of the 3 samples have 3 peaks centered at 532.6±0.1,533.5±0.3,and 534.5±0.3 eV,which should be ascribed to C=O,C―OH and C―O―C,respectively[41].The result indicates that high oxygen content in CN-80 is beneficial for increasing electrochemical performance of EDLCs.

    3.2 Electrochemical characterization

    The electrochemical behavior is studied systematically by cyclic voltammograms (CVs) in a potential range of ?0.9 ? 0 V in a three-electrode system with 6 mol L?1KOH electrolyte.Fig.6a compares the CV curves of CN-80,CE-80 and CD-80 at a scan rate of 100 mV s?1.All CV curves exhibit a rectangular shape,implying that carbon aerogels have good EDLCs performances.Galvanostatic charge/discharge (GCD) curves are also used to evaluate the electrochemical performance of the samples as shown in Fig.6b.CN-80,CE-80 and CD-80 have the specific capacitances of 233.8,156.7 and 157.9 F g?1at a current density of 1.0 A g?1,respectively.Obviously,CN-80 displays superior performance,which is ascribed to the higher specific surface area,abundant pore structure and better infiltrating ability,making this electrode material ideal for high-capacity electrochemical energy storage devices.The CV and GCD curves of CN-70,CN-80 and CN-90 electrode at a scan rate of 100 mV s?1are shown in Fig.S7.It can be found that specific capacitance increases first with enhancing the prepared temperature,but then decreases when the temperature rises to 90 °C.The uniformity and size of materials are the crucial factors influencing the electrochemical properties.However,the agglomeration of materials might be the main reason for the deterioration of electrochemical properties of materials.

    Fig.6 (a) Comparison of CV curves of CN-80,CE-80 and CD-80 at 100 mV s?1;(b) Comparison of GCD curves of CN-80,CE-80 and CD-80 at 1 A g?1;(c) CN-80 at different scan rates;(d) CN-80 at different current densities;(e) Specific capacitances of CN-80,CE-80 and CD-80 at various current densities;(f) Cycling performance of CN-80 at a current density of 7 A g?1.

    Moreover,the effect of scan rate on specific capacitance of CN-80 electrode is further studied at various scan rates of 5 to 100 mV s?1.As shown in Fig.6c,CN-80 electrode exhibits the rectangular-like shape even at higher scan rate,indicating the high speed electrochemical process. The symmetric triangle shapes of GCD also demonstrates the good performance of double layer capacitance (Fig.6d).The rate of capability of all 3 electrodes is presented in Fig.6e.When the current density increases from 0.5 to 10 A g?1for CN-80,CE-80 and CD-80 electrodes,the rate capabilities are 77.6%,73.3% and 73.4%,respectively.The CN-80 electrode performs better in rate capability in comparison to the other electrodes.This could be interpreted that the electrolyte ions could sufficiently transfer into the electrochemically active interface at high current density,originating from the developed porous structure and better hydrophilicity of the CN-80 electrode material.For the practical applications of the supercapacitors,the cycling stability is a crucial factor (Fig.6f).The CN-80 sample exhibits a specific capacitance up to 233.8 F g?1after 10 000 charge/discharge process,with 98% of the specific capacitance remained,highlighting good durability for practical application.

    The electrochemical impedance spectroscopy(EIS) provides a further insight about the resistance of the different carbon electrodes in the frequency range of 100-0.1 Hz.As shown in Fig.7,all 3 samples display a straight line in the low-frequency region;Obviously,the slope of CN-80 electrode is bigger than that of the other simples,suggesting a low diffusion resistance and good electrochemical performance for CN-80 electrodes.The diameter of the semicircle is related to the charge transfer resistance (Rct).The smaller diameter is,the lower theRctis.TheRctvalues of CN-80,CE-80 and CD-80 are 0.014,0.054 and 0.062 Ω,respectively.CN-80 has much smaller value than other samples,implying that electrode porous structure is beneficial for the transition of charge.

    Fig.7 EIS of CN-80,CE-80 and CD-80.

