• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Finite-Time Fuzzy Sliding Mode Control for Nonlinear Descriptor Systems

    2021-06-18 03:28:18ZhixiongZhongXingyiWangandHakKeungLam
    IEEE/CAA Journal of Automatica Sinica 2021年6期

    Zhixiong Zhong,, Xingyi Wang, and Hak-Keung Lam,

    Abstract—This article addresses the finite-time boundedness(FTB) problem for nonlinear descriptor systems. Firstly, the nonlinear descriptor system is represented by the Takagi-Sugeno(T-S) model, where fuzzy representation is assumed to be appearing not only in both the state and input matrices but also in the derivative matrix. By using a descriptor redundancy approach, the fuzzy representation in the derivative matrix is reformulated into a linear one. Then, we introduce a fuzzy sliding mode control (FSMC) law, which ensures the finite-time boundedness (FTB) of closed-loop fuzzy control systems over the reaching phase and sliding motion phase. Moreover, by further employing the descriptor redundancy representation, the sufficient condition for designing FSMC law, which ensures the FTB of the closed-loop control systems over the entire finite-time interval, is derived in terms of linear matrix inequalities (LMIs).Finally, a simulation study with control of a photovoltaic (PV)nonlinear system is given to show the effectiveness of the proposed method.

    I. INTRODUCTION

    THE fuzzy control algorithm consists of a set of fuzzy logic, fuzzy sets, and heuristic control rules [1]-[3], and it has been used for the effective handling of control of complex nonlinear systems including robotic teleoperations [4],surgical robotics [5], and multiple robots [6]. Among these fuzzy control methods, Takagi-Sugeno (T-S) fuzzy model uses linear equations to represent each local system corresponding to their local rules, and then employs fuzzy reasoning to blend local linearity for implementing total nonlinearity. Nowadays, the T-S model has been very popular in the control society because of its ability to provide good approximation. Therefore, over the past few decades, the problems of stability analysis and control synthesis have been investigated for the T-S fuzzy model more frequently [7]-[9].

    Sliding mode control (SMC) has been regarded as one of the most powerful nonlinear control methods, and has been widely used due to its quick response and strong robustness in practical applications. The essence of SMC is to drive state trajectories toward the switching manifold. Such motion is motivated by imposing disruptive control actions, commonly in the form of switching control strategies. An ideal sliding mode exists only when the system state satisfies the dynamic equation that governs the sliding mode for all time. This requires an infinite switching, in general, to ensure the sliding motion. The past decades have witnessed the successfully practical application of SMC in several areas (see [10]-[13]).In addition, descriptor systems are referred to as implicit/singular systems, which enable describing a larger class of systems than the normal model representation [14].More recently, stability results of fuzzy descriptor systems using the SMC method have been reported in [15]-[17].However, note that the aforementioned works only highlighted the asymptotic behavior of the fuzzy control system over an infinite working time interval, and all aforementioned works of the SMC consider system dynamics within a sufficiently long time interval. In fact, in many practical applications, a finite-time stability (FTS) may be required when facing the prescribed restraints on transient dynamics, such as, for example, dual-arm robots [18], [19],input-delay systems [20], Markovian jump cyber-physical systems [21], multi-input and multi-output (MIMO) nonlinear systems [22], [23], and nonlinear systems with positive powers of odd rational numbers [24]. Both FTS and practical stability (PS) have a similar definition for stability analysis,and they work on the boundary of state trajectories starting from a desired initial region. However, the main distinction between FTS and PS is that FTS works with a finite period while PS works for an infinite amount of time [25]. When taking into account norm bounded disturbances, the concept should be changed from FTS to finite time boundedness(FTB). FTB ensures FTS, but its converse is not true [26]. We are aware that the finite-time SMC of fuzzy descriptor systems is of the wide practical applicability. However, few works studied the FTB of the FSMC descriptor system in both the reaching phase and the sliding one. It reflects the following two important control problems. One is determining how to partition the specified finite timeSinto two subintervals [0,S*] and [S*,S], which ensures the FTB of the corresponding FSMC descriptor system over the reaching phase and sliding motion phase. The other is determining how to design the FSMC law via linear matrix inequalities (LMIs),which ensure the FTB of the closed-loop fuzzy descriptor system over the whole finite-time interval [ 0,S].

