• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    偏振激光雷達增益比定標(biāo)方法對比研究

    2021-06-15 09:12:34童奕澄童學(xué)東戎宇航周雨迪
    中國光學(xué) 2021年3期
    關(guān)鍵詞:對準定標(biāo)偏振

    童奕澄,童學(xué)東,張 凱,肖 達,戎宇航,周雨迪,3,劉 崇,劉 東

    (1. 浙江大學(xué) 光電科學(xué)與工程學(xué)院 現(xiàn)代光學(xué)儀器國家重點實驗室,浙江 杭州 310027;2. 寧波鋼鐵有限公司 浙江 寧波 315807;3. 浙江大學(xué) 寧波研究院 浙江 寧波 315100)

    1 Introduction

    Polarization lidar is one of the earliest members of lidar family. Since its birth in 1971, polarization lidar has become a research tool widely used in atmospheric cloud and aerosol detection[1]. The depolarization ratio obtained by polarization lidar inversion can be used to distinguish spherical and non-spherical particles, so it is often applied to the identification of aerosol type and the identification of thermodynamic phase state of clouds[2].Moreover, the depolarization ratio can also be used to identify the tropospheric boundary layer and to distinguish polar stratospheric clouds from other types of clouds in terms of morphology[3-5]. At the same time, the depolarization ratio can be used to study the long-distance transmission characteristics of dust[6]. It can be seen that the high-precision detection of depolarization ratio is of great significance to atmospheric science research. However,how to improve the detection accuracy of depolarization ratio has always been the research focus of polarization lidar[7].

    The main causes for depolarization ratio error include: the calibration error of polarization lidar gain ratio, the error caused by the impurity of laser ray polarization, the alignment angle error between laser polarization vector and Polarization Beam Splitter (PBS) incidence plane, as well as the polarization crosstalk error caused when the reflectance and transmittance of PBS cannot reach 100%. In order to simplify the description, the above four errors are referred to as gain ratio calibration error,linear polarization error, alignment angle error and polarization crosstalk error respectively. Among them, gain ratio calibration error is particularly important and has a decisive effect on the accuracy of depolarization ratio[8]. The gain ratio calibration error varies with the gain ratio calibration method. For nearly half a century, more and more researchers have proposed new gain ratio calibration methods.However, there is still a lack of effective guidance and suggestions on the selection of gain ratio calibration method in the actual use of polarization lidar.

    This paper analyzes the basic principles of various existing gain ratio calibration methods and compares the accuracy and advantages and disadvantages of +45° method, +45° method, ?45° method, rotation fitting method and pseudo-depolarizer method at different misalignment angles through experiments. Through the comparison of theory and experiment, this paper provides a suggestion for the best choice of gain ratio calibration method.

    2 Basic principles and structure

    The typical polarization lidar is a two-channel lidar[1]. According to the definition of depolarization ratio δ[9], we can obtain

    where β represents atmospheric backscattering coefficient,Prepresents the echo signal power, and the subscripts ⊥ and ‖ respectively represent the vertical and parallel components of the above parameters.

    Fig. 1 Basic principle and structure diagram of polarization lidar system圖1 偏振激光雷達系統(tǒng)基本原理與結(jié)構(gòu)圖

    As shown in Fig. 1. the vertical componentP⊥and parallel componentP‖of echo signal can be decomposed into the following components after the coordinate rotation transformation relative to the incident plane of PBS:

    where the subscriptsS′andP′respectively represent the directions perpendicular to and parallel to the incident plane of PBS, andθrepresents the angle between the laser polarization vector and the incident plane of PBS (here referred to as misalignment angle).

    Because there is polarization crosstalk in the actual PBS, the parametersRP,RS,TPandTSrespectively represent the reflectance and transmittance ratios of P and S light in PBS (the above four parameters are generally known, and are labeled by PBS manufacturer). After the light passes through the PBS, the detected powerPRandPTin the reflection channel and transmission channel can be expressed as

    whereKRandKTrespectively represent the gain coefficients of reflection channel and transmission channel,G=KR/KT. According to the Eq. (3), the actually measured depolarization ratio δ?(θ) can be obtained:

    It can be seen from the equations (1) ~ (4) that the gain ratioGmust be calibrated before the calculation of the depolarization ratio, and that the gain ratio calibration error will affect the calculation result of the depolarization ratio[10]. Next, we will introduce several typical gain-ratio calibration methods.

    3 Gain ratio calibration methods

    3.1 Method of clean atmospheric molecule

    The method of clean atmospheric molecule is a method to calibrate the gain ratio by comparing the actual depolarization ratio of clean atmosphere detected by the system and the theoretical depolarization ratio of clean atmosphere, assuming that only atmospheric molecules (no aerosols and clouds) exist in the high air. The calculation formula of depolarization ratio in the method of clean atmospheric molecule is

    where δ?and δ respectively represent the atmo

    molspheric molecular depolarization ratio actually measured at the altitudercand the theoretical atmospheric molecular depolarization ratio. δmolcan be calculated according to the theory of atmospheric scattering[11], but it is not fixed. Atmospheric molecular scattering is mainly composed of Rayleigh scattering and vibration Raman scattering (with a negligible intensity). Rayleigh scattering is mainly composed of pure rotational Raman line and central Cabannes line[12]. In the Rayleigh scattering spectrum, Cabannes lines constitute the central peak of Doppler broadening, while pure rotational Raman lines are distributed on both sides of Cabannes lines to constitute the sidebands[13]. The depolarization effect caused by pure rotational Raman lines is much greater than that caused by Cabannes lines. For a li dar system, the value range of δmolis between 0.003 63~0.014 3 when the filters with different bandwidths (BWs) are used[10]. If the filter bandwidth in the lidar system is narrow (BW<0.3 nm@532 nm), δmolwill be the lower limit, namely δmol=0.003 63. Conversely, if the filter bandwidth is wide (BW=15 nm@532 nm), δmolwill be the upper limit, namely δmol=0.014 3.