    4 Conclusions

    In summary,the porous carbon spheres with tuned size and spherical morphology were successfully synthesized by the hydrothermal polymerization of resorcinol and formaldehyde.The particle size of carbon sphere could be tuned from 300 to 1 000 nm by varying the types of catalyst and temperature.The number of ammonium groups,length of the alkyl chain and temperature are the main factors to fine control the size and uniform of carbon spheres.Our results exhibit that the higher the specific surface area is,the largerSmes/Smicvalue is,richer pores and more defects in CN-80 could improve the charge storage performance and ion diffusion rate,which are beneficial to electrochemical energy storage as electrode materials for supercapacitors.Remarkably,CN-80 performs a high specific capacitance of 233.8 F g?1at current density of 1.0 A g?1in 6 mol L?1KOH,presents excellent rate capability of 77.6% at the current density increased from 0.5 to 10 A g?1and high cycling stability.These findings provide a facile synthetic strategy to prepare tailorable size and highly porous carbon micropheres for electrode materials in supercapacitors.

    Acknowledgements

    This work was supported by National Natural Science Foundation of China (21902080,41763007).

    国产一区二区激情短视频| 精品一区二区三卡| 亚洲九九香蕉| 国产国语露脸激情在线看| 国产1区2区3区精品| 精品人妻在线不人妻| 午夜久久久在线观看| 亚洲精品美女久久av网站| 男男h啪啪无遮挡| 天堂中文最新版在线下载| 欧美日韩瑟瑟在线播放| 俄罗斯特黄特色一大片| 757午夜福利合集在线观看| 亚洲精品中文字幕一二三四区| 美女福利国产在线| 欧美日韩精品网址| 国产熟女午夜一区二区三区| 亚洲专区中文字幕在线| 欧美一级毛片孕妇| 日韩欧美一区视频在线观看| 亚洲精品av麻豆狂野| 亚洲av电影在线进入| 老司机在亚洲福利影院| 亚洲人成伊人成综合网2020| 大型黄色视频在线免费观看| 黑人猛操日本美女一级片| 欧美黑人欧美精品刺激| 91在线观看av| 中文字幕人妻丝袜制服| 一级a爱视频在线免费观看| 国产成人精品在线电影| 欧美激情久久久久久爽电影 | 别揉我奶头~嗯~啊~动态视频| 亚洲视频免费观看视频| 日韩 欧美 亚洲 中文字幕| 成人av一区二区三区在线看| 老熟妇仑乱视频hdxx| 国产精品一区二区精品视频观看| 久久精品国产99精品国产亚洲性色 | 999精品在线视频| 丝袜人妻中文字幕| 两人在一起打扑克的视频| 人人妻,人人澡人人爽秒播| 