    Motivated by the aforementioned considerations, this paper proposes a novel fuzzy sliding mode control strategy for nonlinear descriptor systems using a FTB method. Firstly, the nonlinear descriptor system is represented by the T-S model,where fuzzy representation is assumed to be appearing not only in both the state and input matrices but also in the derivative matrix, and the derivative matrix is assumed to not always be nonsingular. By using a descriptor redundancy formulation, the fuzzy representation in the derivative matrix is reformulated into one that is linear. Then, we introduce the fuzzy sliding mode control (FSMC) law, which ensures the FTB of the closed-loop fuzzy control systems through the reaching phase and sliding motion phase. Moreover, by employing the descriptor redundancy reformulation, it is shown that a sufficient condition for designing FSMC law,which ensures the FTB of the closed-loop control systems through the entire finite-time interval, is derived in terms of LMIs. Finally, a simulation study for the control of the photovoltaic (PV) nonlinear system is provided to show the effectiveness of the proposed method. The main contributions of this paper are summarized as follows: 1) For a specified time interval [ 0,S], we partition it into two subintervals [0,S*]and [S*,S], where the proposed FSMC law ensures the FTB of the corresponding FSMC descriptor system over reaching phase and sliding motion phase. 2) Sufficient conditions for designing the proposed FSMC law, which ensures the FTB of the fuzzy descriptor system over the whole finite-time interval[0,S], are derived in terms of LMIs.

    II. PROBLEM FORMULATION AND PRELIMINARIES

    Descriptor systems are referred to as implicit/singular systems, which enables us to describe a larger class of systems with normal model representation [14]. This paper considers a class of nonlinear descriptor systems Currently, the most attention is given to nonlinear systems with “sector nonlinearities” [8]. Thus, the considered nonlinear system (1) can be described by the following form of the T-S model:

    Remark 1:SinceE(h) is nonsingular, we can perform its inverse operation in the descriptor fuzzy system (2). In this case, the descriptor fuzzy system can be transformed into one that is nominal (nondescriptor). As pointed out in [27], when considering the T-S descriptor representation, the number of fuzzy inference rules will decrease so that the number of LMIs to controller design is remarkably reduced.

    Here, without loss of generality, we only consider that the class of norm-bounded square integrable disturbance acts over the time interval [t1,t2], which is defined as below [28]:

    This paper aims at to design a FSMC law, which can drive the system trajectories of the considered fuzzy descriptor model into the sliding surface function within a finite time,where the FTB subject to (c1,c2,[0,S],R,W[0,S],δ). Furthermore, sufficient conditions for designing the proposed FSMC law is derived in the form of LMIs.

    III. DESIGN OF FSMC LAW BASED ON FTB

    In this section, for the specified finite time and the initial state, we will perform the FTB of the FSMC descriptor system in both the reaching and sliding phases, and it will be shown that sufficient conditions for designing the proposed FSMC law is given in the form of LMIs.

    A. Model Transformation

    Firstly, motivated by [27] we can rewrite the T-S fuzzy descriptor model in (2) as below:

    Remark 2:Note that, by using a descriptor redundancy approach, the fuzzy representation in the derivative matrix (2)is reformulated into the linear approach as shown in (5). In that case, it is easy to choose the Lyapunov matrix as below:

    B. Design of FSMC Law

    Firstly, based on the fuzzy descriptor system (5), an integral-type sliding surface function is constructed as below[15]:

    with

    Fig. 1. Fuzzy sliding mode control of T-S fuzzy descriptor system.

    C. Reaching Phase of FTB Within[0,S*]

    Proof:Consider the Lyapunov function in the descriptorsystem domain,

    D. Sliding Motion Phase of FTB Within[S*,S]

    During the finite-time interval [S*,S] of the sliding phase,we will derive the sufficient conditions to ensure the FTB of the FSMC descriptor system. When the system trajectories arrive at the sliding surface, it has thats˙(t)=0. Thus, the equivalent controllerueq(t) is obtained as below:

    Motivated by [35], [36], by augmenting the system (5) and the equivalent controller (37), it yields

    Remark 4:Here, by further employing the descriptor redundancy representation we can avoid the inverse operation in the equivalent controller (37).

    In the following, we will derive a sufficient condition to ensure the FTB of the FSMC descriptor system (38) within the finite-time interval [S*,S].