    Due to convenient operation and no need to add other devices to the light path of the system, the method of clean atmospheric molecule was widely used in the 1980s and 1990s. However, its shortcoming is also very obvious. Because clean atmosphere rarely exists, the calibration result obtained from a calibration area with aerosols or clouds present will have a large error. Moreover, when the filter bandwidth ranges from 1 nm to 15 nm, the proportion of pure rotational Raman lines in the scattered atmospheric molecules cannot be accurately evaluated. This may lead to the inaccurate calculation of the theoretical depolarization ratio of clean atmosphere, resulting in a calibration error. In addition, it should be noted that the method of clean atmospheric molecule is generally applicable to the lidar with a laser wavelength of less than 550 nm.For the lidar with a detection wavelength of more than 800 nm, this calibration method is likely to cause a large calibration error because the Rayleigh scattering intensity is weak[13]. Therefore, this method is rarely used at present.

    3.2 +45° method

    +45° method is a method of placing a Half-Wave Plate (HWP) in the receiving optical path(generally in front of PBS) and rotating it in one direction (clockwise/counterclockwise) to realize the gain ratio calibration. In particular, this method assumes that the properties of HWP are ideal and that the atmospheric state does not change during calibration. In addition to the above two basic assumptions, two more assumptions should be added to the+45° method, that is, neither a misalignment angle nor polarization crosstalk will exist[14].

    As shown in Fig. 2 (Color online), the HWP is placed in the upstream optical path of PBS. In this case, the laser polarization vector is considered to be parallel to the incident plane of PBS, as shown in Fig. 2(a).

    Fig. 2 Schematic diagram of +45° method. (a) Before HWP rotation. (b) After HWP rotation by +45°圖2 +45°法原理圖。(a)半波片旋轉(zhuǎn)之前;(b)半波片旋轉(zhuǎn)+45°之后

    Since the impact of misalignment angle and polarization crosstalk is not considered, the Eq. (3)can be simplified as

    Then, the HWP is rotated clockwise around the optical axis (similar to the counterclockwise case),so the angle between the laser polarization vector and the incident plane of PBS is +90°, as shown in Fi g. 2(b). In the Eq. (7),PT(0°) becomes(90°).The specific formula is not repeated here. In this case, the gain ratioGcan be expressed as

    The advantage of this method is easy operation.Its disadvantage is that the alignment angle error and polarization crosstalk error can be easily introduced as the effects of misalignment angle and polarization crosstalk are ignored.

    3.3 ±45° method

    ±45° method is a method of placing a HWP in the receiving optical path and rotating it twice (by+22.5° and ?22.5° respectively relative to the initial position) to realize the gain ratio calibration. This method was proposed by Freudenthaleret al. from the University of Munich, Germany[15]. Based on the+45° method, the ±45° method has considered the effects of both misalignment angle and polarization crosstalk. As shown in Fig. 3 (Color online).

    Fig. 3 Schematic diagram of ±45° method. (a) Before HWP rotation. (b) After HWP rotation by +22.5°.(c) After HWP rotation by ?22.5°圖3 ±45°法原理圖。(a)半波片旋轉(zhuǎn)之前;(b)半波片旋轉(zhuǎn)+22.5°之后;(c)半波片旋轉(zhuǎn)?22.5°之后

    In Fig. 3, a HWP is placed in the upstream optical path of PBS. It is assumed that there is an initial misalignment angle θinitbetween the laser polarization vector and the incident surface of PBS, and that θhis the quantitative misalignment angle introduced artificially.

    After the HWP rotation, the following equation can be derived from Eq. (4):

    In order to reduce the influence of initial misalignment angle θinit, the HWP is rotated twice continuously in the ±45° method. At first, the HWP is rotated by +22.5° clockwise around the optical axis relative to its initial position. Then, the HWP is rotated by ?45° counterclockwise around the optical axis based on the first rotation, or by ?22.5° counterclockwise around the optical axis relative to its initial position. In the two rotations, the angles between the laser polarization vector and the incident surface of PBS are +45° and ?45° respectively.At this time, the gain ratioGcan be expressed as

    It can be seen from Eq. (10) that in the ±45°method, the polarization crosstalk error of PBS is considered, but the influence of alignment angle error cannot be completely eliminated. It is proved by facts that the error source has little to do with the Signal-to-Noise Ratio (SNR) in the ±45° method[16].If θinit= 1°, the relative error ofGcan be controlled within 5%[15]. With the advantages of simple operation and high accuracy, the ±45° method has been used in MULIS (Multichannel Lidar System), POLIS (Portable Lidar System) and other high-precision polarization lidar systems for gain ratio calibration[16]. Its shortcoming is that the alignment angle error cannot be eliminated.

    3.4 ?45° method

    ?45° method is a method of placing a HWP in the receiving optical path and rotating it by 45° in one direction (clockwise/counterclockwise) to realize the gain ratio calibration. This method has the same operation as +45° method, but different calculation approach. In addition, it doesn’t need initial 0° search. This method was proposed by Luo Jinget al. from Zhejiang University[17], as shown in Fig. 4(Color online).