一级片'在线观看视频| 国内毛片毛片毛片毛片毛片| 精品国产超薄肉色丝袜足j| 69精品国产乱码久久久| 免费少妇av软件| av天堂久久9| 精品免费久久久久久久清纯| 国产高清视频在线播放一区| 丰满人妻熟妇乱又伦精品不卡| 99国产精品免费福利视频| 又黄又粗又硬又大视频| 别揉我奶头~嗯~啊~动态视频| 日韩欧美一区二区三区在线观看| 看黄色毛片网站| 最近最新中文字幕大全免费视频| 色哟哟哟哟哟哟| 少妇的丰满在线观看| 女性生殖器流出的白浆| 日韩国内少妇激情av| 女人被狂操c到高潮| 国产精品一区二区三区四区久久 | 国产午夜精品久久久久久| 一级毛片精品| 欧美人与性动交α欧美精品济南到| 两个人免费观看高清视频| 亚洲va日本ⅴa欧美va伊人久久| 97超级碰碰碰精品色视频在线观看| 色综合站精品国产| 黑人巨大精品欧美一区二区蜜桃| 欧美久久黑人一区二区| 99riav亚洲国产免费| 日本 av在线| 美女国产高潮福利片在线看| 精品国产一区二区久久| 男女床上黄色一级片免费看| 免费在线观看影片大全网站| 久99久视频精品免费| 叶爱在线成人免费视频播放| 村上凉子中文字幕在线| 老司机亚洲免费影院| 美女扒开内裤让男人捅视频| 最近最新中文字幕大全免费视频| 涩涩av久久男人的天堂| 水蜜桃什么品种好| 亚洲欧洲精品一区二区精品久久久| 一级,二级,三级黄色视频| 丰满的人妻完整版| 国产视频一区二区在线看| 黑人欧美特级aaaaaa片| 69精品国产乱码久久久| 久久香蕉国产精品| 狠狠狠狠99中文字幕| 久久精品亚洲熟妇少妇任你| 神马国产精品三级电影在线观看 | 成人国语在线视频| 亚洲激情在线av| svipshipincom国产片| 国产精品日韩av在线免费观看 | 色老头精品视频在线观看| 久久久久久大精品| 久久久久久久久中文| 91av网站免费观看| 伊人久久大香线蕉亚洲五| 亚洲人成电影观看| 97人妻天天添夜夜摸| 午夜精品久久久久久毛片777| 新久久久久国产一级毛片| 欧美久久黑人一区二区| 国产精品爽爽va在线观看网站 | 在线看a的网站| 国产深夜福利视频在线观看| 亚洲av片天天在线观看| cao死你这个sao货| 亚洲精品在线观看二区| 亚洲一卡2卡3卡4卡5卡精品中文| 久久精品aⅴ一区二区三区四区| 麻豆一二三区av精品| 成熟少妇高潮喷水视频| 黄片大片在线免费观看| 精品国产一区二区三区四区第35| 中文字幕精品免费在线观看视频| www.熟女人妻精品国产| 久久精品亚洲av国产电影网| 久久人妻福利社区极品人妻图片| 亚洲精品粉嫩美女一区| 亚洲av电影在线进入| 深夜精品福利| 日韩欧美一区视频在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲伊人色综图| 热re99久久精品国产66热6| 757午夜福利合集在线观看| 国产精品一区二区免费欧美| 国产97色在线日韩免费| 欧美在线一区亚洲| 亚洲av日韩精品久久久久久密| 欧美一区二区精品小视频在线| 美女国产高潮福利片在线看| 婷婷丁香在线五月| 91国产中文字幕| 91av网站免费观看| 欧美黑人精品巨大| 亚洲国产欧美日韩在线播放| 老司机深夜福利视频在线观看| 夫妻午夜视频| 1024视频免费在线观看| 欧美黄色片欧美黄色片| 女同久久另类99精品国产91| 精品国产乱子伦一区二区三区| 亚洲免费av在线视频| 天堂中文最新版在线下载| 两个人免费观看高清视频| 国产无遮挡羞羞视频在线观看| 黄色毛片三级朝国网站| 午夜久久久在线观看| 国产亚洲欧美98| 久久午夜亚洲精品久久| 国产又色又爽无遮挡免费看| 天堂俺去俺来也www色官网| 黑人操中国人逼视频| 电影成人av| 欧美不卡视频在线免费观看 | 黄片大片在线免费观看| 在线天堂中文资源库| 天天影视国产精品| 国产男靠女视频免费网站| 亚洲专区国产一区二区| 国产亚洲精品一区二区www| av天堂久久9| 99久久精品国产亚洲精品| 亚洲精华国产精华精| 嫩草影院精品99| 免费一级毛片在线播放高清视频 | 精品久久久久久成人av| 午夜成年电影在线免费观看| 中文字幕人妻丝袜一区二区| 国产视频一区二区在线看| 亚洲片人在线观看| 