    In addition, it can be seen from (44) that

    E. Design of Controller Gain

    Furthermore, the controller gain can be obtained as below:

    F. Design Procedure for the FTB Algorithm

    The detailed calculation steps of the proposed FTB algorithm for the FSMC descriptor system are summarized as follows:

    1) Use the T-S fuzzy model method to describe the nonlinear descriptor system as shown in (1), and rewrite the T-S fuzzy descriptor model as shown in (5).

    2) Choose a suitable matrix, so that(μ) is nonsingular,and solve Theorem 4 to obtain the controller gainKl. Given the initial statex(0), and the finite-timeS, and construct a FSMC lawu(t) as shown in (8) and (9);

    IV. SIMULATION STUDY

    The PV systems are built to transform sun irradiance into electrical power. However, building such systems come at a relatively high cost. All work done in the published literature focuses on increasing the efficiency of such systems and decreasing their cost. In order to show the effectiveness of the proposed control method, we consider a maximum power point tracking (MPPT) problem for a solar PV power system using a DC/DC boost converter as shown in Fig. 2, which consists of a solar PV array, an inductorL, a capacitorC0, and a load. Its dynamic model can be represented by the following differential equations [37]:

    Fig. 2. A solar PV power with DC/DC boost converter.

    In order to maximize the efficiency of PV power-generation systems, the electric characteristic of PV arrays is considered as follows [37]:

    The normalized membership functions are given in Fig. 3,and we rewrite the T-S fuzzy descriptor model of the nonlinear PV system as below:

    Fig. 3. Normalized membership functions.

    With the above solution, the response of the sliding surface function is shown in Fig. 4. It is easy to see that the proposed FSMC can force PV system states around the sliding surface withinS=0.3 s, which is less than the pre-specified finite timeS= 1 s. The responses of PV system states by the proposed FSMC control strategy are shown in Fig. 5. It can be seen that the approximated MPPT of the PV nonlinear system can be achieved withinS=0.05 s. Moreover, we further compare with non-fuzzy sliding mode control, and the corresponding results are respectively given in Fig. 6. It is easy to see that the proposed fuzzy sliding mode control achieves better control performance in comparison with nonfuzzy sliding mode control. Note that the state trajectories of open-loop PV system are unbounded. However, the proposed FSMC control strategy ensures the state trajectories boundness, and the comparison ofxT(t)Rx(t) between the open-loop system and the closed-loop one is given in Fig. 7.Responses of the derivative of the statex(t) and control inputu(t)are respectively given in Figs 8 and 9.

    Fig. 4. Response of the sliding surface function.

    Fig. 5. State responses for the fuzzy SMC system.

    Fig. 6. State responses for the linear SMC system.

    xT(t)Rx(t)Fig. 7. Comparison of between open- and closed-loop control.

    Fig. 8. Response of the derivative of the state x(t).

    Fig. 9. Response of the control input u (t).

    Remark 7:It is worth to point out that the proposed FSMC in (67) carries the advantages of both the fuzzy method and the sliding mode technique at the same time. The fuzzy method can be regarded as a powerful and flexible approximator, and the main feature of sliding mode approach is its fast response and robustness against uncertainties or disturbances. Figs. 5 and 6 have shown that the proposed FSMC achieves fast response against disturbances in comparison with non-fuzzy sliding mode control.

    Remark 8:It is noted that all computations in the sequel were done in MATLAB R2018b running under Windows 10 PC. The computer used was equipped with Intel Xeon E-2276M 2.8 GHz CPU and 16 GB RAM. First, the desired SMC controller gains are solved off-line. The computational time using the FSMC design proposed in Theorem 4 is 218.5 s while the times using the linear SMC result are within 2.8 s.Then, after the off-line controller gains are obtained, for the considered fuzzy system, the SMC is implemented on-line.The computational time of the FSMC is 3.52×10-4s in each iteration while the computational time of the linear SMC is 3.05×10-4s. Moreover, the number of total decision variables using the FSMC design in Theorem 4 is 205 but the number of total decision variables on the linear SMC result is 116. Therefore, it is a trade-off between design complexity and desired control performance when considering with the applications of the FSMS and linear SMC.

    Remark 9:Note that the choices of fuzzy premise variables and fuzzy rules have a great impact on control performance and computational complexities. Since the authors have tried different rules for this example, the selected premise variables are 5 and the selected fuzzy rules are 32, which have taken into account both the control performance and computational complexities. Thus, it will avoid the overfitting problem.