    Fig. 4 Schematic diagram of ?45° method. (a) Before HWP rotation. (b) After HWP rotation by 45°圖4 ?45°法原理圖。(a)半波片旋轉(zhuǎn)之前;(b)半波片旋轉(zhuǎn)45°之后

    In Fig. 4, a HWP is placed in the upstream optical path of PBS. It is assumed that there is an initial misalignment angle between the laser polarization vector and the incident surface of PBS.

    Before the HWP rotation, the following equation can be derived from Eq. (4):

    Then, the HWP is rotated around the optical axis, as shown in Fig. 4(b). After rotation, the termsPR(θinit) andPT(θinit) in Eq. (11) turn intoand. The specific formula is not repeated here. In this case, the gain ratio can be expressed as

    3.5 Rotation fitting method

    Rotation fitting method is a method of placing a HWP in the receiving optical path and rotating it for several times to realize the gain ratio calibration through the nonlinear least square fitting and the inversion of gain ratio, depolarization ratio and initial misalignment angle θinit[18]. This method was proposed by Alvarezet al. from NASA.

    As shown in Fig. 5 (Color online), a HWP is placed in the upstream optical path of PBS. It is assumed that there is an initial misalignment angleθinitbetween the laser polarization vector and the incident surface of PBS.

    If the HWP is rotated artificially by θh,j/2 relative to its initial optical axis, a series of misalignment angles θh,jcan be introduced artificially and quantitatively. From Eq. (9), the following equation can be derived:

    wherejrepresents thej-th rotation of the HWP. In the Eq. (13), asandTScan be considered as known quantities, only three quantities, namely gain ratioG, initial misalignment angle θinitand theoretical depolarization ratio δ, are unknown. In this case, the three unknowns cannot be solved by a single equation. However, multiple equations can be obtained by rotating the HWP for many times. Then the nonlinear least square method can be used to solve the equation set so as to solve the three unknowns. It should be noted that at least three equations need to be obtained in this method, namelyj≥3.

    The advantage of this method is that the three unknowns, namely gain ratio, depolarization ratio and initial misalignment angle, can be inverted simultaneously through one calibration, and no a priori value is required. However, due to time-consuming calibration and complicated operation, this method is only suitable for a relatively stable atmospheric environment.

    Fig. 5 Schematic diagram of rotation fitting method. (a)Before HWP rotation. (b) After HWP rotation by θh,j圖5 旋轉(zhuǎn)擬合法原理圖。(a)半波片旋轉(zhuǎn)之前;(b)半波片旋轉(zhuǎn)θ h,j角之后

    3.6 Pseudo-depolarizer method

    The pseudo-depolarizer method is a method that adds an optical element to the optical path to convert the echo signal received by the system into unpolarized light so as to realize the gain ratio calibration. The gain ratio is calibrated by using the ratio of signal intensities of two detection channels. From Eq. (4), the gain ratioGcan be obtained:

    A typical example is found in the CALIOP,where the non-depolarizing signal generated by a depolarizer is used for gain ratio calibration[19]. The specific operation procedure is as follows. A movable depolarizer is placed in the upstream optical path of PBS during the system calibration, and is removed after the calibration completion, as shown in Fig. 6. In the CALIOP, this method is used to calibrate the gain ratio of the system on orbit at night and then the method of clean atmospheric molecule is used to verify the calibration result[20].

    Fig. 6 Schematic diagram for CALIOP gain ratio calibration圖6 CALIOP增益比定標(biāo)原理圖

    The advantage of this method is that it can be operated easily and calibrated in real time, so as to eliminate the influence of atmospheric state change.Its disadvantage is that other errors will be introduced easily due to the difficulty for a commercial depolarizer to produce completely depolarized light.

    4 Experimental results and analysis

    The polarization lidar used in the experiment is a typical dual-channel lidar, whose structure is shown in Fig. 1 (where the same device is only marked once). The pseudo-depolarizer between the convergent lens and the HWP is only used in the pseudo-depolarizer method. To reduce linear polarization error, a polarizing prism was added to the emergent light path in the experiment system, so that the extinction ratio of the outgoing laser reached 2×105∶1. To reduce the polarization crosstalk error, a PBS was glued with a polarizing film to achieveTP:TS(RS:RP)>30 000∶1. Therefore, the effect of alignment error on gain ratio is discussed instead of the effect of linear polarization error and polarization crosstalk error. The specific parameters of the system are shown in Table 1.

    Tab. 1 Main parameters for polarization lidar system表1 偏振激光雷達系統(tǒng)主要參數(shù)

    Due to the large calibration error of clean atmospheric molecules, the experiment in this paper mainly compares the influence of five methods,namely, +45° method, ±45° method, ?45° method,rotation fitting method and pseudo-depolarizer method, on the gain ratio calibration at different misalignment angles (alignment angle errors).

    To ensure a high signal-to-noise ratio, the experiment was carried out at night. Meanwhile, in order to reduce the impact caused by atmospheric changes, the detection in horizontal direction (pitch angle: 0°) was adopted. After the optical axis calibration of the system was completed, an electric rotating motor (accuracy: 0.005°) was used to adjust the half-wave plate to the position where the laser polarization vector was parallel to the incident surface of PBS (when 200 signals on average were passed and the maximum power of transmission channel was detected visually). At this point, the HWP angle was the initial 0°. It should be noted that, for the convenience of description, the initial misalignment angle θinitis not included in the actual total misalignment angle when the misalignment angle θhis introduced artificially and quantitatively to the following section. However, each actual misalignment angle contains the initial misalignment angle θinit(an unknown quantity). Then, withθh=0°(the actual misalignment angle is θinit+0°) as the zero point, an electric rotating motor is used to rotate the HWP. In the actual operation, the alignment angle usually does not exceed 15°[21-22]. However, to ensure the experiment integrity, the misalignment angle under discussion is expanded to 45° in this paper.