黑人巨大精品欧美一区二区mp4| 国产亚洲精品综合一区在线观看 | 国产av一区二区精品久久| ponron亚洲| 亚洲av五月六月丁香网| 99精品在免费线老司机午夜| 国产激情久久老熟女| 两性夫妻黄色片| 国产成人精品在线电影| 色在线成人网| 老熟妇仑乱视频hdxx| 韩国av一区二区三区四区| 国产高清videossex| 亚洲成a人片在线一区二区| 久久久久久久久久久久大奶| 88av欧美| 亚洲精品久久成人aⅴ小说| 久久久久久人人人人人| 成人永久免费在线观看视频| 国产日韩一区二区三区精品不卡| 精品无人区乱码1区二区| 大型av网站在线播放| 免费在线观看完整版高清| 手机成人av网站| av国产精品久久久久影院| 操美女的视频在线观看| 最近最新免费中文字幕在线| 成人免费观看视频高清| 在线观看一区二区三区| 亚洲少妇的诱惑av| 欧美国产精品va在线观看不卡| 欧美黄色淫秽网站| 精品一区二区三区四区五区乱码| 日本免费a在线| 亚洲第一青青草原| 美女午夜性视频免费| 国产深夜福利视频在线观看| 91字幕亚洲| 51午夜福利影视在线观看| 黄色视频,在线免费观看| 91精品三级在线观看| 国产精品二区激情视频| 欧美黑人欧美精品刺激| 淫秽高清视频在线观看| 国产一区二区激情短视频| 天堂中文最新版在线下载| 精品国产乱码久久久久久男人| 午夜亚洲福利在线播放| 亚洲黑人精品在线| 一区二区三区精品91| 久久久久国内视频| 中文欧美无线码| 后天国语完整版免费观看| 色婷婷av一区二区三区视频| 亚洲精品国产色婷婷电影| 久久青草综合色| 看片在线看免费视频| 免费在线观看视频国产中文字幕亚洲| 欧美日韩国产mv在线观看视频| 水蜜桃什么品种好| 国产精品综合久久久久久久免费 | 国产成人精品久久二区二区91| 亚洲五月天丁香| 亚洲色图 男人天堂 中文字幕| 亚洲人成电影免费在线| 一进一出抽搐动态| av网站在线播放免费| xxx96com| 窝窝影院91人妻| 两性午夜刺激爽爽歪歪视频在线观看 | 不卡一级毛片| 欧美日韩av久久| 一边摸一边抽搐一进一出视频| 手机成人av网站| 欧美日韩亚洲高清精品| 午夜影院日韩av| 国产主播在线观看一区二区| 另类亚洲欧美激情| 亚洲人成77777在线视频| 男女之事视频高清在线观看| 岛国在线观看网站| 村上凉子中文字幕在线| 亚洲七黄色美女视频| 色尼玛亚洲综合影院| 日韩精品中文字幕看吧| 精品国产一区二区三区四区第35| 视频区图区小说| 在线观看免费视频日本深夜| 人成视频在线观看免费观看| 国产免费男女视频| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲成人精品中文字幕电影 | 99久久国产精品久久久| 亚洲欧洲精品一区二区精品久久久| 国产精品亚洲一级av第二区| 欧美午夜高清在线| 两性夫妻黄色片| 窝窝影院91人妻| 97碰自拍视频| 久久精品国产亚洲av高清一级| 校园春色视频在线观看| 国产乱人伦免费视频| 国产精品免费一区二区三区在线| 国产黄色免费在线视频| 搡老乐熟女国产| 少妇 在线观看| 亚洲久久久国产精品| 国产成人一区二区三区免费视频网站| 一本综合久久免费| 久久国产精品男人的天堂亚洲| 麻豆av在线久日| 日韩大尺度精品在线看网址 | 国产成人系列免费观看| 18美女黄网站色大片免费观看| 中文字幕av电影在线播放| 在线观看一区二区三区激情| 欧美成狂野欧美在线观看| 色播在线永久视频| 99re在线观看精品视频| www.www免费av| 成人亚洲精品av一区二区 | 久久影院123| 亚洲一区二区三区色噜噜 | 日日干狠狠操夜夜爽| www.