    V. CONCLUSIONS

    This paper proposes a novel fuzzy sliding mode control strategy to T-S fuzzy descriptor systems using a FTB method.By using a descriptor redundancy approach, the fuzzy representation in the derivative matrix is reformulated into a linear one. We introduce a fuzzy sliding mode control(FSMC) law, and it is shown that the proposed FSMC law ensures the FTB of the closed-loop fuzzy control systems over the reaching phase and sliding motion phase. Sufficient conditions for designing the proposed FSMC law is derived in terms of LMIs. The simulation study shows that the MPPT control of the PV nonlinear system can be achieved within a specified finite time..

    ACKNOWLEDGMENT

    The authors would like to thank Professor Chih-Min Lin’s help to this research and this paper’s writing and revision.

    中文字幕av成人在线电影| 久久精品国产亚洲av天美| 国产国拍精品亚洲av在线观看| 精品一区二区三区人妻视频| 久久久久久久久中文| 内地一区二区视频在线| 成人av在线播放网站| 一区二区三区四区激情视频 | 人人妻人人看人人澡| 老熟妇乱子伦视频在线观看| 亚洲一区二区三区色噜噜| 97人妻精品一区二区三区麻豆| 天堂√8在线中文| 免费大片18禁| 麻豆精品久久久久久蜜桃| 啦啦啦观看免费观看视频高清| 日本黄色片子视频| 日韩欧美在线乱码| 国产三级中文精品| 长腿黑丝高跟| 男插女下体视频免费在线播放| 少妇熟女欧美另类| 成人午夜精彩视频在线观看| 国内精品美女久久久久久| 欧美bdsm另类| 久久久久久久午夜电影| 成人性生交大片免费视频hd| 国产日韩欧美在线精品| 日韩人妻高清精品专区| 日韩三级伦理在线观看| 99久国产av精品国产电影| 级片在线观看| 变态另类成人亚洲欧美熟女| 边亲边吃奶的免费视频| 只有这里有精品99| 日韩欧美精品免费久久| 91久久精品国产一区二区三区| 日韩欧美精品v在线| 国内精品一区二区在线观看| 99久久九九国产精品国产免费| 欧美日韩国产亚洲二区| 亚洲在线观看片| 白带黄色成豆腐渣| av天堂在线播放| 国内揄拍国产精品人妻在线| 一级黄片播放器| 日本av手机在线免费观看| 超碰av人人做人人爽久久| 一本久久精品| 国产色爽女视频免费观看| 免费无遮挡裸体视频| 亚洲乱码一区二区免费版| 五月玫瑰六月丁香| 性色avwww在线观看| 中文字幕制服av| 中国美白少妇内射xxxbb| av.