    In the +45° method, ±45° method, ?45° method and rotation fitting method, the HWP was rotated with a step size of 2.5° within the θhrange of?45°~67.5° to obtain a total of 46 sets of original echo signals. By processing the above data, a step size of 5° and a θhrange of ?45° ~ +45° (that is, the difference between the two angles in each group of data before and after the HWP rotation are 45°)were selected in the four methods. After calculation,a total of 19 groups of gain ratio data were obtained.

    Before starting the experiment, a pseudo-depolarizer was added to the optical path of the system, as shown in Fig. 1. Since the pseudo-depolarizer was not ideal, the HWP was rotated with a step size of 10° within the θhrange of ?80°~+100° to obtain a total of 19 sets of original echo signals in order to observe the change of pseudo-depolarizer in at least one cycle. By processing the above data, a total of 19 groups of gain ratio data were obtained after calculation.

    The calibration results of the above five methods are given in Table 2 (θh=0 °).

    Tab. 2 Calibration results of five methods atθh=0?表2 θh=0?時5種方法的定標(biāo)結(jié)果

    As can be seen from Table 2, when there is no misalignment angle (θh=0 °), the calibration results of±45° method, ?45° method and rotation fitting method are close to each other and can be considered closest to the true value. Therefore, the average value of the gain ratios measured by the above three methods at θh=0 ° is defined as the true value.The curves of the relative errors of the five calibration methods changing with the misalignment angle are shown in Fig. 7 (the calculation processes of rotation fitting method and pseudo-deflector method are described in detail in the Sections 4.2 and 4.3).

    Fig. 7 Relative errors changing with the misalignment angle for the five calibration methods圖7 5種定標(biāo)方法相對誤差隨對準偏失角的變化曲線

    4.1 +45°, ±45° and ?45° methods

    As shown in Fig. 7, when |θh|<15°, the calibration results of ±45° method and ?45° method are similar with a small relative error. However, even if the misalignment angle is 0°, the calibration result of +45° method is still greatly different from those of the above two methods, with a relative error up to 4%. When |θh|>15°, the calibration results of +45°method and ?45° method will remain almost stable.However, with the increase of misalignment angle,the calibration result of ±45° method will become more unstable and its relative error will increase sharply even up to 12.93%. The main reason for such error distribution is that the ±45° method calculates the geometric average of the two measurements before and after rotation, while the ?45°method calculates the arithmetic average of the two measurements before and after rotation based on the+45° method. The reasons for the above phenomena of +45° method will be explained below through specific theoretical analysis.

    The relative error between the two methods was analyzed[23-24]. The powers detected in the reflection channel and transmission channel before and after the HWP rotation in the two methods are denoted asand. Then

    where δ1and δ2represent the relative errors of the calibration results of ?45° method and ±45° method,and(SisRorTandnisaorb) represents the uncertainty (standard deviation) in each measured value. The photon counting signal in lidar can be considered to be subject to Poisson distribution[25-26],so the statistical error is equal to the root mean square of the mean value of the signal, i.e.Therefore, the equations (15) and (16) can be further deduced as follows

    4.2 Rotation fitting method

    Considering that the error of misalignment angle was not greater than 15° in the actual process,13 sets of data satisfying |θh|≤ 15° (that is, θh,j= 0°,±2.5°, ±5° ··· ±15°) were selected for fitting. The calculation results of rotation fitting are shown in Fig. 8 (Color online). According to Eq. (13), solving the three unknowns (gain ratioG, initial misalignment angle θinitand theoretical depolarization ratio δ) in the equations is a nonlinear least square problem. Before solvingG, θinitand δ, their initial values need to be predicted. Their optimum initial predicted values are shown in Fig. 8.

    Fig. 8 Curve of the actually measured depolarization ratio changing with the misalignment angle, where the blue circle represents the δ?(θ) values measured at different θ angles, and the red and green dotted lines represent the fitting curve and θ init, respectively圖8 實際測量退偏比隨對準偏失角的變化曲線圖。其中藍色圓圈代表在不同θ 情況下測量的 δ?(θ),紅色虛線代表擬合曲線,綠色虛線代表θinit

    It can be found that the relationship betweenand θh,j(blue circle) can be approximately represented by a quadratic polynomial[27].Therefore, the following quadratic polynomial is constructed with the artificially and quantitatively introduced misalignment angle θh,jas an independent variable and the actually measured depolarization ratioas a dependent variable:

    whereA0,A1andA2are quadratic polynomial coeffici ents. The fitting result is shown as the red dotted line in Fig. 8. The minimum value of the quadratic polynomial represents the initial misalignment angle θinit, whose result is calculated to beθinit=?A1/(2×A2)= ?0.35°. This value can be used as the optimum initial predicted value of θinit. Then, θinit=?0.35° is substituted into Eq. (13) and the equation set is solved with nonlinear least square method to obtain the gain ratio, namelyG=1.2716.