精华液| 一级a爱视频在线免费观看| 成人亚洲精品一区在线观看| 精品午夜福利视频在线观看一区| 亚洲熟女毛片儿| 免费高清视频大片| 欧美日韩福利视频一区二区| 国产亚洲欧美精品永久| 国产精品野战在线观看 | 久9热在线精品视频| 国产成人精品久久二区二区免费| 午夜影院日韩av| 久久精品91无色码中文字幕| 色尼玛亚洲综合影院| 在线观看www视频免费| 91麻豆精品激情在线观看国产 | 又黄又爽又免费观看的视频| 黄片小视频在线播放| 欧美乱妇无乱码| 久久 成人 亚洲| 国产亚洲精品第一综合不卡| 国产亚洲精品久久久久5区| 亚洲欧美精品综合久久99| 黑人巨大精品欧美一区二区mp4| 国产精品二区激情视频| 欧美日韩一级在线毛片| 咕卡用的链子| 国产高清激情床上av| 男人的好看免费观看在线视频 | 女同久久另类99精品国产91| 一二三四社区在线视频社区8| 免费在线观看亚洲国产| 久久久久国产精品人妻aⅴ院| 久久天堂一区二区三区四区| 三级毛片av免费| 精品福利观看| 国产一区二区在线av高清观看| 99久久综合精品五月天人人| 亚洲人成网站在线播放欧美日韩| 久久久水蜜桃国产精品网| 成人三级做爰电影| 女同久久另类99精品国产91| 久久久久久大精品| 极品人妻少妇av视频| 两性午夜刺激爽爽歪歪视频在线观看 | 久热爱精品视频在线9| 黄色视频不卡| 精品久久蜜臀av无| 久久香蕉精品热| 国产亚洲欧美在线一区二区| 可以免费在线观看a视频的电影网站| 精品少妇一区二区三区视频日本电影| 国产精品九九99| 自拍欧美九色日韩亚洲蝌蚪91| 色哟哟哟哟哟哟| 亚洲九九香蕉| 天堂影院成人在线观看| 欧美亚洲日本最大视频资源| av在线天堂中文字幕 | 手机成人av网站| 久久久国产精品麻豆| 国产亚洲欧美精品永久| 每晚都被弄得嗷嗷叫到高潮| 69av精品久久久久久| 久久国产亚洲av麻豆专区| 欧美黑人欧美精品刺激| 久久青草综合色| 国产精品一区二区三区四区久久 | 18禁裸乳无遮挡免费网站照片 | 丰满人妻熟妇乱又伦精品不卡| 日韩精品免费视频一区二区三区| 黑人猛操日本美女一级片| 久久亚洲精品不卡| 国产高清国产精品国产三级| 亚洲男人天堂网一区| 欧洲精品卡2卡3卡4卡5卡区| 欧美午夜高清在线| 久久人人爽av亚洲精品天堂| 国产精品二区激情视频| 黄色a级毛片大全视频| 欧美老熟妇乱子伦牲交| www国产在线视频色| 12—13女人毛片做爰片一| av网站免费在线观看视频| 男男h啪啪无遮挡| 80岁老熟妇乱子伦牲交| 精品一区二区三区视频在线观看免费 | 极品教师在线免费播放| 久久人妻av系列| 国产真人三级小视频在线观看| 久久香蕉激情| 亚洲一区中文字幕在线| 国产三级黄色录像| 多毛熟女@视频| 久久久久久人人人人人| 免费搜索国产男女视频| 色播在线永久视频| 欧美激情 高清一区二区三区| 国产成人欧美在线观看| 999精品在线视频| av网站免费在线观看视频| 国产精品野战在线观看 | 丰满人妻熟妇乱又伦精品不卡| 欧美黑人精品巨大| 精品第一国产精品| 亚洲精品美女久久av网站| 亚洲精品久久午夜乱码| 午夜福利免费观看在线| 亚洲专区字幕在线| 亚洲av熟女| 国产乱人伦免费视频| 亚洲一区二区三区欧美精品| 国产亚洲av高清不卡| 久久久久九九精品影院| 成人av一区二区三区在线看| 极品人妻少妇av视频| 村上凉子中文字幕在线| 精品久久久久久成人av| 国产精品久久久人人做人人爽| 丰满人妻熟妇乱又伦精品不卡| 久久天堂一区二区三区四区| 一级毛片女人18水好多| 五月开心婷婷网| 亚洲欧美一区二区三区久久| 黄频高清免费视频| 在线十欧美十亚洲十日本专区| 久久99一区二区三区| 水蜜桃什么品种好| 国产伦人伦偷精品视频| 国产精品98久久久久久宅男小说| 久久性视频一级片| 欧美+亚洲+日韩+国产| 夜夜夜夜夜久久久久| 亚洲第一av免费看| 正在播放国产对白刺激| 在线天堂中文资源库| 色综合婷婷激情| 国产一区二区三区在线臀色熟女 | 丝袜人妻中文字幕| 成人av一区二区三区在线看| e午夜精品久久久久久久| 亚洲第一av免费看| 天堂影院成人在线观看| 国产午夜精品久久久久久| 亚洲午夜理论影院| cao死你这个sao货| 亚洲精品在线美女| x7x7x7水蜜桃| 国产真人三级小视频在线观看| 丰满人妻熟妇乱又伦精品不卡| 亚洲av美国av| 久久久久久久久中文| 俄罗斯特黄特色一大片| 777久久人妻少妇嫩草av网站| 桃红色精品国产亚洲av| 成人国产一区最新在线观看| 大码成人一级视频| 另类亚洲欧美激情| 一级毛片精品| 精品免费久久久久久久清纯| 亚洲精品成人av观看孕妇| 制服诱惑二区| 乱人伦中国视频| 亚洲第一欧美日韩一区二区三区| 亚洲激情在线av| 黄色怎么调成土黄色| 亚洲av电影在线进入| 久久精品亚洲熟妇少妇任你| 久久久久国内视频| 亚洲全国av大片| 久久精品国产99精品国产亚洲性色 | 国产精品一区二区精品视频观看| 久久99一区二区三区| 老司机深夜福利视频在线观看| 国产一区二区三区在线臀色熟女 | 两个人免费观看高清视频| www国产在线视频色| 国产av在哪里看| 久久这里只有精品19| 午夜精品国产一区二区电影| 国产精品成人在线| 国产精品1区2区在线观看.