在线天堂| 日韩,欧美,国产一区二区三区 | 亚洲欧美精品综合久久99| 波多野结衣高清作品| 最好的美女福利视频网| 亚洲国产欧美人成| 亚洲国产色片| 青春草视频在线免费观看| 成人亚洲欧美一区二区av| av免费观看日本| 国产精品人妻久久久影院| 欧美最新免费一区二区三区| 最近手机中文字幕大全| 91久久精品国产一区二区成人| 嫩草影院精品99| 九色成人免费人妻av| 又粗又硬又长又爽又黄的视频 | 一区二区三区四区激情视频 | 国产亚洲精品久久久久久毛片| 国产伦在线观看视频一区| 日韩成人伦理影院| 夫妻性生交免费视频一级片| 亚洲国产高清在线一区二区三| 男的添女的下面高潮视频| 国产精品免费一区二区三区在线| 中国美女看黄片| 99久久人妻综合| 婷婷亚洲欧美| 国产成年人精品一区二区| 一本久久中文字幕| 成人欧美大片| 久久人人精品亚洲av| 国产av不卡久久| 成人无遮挡网站| 亚洲人成网站在线播| 久久久久国产网址| 亚洲av男天堂| 在线免费十八禁| 啦啦啦韩国在线观看视频| 亚洲电影在线观看av| 看非洲黑人一级黄片| 欧美性感艳星| 极品教师在线视频| 国产精品国产高清国产av| 欧美日韩精品成人综合77777| 免费大片18禁| 欧洲精品卡2卡3卡4卡5卡区| 在线a可以看的网站| 日韩欧美精品v在线| 亚洲国产欧美人成| 91精品国产九色| 日韩,欧美,国产一区二区三区 | 国产精品三级大全| 可以在线观看的亚洲视频| 国产精品电影一区二区三区| 日本免费一区二区三区高清不卡| 美女xxoo啪啪120秒动态图| 99热6这里只有精品| 午夜视频国产福利| 欧美又色又爽又黄视频| 校园人妻丝袜中文字幕| 国产精品伦人一区二区| 中文字幕久久专区| 欧美高清成人免费视频www| 国产高清视频在线观看网站| 日本撒尿小便嘘嘘汇集6| 国产精品久久久久久精品电影小说 | 麻豆国产97在线/欧美| 男女做爰动态图高潮gif福利片| 3wmmmm亚洲av在线观看| 国内揄拍国产精品人妻在线| 国产私拍福利视频在线观看| 国国产精品蜜臀av免费| 少妇人妻精品综合一区二区 | 美女国产视频在线观看| 日本免费a在线| 夜夜夜夜夜久久久久| 日韩欧美在线乱码| 男人舔女人下体高潮全视频| av女优亚洲男人天堂| 成人午夜精彩视频在线观看| 22中文网久久字幕| 少妇裸体淫交视频免费看高清| 久久99热6这里只有精品| 亚洲国产日韩欧美精品在线观看| .国产精品久久| 国产女主播在线喷水免费视频网站 | 久久人妻av系列| 色视频www国产| 日本撒尿小便嘘嘘汇集6| 久久精品久久久久久久性| 最近的中文字幕免费完整| 亚洲精品456在线播放app| 国产一级毛片在线| 乱码一卡2卡4卡精品| 国产69精品久久久久777片| 日韩亚洲欧美综合| 久久精品夜色国产| 中文字幕精品亚洲无线码一区| 秋霞在线观看毛片| 久久99热6这里只有精品| 中文字幕精品亚洲无线码一区| 别揉我奶头 嗯啊视频| 校园春色视频在线观看| 国产成人午夜福利电影在线观看| 亚洲三级黄色毛片| 欧美日本视频| 精品不卡国产一区二区三区| 久久久久久久久久黄片| 人妻少妇偷人精品九色| 亚洲欧美日韩东京热| 婷婷六月久久综合丁香| 99热6这里只有精品| 黄色一级大片看看| 哪里可以看免费的av片| 特大巨黑吊av在线直播| 亚洲人成网站在线播放欧美日韩| 麻豆国产97在线/欧美| 免费看av在线观看网站| 午夜视频国产福利| 亚洲欧美日韩无卡精品| 国产一区二区在线av高清观看| 国产亚洲精品久久久com| 一本久久中文字幕| 免费看a级黄色片| 美女国产视频在线观看| 青青草视频在线视频观看| 久久精品夜色国产| 中文字幕久久专区| 久久精品91蜜桃| 九九久久精品国产亚洲av麻豆| 亚洲欧洲国产日韩| 国产精品国产三级国产av玫瑰| 亚洲国产欧美在线一区| 偷拍熟女少妇极品色| 亚洲精品影视一区二区三区av| 一本久久精品| 非洲黑人性xxxx精品又粗又长| 亚洲第一电影网av| 99热这里只有是精品50| 欧美变态另类bdsm刘玥| 亚洲经典国产精华液单| 国产免费一级a男人的天堂| 国产午夜精品久久久久久一区二区三区| 在线观看一区二区三区| 99热网站在线观看| 一个人免费在线观看电影| 亚洲欧美日韩高清专用| 真实男女啪啪啪动态图| 国产成人freesex在线| 自拍偷自拍亚洲精品老妇| 久久久久性生活片| 如何舔出高潮| 啦啦啦观看免费观看视频高清| 欧美三级亚洲精品| 国产成人91sexporn| 嫩草影院入口| 亚洲精品456在线播放app| 国产亚洲精品av在线| 婷婷亚洲欧美| 亚洲精品日韩在线中文字幕 | 99久久精品国产国产毛片| 男人狂女人下面高潮的视频| 国产精品.