    4.3 Pseudo-depolarizer method

    The calculation result of pseudo-depolarizer method is shown in Fig. 9 (Color online), in which the blue circles represent the gain ratios calculated at different angles of the HWP. It can be observed that the distribution of blue circles is in line with the cosine curve distribution law. Therefore, the following cosine function polynomial is constructed with the HWP rotation angle φ (θh=2φ) as an independent variable and the gain ratioGas a dependent variable:

    whereB0,B1,B2andB3all represent the coefficients of the cosine function polynomial. The fitting result is shown as the red dotted line in Fig. 9.

    Theoretically, if the echo signal is completely unpolarized light, its state will remain unchanged,irrespective of how the HWP angle is changed. In other words, the rotation of HWP will not affect the value of gain ratio. The result of gain ratio calibration should be represented by a line parallel to thexaxis, rather than by a cosine curve as shown in Fig. 9. The reason for this problem is that the existing commercial depolarizer cannot completely transform the polarized light into unpolarized light, so that the echo signal still contains part of the polarized light after passing through the depolarizer.When using laser as the light source to test the depolarizing effect of a depolarizer, Luo Jing et al.from Zhejiang University found that the test result was similar to the cosine distribution in Fig. 9[28].This indicates that the result of gain ratio calibration will still be affected by this portion of polarized light even if the misalignment angle is 0°.

    Fig. 9 Gain ratio calibration result of pseudo-depolarizer method. The blue circles represent the gain ratios measured at different misalignment angles, and the red dotted line represents the cosine polynomial fitting curve圖9 退偏器法增益比定標(biāo)結(jié)果。藍色圓圈代表半波片在不同角度下測量的增益比,紅色虛線代表余弦函數(shù)多項式擬合曲線

    It should be noted that among the measurement data obtained by pseudo-depolarizer method,only 5 sets of data satisfy θh= ?45° ~ +45°. Therefore, only 5 points are marked in Fig. 7 according to this method. At θh= 0°, the relative error of pseudodepolarizer method is 5.6%. This indicates that the result of gain ratio calibration will still be affected by this portion of polarized light even if the misalignment angle is 0°.

    4.4 Discussion

    Through the analysis of experimental results,we know that the calibration results of ±45° method,?45° method and rotation fitting method are the most accurate. This is consistent with the above theoretical analysis result. However, the error of ±45°method will increase with the misalignment angle.The rotation fitting method is only suitable for a relatively stable atmospheric environment due to timeconsuming calibration and complicated operation. In comparison, ?45° method has obvious advantages:easier operation, robust calibration results not affected by misalignment angle, and no need to search for the initial 0° angle. However, ?45° method cannot eliminate the influence of atmospheric state changes. In contrast, the pseudo-depolarizer method is not only easy to operate, but also capable of eliminating the influence of atmospheric state changes and free from the problem that multiple HWP rotations will increase the accumulated angle error. But so far, the commercial depolarizer still cannot produce completely depolarized light, which will introduce a new error that is difficult to evaluate. In conclusion, we suggest the use of ?45° method for calibration as a general rule and the use of pseudo-depolarizer method for calibration when a high-precision depolarizer is available.

    5 Conclusion

    The calibration accuracy of gain ratio has a great influence on the detection accuracy of polarization lidar. This paper compares a variety of the existing gain-ratio calibration methods theoretically and experimentally for the first time, and provides some suggestions on the selection of gain-ratio calibration methods.

    As far as the operability is concerned, the pseudo-depolarizer method only needs a depolarizer inserted into the system to realize the calibration, and can eliminate the influence of atmospheric state changes. The other four methods require at least two rotations of the HWP in relatively complicated operation and cannot eliminate the influence of atmospheric state changes. In terms of calibration accuracy, this experiment mainly compared the influence of +45° method, ±45° method, ?45°method, rotation fitting method and pseudo-depolarizer method (excluding the method of clean atmospheric molecule due to its large calibration error)on the gain ratio calibration at different misalignment angles. The experimental results show that the calibration accuracy of ±45° method, ?45° method and rotation fitting method is relatively high, but the operation of ±45° method and rotation fitting method is quite complex. The error of ±45° method is big when the misalignment angle is large. In the ?45°method, the result of gain ratio calibration is not affected by the misalignment angle, and there is no need to search for the initial 0° angle. Compared with the first three methods, +45° method has a larger error when the misalignment angle is 0°. The pseudo-depolarizer method is greatly affected by the use of non-ideal depolarizer. If an ideal depolarizer is available, this method will be an ideal gain-ratio calibration method. By comparing different gain-ratio calibration methods theoretically and experimentally, this paper gives the best choice of gain ratio calibration method, suggesting the use of ?45°method for calibration as a general rule and the use of pseudo-depolarizer method for calibration when a high-precision depolarizer is available.

    ——中文對照版——

    1 引 言

    偏振激光雷達是激光雷達家族中最早的成員之一,自1971年誕生以來,其已廣泛應(yīng)用于大氣云及氣溶膠探測[1]。偏振激光雷達反演得到的退偏比可用于區(qū)分球形粒子和非球形粒子,故其常被應(yīng)用于氣溶膠的類型識別及云的熱力學(xué)相態(tài)識別[2]。不僅如此,退偏比也可用于識別對流層的邊界層以及從形態(tài)學(xué)上區(qū)分極地平流層云與其它種類云[3-5]。同時,退偏比還可以用于研究沙塵的長距離傳輸特性[6]。可見,實現(xiàn)退偏比的高精度探測對大氣科學(xué)研究具有重要的意義。然而,如何提高退偏比的探測精度,一直以來都是偏振激光雷達的研究重點[7]。