| 国产成人精品无人区| 又黄又粗又硬又大视频| 亚洲性夜色夜夜综合| 亚洲中文日韩欧美视频| 99在线人妻在线中文字幕| 我的亚洲天堂| 亚洲成人国产一区在线观看| 午夜成年电影在线免费观看| 日本欧美视频一区| 性欧美人与动物交配| 婷婷精品国产亚洲av在线| 三级毛片av免费| 好男人电影高清在线观看| 久9热在线精品视频| 老汉色∧v一级毛片| 国产av又大| 亚洲精品在线美女| 久久九九热精品免费| 亚洲精品中文字幕在线视频| 在线看a的网站| 欧美激情久久久久久爽电影 | 免费女性裸体啪啪无遮挡网站| 看黄色毛片网站| 女生性感内裤真人,穿戴方法视频| 人妻丰满熟妇av一区二区三区| 人人妻人人爽人人添夜夜欢视频| 最近最新中文字幕大全电影3 | 最新在线观看一区二区三区| www.自偷自拍.com| 亚洲人成电影免费在线| 国产欧美日韩一区二区三区在线| 久久香蕉激情| 纯流量卡能插随身wifi吗| 99在线视频只有这里精品首页| 亚洲精品中文字幕在线视频| 国产欧美日韩一区二区精品| 每晚都被弄得嗷嗷叫到高潮| 中文字幕人妻熟女乱码| 亚洲全国av大片| 国产麻豆69| 新久久久久国产一级毛片| 欧美一级毛片孕妇| 午夜福利欧美成人| 国产成人啪精品午夜网站| 国产av一区二区精品久久| 亚洲欧洲精品一区二区精品久久久| 色综合站精品国产| 777久久人妻少妇嫩草av网站| 中文字幕人妻熟女乱码| 一级a爱片免费观看的视频| 人人澡人人妻人| 成在线人永久免费视频| 国产精品免费视频内射| 国产成人一区二区三区免费视频网站| 一区二区日韩欧美中文字幕| 美女福利国产在线| 亚洲国产欧美一区二区综合| 成人国产一区最新在线观看| 色尼玛亚洲综合影院| 亚洲av日韩精品久久久久久密| 9热在线视频观看99| 久久久国产成人免费| 美女午夜性视频免费| 国产99久久九九免费精品| 亚洲av第一区精品v没综合| 亚洲精品在线美女| 亚洲第一欧美日韩一区二区三区| 亚洲精品美女久久久久99蜜臀| 欧美 亚洲 国产 日韩一| 久久午夜亚洲精品久久| 日本欧美视频一区| 亚洲色图综合在线观看| 国产精品久久久久久人妻精品电影| 12—13女人毛片做爰片一| 成人亚洲精品av一区二区 | 国产精品久久久久成人av| 超色免费av| 波多野结衣av一区二区av| 欧美久久黑人一区二区| 香蕉丝袜av| 中文亚洲av片在线观看爽| 亚洲人成伊人成综合网2020| 精品国产美女av久久久久小说| 91在线观看av| 亚洲五月婷婷丁香| 国产精品久久久av美女十八| 精品一区二区三区av网在线观看| 亚洲精品中文字幕一二三四区| 每晚都被弄得嗷嗷叫到高潮| 国产激情久久老熟女| 国产精品成人在线| 免费少妇av软件| 亚洲精品av麻豆狂野| 国产亚洲精品久久久久5区| av免费在线观看网站| 午夜免费激情av| 午夜精品国产一区二区电影| 国产97色在线日韩免费| 午夜a级毛片| 黑人欧美特级aaaaaa片| 深夜精品福利| 真人做人爱边吃奶动态| 久久人妻熟女aⅴ| 侵犯人妻中文字幕一二三四区| 香蕉国产在线看| 日韩免费av在线播放| 亚洲欧美激情综合另类| 日本欧美视频一区| 伦理电影免费视频| 91精品三级在线观看| 91精品国产国语对白视频| 国内毛片毛片毛片毛片毛片| 757午夜福利合集在线观看| 久久精品成人免费网站| 妹子高潮喷水视频| 国产精品秋霞免费鲁丝片| 免费少妇av软件| av天堂久久9| 日韩三级视频一区二区三区| 国产亚洲精品综合一区在线观看 | 国产成人一区二区三区免费视频网站| 无遮挡黄片免费观看| √禁漫天堂资源中文www| 黄片小视频在线播放| 热re99久久国产66热| 亚洲国产精品一区二区三区在线| 欧美日韩精品网址| 99在线视频只有这里精品首页|