久久久| 最新中文字幕久久久久| 国产成人a∨麻豆精品| 午夜福利成人在线免费观看| 一区二区三区高清视频在线| 一区二区三区四区激情视频 | 国产私拍福利视频在线观看| 熟女人妻精品中文字幕| 日本熟妇午夜| 国产国拍精品亚洲av在线观看| 99久国产av精品| 国产老妇女一区| 亚洲无线在线观看| 久久人妻av系列| 国产亚洲5aaaaa淫片| 欧美在线一区亚洲| a级一级毛片免费在线观看| 国产 一区精品| 美女cb高潮喷水在线观看| 精品久久久久久久人妻蜜臀av| 精品久久久久久久久亚洲| 91久久精品国产一区二区成人| 免费观看精品视频网站| 九九久久精品国产亚洲av麻豆| 国产美女午夜福利| 熟女电影av网| 国产黄a三级三级三级人| 三级毛片av免费| 国产高清不卡午夜福利| 午夜亚洲福利在线播放| 国产av麻豆久久久久久久| 美女大奶头视频| 一本久久中文字幕| 黄色配什么色好看| or卡值多少钱| 99久久人妻综合| 久久欧美精品欧美久久欧美| 一本久久精品| 成人高潮视频无遮挡免费网站| 国产高清视频在线观看网站| 亚洲美女搞黄在线观看| 日本与韩国留学比较| 卡戴珊不雅视频在线播放| 天堂网av新在线| 国产极品天堂在线| 中国美女看黄片| 亚洲精华国产精华液的使用体验 | 美女被艹到高潮喷水动态| 亚洲自拍偷在线| 欧美色视频一区免费| 91精品一卡2卡3卡4卡| 日产精品乱码卡一卡2卡三| 亚洲激情五月婷婷啪啪| 国产精品.久久久| 久久精品国产清高在天天线| 禁无遮挡网站| 少妇的逼水好多| 亚洲成人精品中文字幕电影| 亚洲综合色惰| 午夜亚洲福利在线播放| 91在线精品国自产拍蜜月| 午夜福利成人在线免费观看| 免费av观看视频| 一个人看的www免费观看视频| 深夜a级毛片| 丰满乱子伦码专区| 国产亚洲精品久久久com| 国产黄色视频一区二区在线观看 | 高清毛片免费观看视频网站| 国产 一区 欧美 日韩| 97超碰精品成人国产| 国产精品久久久久久久电影| 欧美+亚洲+日韩+国产| 长腿黑丝高跟| 国产淫片久久久久久久久| 又黄又爽又刺激的免费视频.| 99久久精品一区二区三区| 亚洲精品久久久久久婷婷小说 | 亚洲高清免费不卡视频| 白带黄色成豆腐渣| 狠狠狠狠99中文字幕| 中文字幕av在线有码专区| 在线免费观看的www视频| 中文欧美无线码| 久久久国产成人免费| 亚洲中文字幕日韩| 国模一区二区三区四区视频| 欧美激情久久久久久爽电影| 成人午夜高清在线视频| 日韩国内少妇激情av| 亚洲国产欧美人成| 午夜视频国产福利| 成人特级av手机在线观看| 老女人水多毛片| 欧美bdsm另类| 国产精品久久电影中文字幕| 五月伊人婷婷丁香| 午夜福利成人在线免费观看| 26uuu在线亚洲综合色| 欧美色欧美亚洲另类二区| 12—13女人毛片做爰片一| 日韩欧美精品免费久久| 插逼视频在线观看| 免费观看的影片在线观看| h日本视频在线播放| 日日干狠狠操夜夜爽| 成人永久免费在线观看视频| 我要看日韩黄色一级片| 亚洲欧美日韩高清在线视频| 99热只有精品国产| 久久久a久久爽久久v久久| 91aial.com中文字幕在线观看| 精品无人区乱码1区二区| 久久热精品热| 国产黄色视频一区二区在线观看 | 男女边吃奶边做爰视频| 国产精品电影一区二区三区| 欧美一区二区国产精品久久精品| 老女人水多毛片| 丰满的人妻完整版| 国产av一区在线观看免费| 日韩精品有码人妻一区| 久久久久久久久久久丰满| 亚洲精品日韩av片在线观看| 美女高潮的动态| 国产av在哪里看| 国产中年淑女户外野战色| 成人毛片a级毛片在线播放| 1024手机看黄色片| 亚洲电影在线观看av| 插阴视频在线观看视频| 国产亚洲精品久久久久久毛片| 在线观看午夜福利视频| .