    退偏比誤差產(chǎn)生的主要原因包括:偏振激光雷達增益比的定標(biāo)誤差、發(fā)射激光線偏振度不純而引起的誤差、激光偏振矢量與偏振分光棱鏡(Polarization Beam Splitter,PBS)入射面的對準角誤差以及PBS反射、透過率無法達到100%而引起的偏振串?dāng)_誤差。為了簡化描述,本文分別簡稱上述4種誤差為增益比定標(biāo)誤差、線偏振度誤差、對準角誤差與偏振串?dāng)_誤差,其中增益比定標(biāo)誤差大小對退偏比的精度起著決定作用[8]。不同增益比定標(biāo)方法所產(chǎn)生的增益比定標(biāo)誤差也不同。近半個世紀,不斷有研究人員提出新的增益比定標(biāo)方法,然而到目前為止,偏振激光雷達在實際使用過程中對增益比定標(biāo)方法的選擇依舊缺少有效的指導(dǎo)與建議。

    本文介紹了現(xiàn)存多種增益比定標(biāo)方法的基本原理,并通過實驗對比分析了+45°法、±45°法、?45°法、旋轉(zhuǎn)擬合法與退偏器法在不同對準偏失角情況下增益比定標(biāo)的準確性以及各自的優(yōu)缺點。通過理論與實驗的對比,本文給出了增益比定標(biāo)方法的最佳選擇。

    2 基本原理與結(jié)構(gòu)

    目前常見的偏振激光雷達為雙通道的激光雷達[1],根據(jù)退偏比[9]的定義,可得

    式中,β代表大氣后向散射系數(shù),P代表回波信號功率,下標(biāo) ⊥與 ‖分別代表上述各參量的垂直與平行分量。如圖1所示,回波信號垂直分量P⊥與平行分量P‖相對于PBS入射面在經(jīng)坐標(biāo)旋轉(zhuǎn)變換后可分解為

    式中,下標(biāo)S′與P′分別代表與PBS入射面垂直方向及平行方向,θ代表激光偏振矢量與PBS入射面存在的夾角(此處稱為對準偏失角)。

    由于實際的PBS存在偏振串?dāng)_,因此,定義RP、RS、TP與TS分別代表PBS對P光與S光的反射率與透過率(以上4個參數(shù)一般由PBS生產(chǎn)商標(biāo)稱出,屬于已知量)。經(jīng)過PBS后反射通道與透射通道被探測到的功率PR、PT分別可表示為

    式中KR與KT分別代表反射通道與透射通道的增益系數(shù)。其中G=KR/KT,根據(jù)式(3)可得實際測量退偏比δ?(θ)

    由式(1)~式(4)可知,在計算退偏比之前必須完成增益比G的定標(biāo),而增益比定標(biāo)的誤差會對退偏比的計算結(jié)果造成影響[10]。接下來本文將介紹幾種常用的增益比定標(biāo)方法。

    3 增益比定標(biāo)方法

    3.1 潔凈大氣分子法

    潔凈大氣分子法是假定高空中只存在大氣分子(無氣溶膠與云),通過對比系統(tǒng)探測潔凈大氣實際退偏比與潔凈大氣理論退偏比以完成增益比定標(biāo)的方法。潔凈大氣分子法退偏比的計算公式為

    式中,δ?與 δmol在此處分別代表高度為rc處實際測量大氣分子退偏比與理論大氣分子的退偏比。δmol可以根據(jù)大氣散射理論[11]計算得到,但是該理論值并不固定。由于大氣分子散射主要由瑞利散射與振動拉曼散射(該散射強度很小,可忽略不計)組成,其中瑞利散射主要由純轉(zhuǎn)動拉曼線與中心Cabannes線組成[12]。在瑞利散射光譜結(jié)構(gòu)中,Cabannes線屬于多普勒展寬的中央峰,純轉(zhuǎn)動拉曼線分布在Cabannes線的兩側(cè),屬于邊帶[13],純轉(zhuǎn)動拉曼線造成的退偏效果比Cabannes線大得多。對于激光雷達系統(tǒng)說,使用不同帶寬(Bandwidth,BW)的濾光片, δmol取值范圍在0.003 63~0.014 3之間[10]。如果激光雷達系統(tǒng)中濾光片的帶寬較窄(BW<0.3 nm@532 nm), δmol=0.003 63。反之,如果濾光片的帶寬較寬(BW=15 nm@532 nm),則δmol=0.014 3。

    潔凈大氣分子法由于操作比較方便,且不需要在系統(tǒng)光路中添加其它器件,所以該定標(biāo)方法在上世紀末使用較為廣泛,但其缺點也很明顯,因為真正潔凈的大氣很少存在,若選取的定標(biāo)區(qū)域存在氣溶膠或云,定標(biāo)結(jié)果將會產(chǎn)生較大誤差,而且當(dāng)濾光片帶寬在1~15 nm時,由于無法準確評估純轉(zhuǎn)動拉曼線在大氣分子散射中所占的比例,可能導(dǎo)致潔凈大氣理論退偏比計算不準確,從而造成定標(biāo)誤差。另外,需要注意的是,潔凈大氣分子法一般適用于激光波長小于550 nm的激光雷達。對于探測波長大于800 nm的激光雷達,由于瑞利散射強度較小,使用該定標(biāo)方法易造成較大的定標(biāo)誤差[13]。因此,該方法目前很少被采用。