国产精品久久| 性插视频无遮挡在线免费观看| 久久久久久久久中文| 一级毛片电影观看 | 成人永久免费在线观看视频| 69人妻影院| 欧美+日韩+精品| 舔av片在线| 99久久精品一区二区三区| 精品久久久久久久久av| 天堂av国产一区二区熟女人妻| 哪个播放器可以免费观看大片| 一本久久精品| 赤兔流量卡办理| 热99在线观看视频| 一级av片app| 国产黄片美女视频| 99久久久亚洲精品蜜臀av| a级毛片免费高清观看在线播放| 国产亚洲精品久久久com| 国产又黄又爽又无遮挡在线| 高清毛片免费看| 我要搜黄色片| 人妻少妇偷人精品九色| 99九九线精品视频在线观看视频| 国产精品蜜桃在线观看 | 国产黄色视频一区二区在线观看 | 日本成人三级电影网站| 国产av在哪里看| 噜噜噜噜噜久久久久久91| 午夜爱爱视频在线播放| 国产午夜精品论理片| 国产极品天堂在线| 亚洲欧洲日产国产| 中文字幕免费在线视频6| 少妇高潮的动态图| 九色成人免费人妻av| 天堂av国产一区二区熟女人妻| 久久婷婷人人爽人人干人人爱| 国产精品电影一区二区三区| 小说图片视频综合网站| 夜夜看夜夜爽夜夜摸| 特级一级黄色大片| 亚洲美女搞黄在线观看| 亚洲电影在线观看av| 国产精品一区二区在线观看99 | 国产一区二区在线av高清观看| 日本与韩国留学比较| 日本黄大片高清| 成人美女网站在线观看视频| 好男人在线观看高清免费视频| 久久久久久久午夜电影| 免费在线观看成人毛片| 欧美色视频一区免费| 久久久久网色| 毛片一级片免费看久久久久| 校园人妻丝袜中文字幕| 乱人视频在线观看| 欧美日韩乱码在线| av视频在线观看入口| 久久午夜福利片| 久久午夜福利片| 老司机影院成人| 一进一出抽搐动态| 人妻系列 视频| 日本撒尿小便嘘嘘汇集6| 最近手机中文字幕大全| 久久国内精品自在自线图片| 国产真实乱freesex| 毛片女人毛片| 美女内射精品一级片tv| 欧美成人a在线观看| 亚洲欧美清纯卡通| 麻豆国产av国片精品| 日韩 亚洲 欧美在线| 99热全是精品| 99热这里只有是精品在线观看| 欧美极品一区二区三区四区| 精品久久久久久久久久久久久| 全区人妻精品视频| 综合色av麻豆| 国内久久婷婷六月综合欲色啪| 亚洲国产高清在线一区二区三| 一级二级三级毛片免费看| 最近最新中文字幕大全电影3| 国产av麻豆久久久久久久| 在线播放无遮挡| 色5月婷婷丁香| 婷婷精品国产亚洲av| 亚洲第一区二区三区不卡| 国产女主播在线喷水免费视频网站 | 国产精品无大码| 菩萨蛮人人尽说江南好唐韦庄 | 欧美bdsm另类| 亚洲精品成人久久久久久| 最好的美女福利视频网| 久久亚洲精品不卡| 国内揄拍国产精品人妻在线| 久久久精品欧美日韩精品| 欧美激情在线99| 在现免费观看毛片| 人妻系列 视频| 最近最新中文字幕大全电影3| 91精品一卡2卡3卡4卡| 男人和女人高潮做爰伦理| 青春草国产在线视频 | 日韩大尺度精品在线看网址| 亚洲国产精品合色在线| 99久久久亚洲精品蜜臀av| 黄片无遮挡物在线观看| 美女黄网站色视频| 欧美性猛交╳xxx乱大交人| 毛片一级片免费看久久久久| 一本久久精品| a级毛色黄片| 国产成人精品一,二区 | 亚洲精品日韩在线中文字幕 | 狠狠狠狠99中文字幕| 欧美zozozo另类| 最近中文字幕高清免费大全6| 亚洲国产色片| 亚洲精华国产精华液的使用体验 | 久久亚洲精品不卡| 卡戴珊不雅视频在线播放| 中出人妻视频一区二区| 成人毛片60女人毛片免费| 精品久久久久久久久av| 亚洲国产精品久久男人天堂| 国产午夜精品一二区理论片| 九九在线视频观看精品| 国产一区二区三区av在线 | 欧美色视频一区免费| 亚洲av电影不卡..