    3.2 + 45°法

    +45°法是一種將半波片(Half-Wave Plate,HWP)置于接收光路中(一般置于PBS前),通過單方向(順/逆時針均可)旋轉(zhuǎn)半波片以完成增益比定標(biāo)的方法。需要特別說明的是,該方法假設(shè)半波片的性質(zhì)理想,且定標(biāo)時大氣狀態(tài)不發(fā)生改變。對于+45°法,除了以上兩個基本假設(shè)外,還需要增加另外兩個假設(shè),即不存在對準偏失角,也不存在偏振串?dāng)_[14]。

    如圖2(彩圖見期刊電子版)所示,首先將半波片放置于PBS上游光路中,此時認為激光偏振矢量與PBS入射面平行,如圖2(a)所示。

    此時由于不考慮對準偏失角和偏振串?dāng)_的影響,式(3)可簡化為

    然后將半波片繞光軸順時針旋轉(zhuǎn)(逆時針類似),使得激光偏振矢量與PBS入射面成+90°,如圖2(b)所示,式(7)中的PT( 0°)變?yōu)?,具體公式不再贅述,此時增益比G可表示為

    該方法的優(yōu)點是操作較簡便,缺點為忽略了對準偏失角和偏振串?dāng)_的影響,易引入對準角誤差與偏振串?dāng)_誤差。

    3.3 ±45°法

    ±45°法是一種將半波片置于接收光路中,通過旋轉(zhuǎn)兩次半波片(相對于初始位置,分別旋轉(zhuǎn)+22.5°與 ? 22.5°)以完成增益比定標(biāo)的方法。該方法由德國慕尼黑大學(xué)的Freudenthaler等人提出[15]?!?5°法在+45°法的基礎(chǔ)上同時考慮了對準偏失角和偏振串?dāng)_的影響。

    如圖3(彩圖見期刊電子版)所示,將一個半波片放置在PBS上游光路中,假設(shè)此時激光偏振矢量與PBS入射面存在初始對準偏失角 θinit,θh為人為定量引入的對準偏失角。

    半波片旋轉(zhuǎn)之后,由式(4)可得

    為了減小初始對準偏失角 θinit的影響,±45°法采用連續(xù)兩次旋轉(zhuǎn)半波片的方式,第一次使半波片相對于初始位置繞光軸順時針旋轉(zhuǎn)+22.5°,第二次在第一次旋轉(zhuǎn)的基礎(chǔ)上使半波片繞光軸逆時針旋轉(zhuǎn)?45°,即相對于初始位置繞光軸逆時針旋轉(zhuǎn)?22.5°,分別使得激光偏振矢量與PBS入射面成+45°與?45°,此時增益比G可表示為

    由式(10)可以看出,±45°法雖然考慮了PBS偏振串?dāng)_誤差,但無法完全消除對準角誤差的影響。事實證明,±45°法的誤差來源與信噪比關(guān)系不大[16],當(dāng) θinit= 1°時,G的相對誤差可以控制在5%以內(nèi)[15]。由于±45°法操作較為簡便且精度較高,目前已經(jīng)被MULIS(Multichannel Lidar System)、POLIS(Portable Lidar System)等高精度偏振激光雷達系統(tǒng)用于增益比的定標(biāo)[16]。其缺點為無法消除對準角誤差。

    3.4 ?45°法

    ?45°法是一種將半波片置于接收光路中,通過單方向(順/逆時針均可)旋轉(zhuǎn)45°半波片以完成增益比定標(biāo)的方法(其與+45°法的操作方法一樣,但計算方式不同,且無需進行初始0°角搜尋)。該方法由浙江大學(xué)羅敬等人提出[17]。

    如圖4所示,將一個半波片置于PBS的上游光路中,假設(shè)此時激光偏振矢量與PBS入射面存在初始對準偏失角。

    半波片旋轉(zhuǎn)之前由式(4)可得

    然后將半波片繞光軸旋轉(zhuǎn),如圖4(b)所示,旋 轉(zhuǎn) 之 后 式(11)中 的PR(θinit)與PT(θinit)變 為與,具體公式不再贅述,此時增益比可表示為

    3.5 旋轉(zhuǎn)擬合法

    旋轉(zhuǎn)擬合法是一種將半波片置于接收光路中,通過多次旋轉(zhuǎn)半波片,采用非線性最小二乘法擬合同時反演增益比、退偏比以及初始對準偏失角 θinit以完成增益比定標(biāo)的方法。該方法由美國宇航局的ALVAREZ等人提出[18]。

    如圖5所示,將一個半波片放置于PBS上游的光路中,假設(shè)此時激光偏振矢量與PBS入射面存在初始對準偏失角θinit。

    如果人為控制半波片相對于其初始光軸位置旋轉(zhuǎn) θh,j/2角,可獲得一系列由人為定量引入的對準偏失角θh,j。則由式(9)可得

    式中,j代表第j次旋轉(zhuǎn)半波片。觀察式(13),由于與TS可 認 為 是 已 知 量,那么式(13)中只有3個未知量,即增益比G、初始對準偏失角 θinit以及理論退偏比δ。此時一個方程無法求解3個未知數(shù),但由于多次旋轉(zhuǎn)半波片可得到多個方程,采用非線性最小二乘法對該方程組進行求解,即可解出3個未知數(shù)。需要注意的是,該方法要求至少得到3個方程,即j≥3。

    該方法的優(yōu)點為一次定標(biāo)可同時反演增益比、退偏比以及初始對準偏失角3個未知量,并且不需要知道先驗值。其缺點為定標(biāo)耗時較長,操作繁瑣,只適用于相對穩(wěn)定的大氣環(huán)境下。