在线观看| 少妇熟女欧美另类| 99热全是精品| 男女那种视频在线观看| 日韩成人伦理影院| 欧美人与善性xxx| 亚洲一区二区三区色噜噜| 久久人人精品亚洲av| 国产精品一区二区三区四区久久| 嫩草影院精品99| 亚洲va在线va天堂va国产| 精品无人区乱码1区二区| 青春草国产在线视频 | 欧美激情在线99| 久久午夜亚洲精品久久| 久久精品国产99精品国产亚洲性色| 国产精品麻豆人妻色哟哟久久 | 国产淫片久久久久久久久| 午夜精品国产一区二区电影 | 97热精品久久久久久| 日韩 亚洲 欧美在线| 午夜久久久久精精品| 亚洲精华国产精华液的使用体验 | ponron亚洲| 热99在线观看视频| 我要搜黄色片| 春色校园在线视频观看| 国产精品蜜桃在线观看 | 午夜激情福利司机影院| 国产乱人偷精品视频| 免费看光身美女| 精品不卡国产一区二区三区| 麻豆久久精品国产亚洲av| 麻豆久久精品国产亚洲av| 18禁黄网站禁片免费观看直播| 日韩精品青青久久久久久| 精品午夜福利在线看| 久久午夜福利片| 99热这里只有精品一区| 国产伦在线观看视频一区| 国产女主播在线喷水免费视频网站 | 一夜夜www| 99热6这里只有精品| 老女人水多毛片| 欧美+日韩+精品| 亚洲经典国产精华液单| av.在线天堂| 一区福利在线观看| 亚洲国产欧美在线一区| 男人的好看免费观看在线视频| 亚洲久久久久久中文字幕| 大香蕉久久网| 精品久久久久久久久亚洲| 听说在线观看完整版免费高清| 精品人妻熟女av久视频| 啦啦啦观看免费观看视频高清| 亚洲国产精品合色在线| 亚洲精品成人久久久久久| 国产黄色小视频在线观看| 久久九九热精品免费| 久久久精品大字幕| 高清午夜精品一区二区三区 | 免费观看的影片在线观看| 国产精品永久免费网站| 国产精品国产高清国产av| 亚洲欧美日韩无卡精品| 久久久久久久午夜电影| 少妇熟女欧美另类| 国产成人午夜福利电影在线观看| 国产 一区精品| av在线播放精品| 免费看日本二区| 少妇熟女aⅴ在线视频| www日本黄色视频网| 欧美性猛交╳xxx乱大交人| 秋霞在线观看毛片| 精品国内亚洲2022精品成人| 看免费成人av毛片| 看非洲黑人一级黄片| 精品免费久久久久久久清纯| 校园春色视频在线观看| 国产白丝娇喘喷水9色精品| 久久精品久久久久久噜噜老黄 | 伦精品一区二区三区| 日韩一本色道免费dvd| 99久久中文字幕三级久久日本| av在线天堂中文字幕| 欧美色欧美亚洲另类二区| 久久精品国产亚洲av天美| av专区在线播放| 午夜福利在线在线| 青青草视频在线视频观看| 91精品国产九色| 亚洲经典国产精华液单| 99热网站在线观看| 美女cb高潮喷水在线观看| 成人欧美大片| 一本一本综合久久| 亚洲国产精品合色在线| 变态另类丝袜制服| 亚洲国产色片| 中文在线观看免费www的网站| 九九在线视频观看精品| 黑人高潮一二区| 最近的中文字幕免费完整| 免费av观看视频| 亚洲成人中文字幕在线播放| 一个人免费在线观看电影| 国产v大片淫在线免费观看| 日本成人三级电影网站| 日韩欧美三级三区| 亚洲婷婷狠狠爱综合网| 99久久人妻综合| 免费观看在线日韩| 国产黄片视频在线免费观看| 久久人妻av系列| 只有这里有精品99| 在线观看午夜福利视频| 日韩视频在线欧美| 97人妻精品一区二区三区麻豆| 狂野欧美白嫩少妇大欣赏| av福利片在线观看| 91久久精品国产一区二区三区| 国产成人精品一,二区 | 国产一区二区在线av高清观看| 中文字幕人妻熟人妻熟丝袜美| 欧美又色又爽又黄视频| 在线观看美女被高潮喷水网站| 国产在视频线在精品| 午夜福利在线观看免费完整高清在 | 91久久精品电影网|