    3.6 退偏器法

    退偏器法是一種通過在光路中添加光學(xué)元件將系統(tǒng)接收的回波信號轉(zhuǎn)換為非偏振光以完成增益比定標(biāo)的方法。其利用兩路探測通道信號強度之比進行定標(biāo),由式(4)可求解增益比G

    其中較為典型的是CALIOP利用退偏器產(chǎn)生的非退偏光信號來進行增益比定標(biāo)[19]。具體操作為在PBS上游光路放置一個可移動的退偏器,系統(tǒng)定標(biāo)時將其置于光路中,定標(biāo)結(jié)束后移出光路,如圖6所示。CALIOP采用該方法在夜間軌道上對系統(tǒng)進行增益比定標(biāo),并采用潔凈大氣分子法進行驗證[20]。

    該方法優(yōu)點為操作簡便并且可進行實時定標(biāo),從而排除大氣狀態(tài)改變造成的影響。其缺點為商用退偏器還難以產(chǎn)生完全的退偏光,易引入其它誤差。

    4 實驗結(jié)果與分析

    實驗所采用偏振激光雷達為典型的雙通道激光雷達,系統(tǒng)結(jié)構(gòu)如圖1所示(圖中相同的器件只標(biāo)注一次)。其中介于會聚透鏡與半波片之間的退偏器只有在采用退偏器法定標(biāo)時才會使用,其它時候不需要使用該光學(xué)器件。為了減少線偏振度誤差,實驗系統(tǒng)在出射光路中添加了起偏棱鏡,使得出射激光的消光比達到了 2×105∶1。為了減少偏振串?dāng)_誤差,實驗系統(tǒng)采用PBS與偏振片膠合的結(jié)構(gòu),使得TP:TS(RS:RP)>30 000∶1。因此,本文暫不討論線偏振度誤差與偏振串?dāng)_誤差,只討論對準誤差對增益比造成的影響。系統(tǒng)的具體參數(shù)如表1所示

    由于潔凈大氣分子法定標(biāo)誤差較大,因此,本文實驗主要對比分析了采用+45°法、±45°法、?45°法、旋轉(zhuǎn)擬合法與退偏器法等5種方法在不同對準偏失角(對準角誤差)情況下對增益比定標(biāo)的影響。

    為保證實驗有較高的信噪比,實驗時間選在夜間。同時,為了減少大氣變化而帶來影響,選取水平方向(俯仰角為0°)探測。在完成系統(tǒng)光軸校準后,使用電動旋轉(zhuǎn)電機(精度為0.005°)調(diào)整半波片到激光偏振矢量與PBS入射面平行的位置(目測透射通道平均信號最大時即為對應(yīng)位置),此時半波片的角度為0°初始值。需要注意的是,為了表述方便,下文在人為定量引入對準偏失角 θh時 ,未將初始對準偏失角 θinit表示在實際總的對準偏失角中,但實際上每個對準偏失角都包含了初始對準偏失角 θinit(θinit屬于未知量)。然后,以 θh=0°(實際對準偏失角為 θinit+0°)作為零點,使用電動旋轉(zhuǎn)電機旋轉(zhuǎn)半波片。一般來說,在實際操作過程中對準偏失角不會超過15°[21-22],但為了實驗的完整性,本文將對準偏失角的討論擴大至45°。

    +45°法、±45°法、?45°法與旋轉(zhuǎn)擬合法均以2.5°為 間隔旋轉(zhuǎn)半波片得到 θh=?45°~67.5°情況下共46組原始回波信號。通過對上述數(shù)據(jù)進行處理,+45°法、±45°法、?45°法與旋轉(zhuǎn)擬合法4種方法均選擇5°為間隔,選取 θh的范圍為?45° ~ +45°,(即每組數(shù)據(jù)兩個角度在半波片旋轉(zhuǎn)前后相差45°),計算后一共可獲得19組增益比數(shù)據(jù)。

    采用退偏器法時,在開始實驗之前需要在系統(tǒng)光路中添加退偏器,如圖1所示。由于退偏器是非理想的,為了觀察其至少一個周期的變化,退偏 器 法 以10°為間隔轉(zhuǎn)半波片得到 θh從?80°到+100°情況下共19組原始回波信號,通過對上述數(shù)據(jù)進行處理,一共可獲得19組增益比數(shù)據(jù)。

    表2是當(dāng)θh=0 °時,5種方法的定標(biāo)結(jié)果。觀察表2可以發(fā)現(xiàn),當(dāng)沒有對準偏失角時,±45°法、?45°法與旋轉(zhuǎn)擬合法定標(biāo)結(jié)果較為接近,可以認為上述3種方法在θh=0 °時最接近真實值。令上述3種方法在 θh=0°時測得增益比的平均值為真實值,并繪制出如圖7所示的5種定標(biāo)方法的相對誤差隨對準偏失角的變化曲線(旋轉(zhuǎn)擬合法與退偏器法計算過程詳見4.2與4.3節(jié))。

    4.1 +45°、±45°、?45°法

    如圖7所示,當(dāng)| θh|<15°時,±45°法與?45°法的定標(biāo)結(jié)果相近,相對誤差也較小,而+45°即使不存在對準偏失角時,定標(biāo)結(jié)果也與上述兩種方法存在較大差異,相對誤差可達4%。當(dāng) |θh|>15°時,+45°法與?45°法的定標(biāo)結(jié)果總體保持穩(wěn)定,而±45°法的定標(biāo)結(jié)果隨對準偏失角的增大而變得不穩(wěn)定,相對誤差急劇增大,甚至高達12.93%?!?5°法出現(xiàn)這樣誤差分布的原因主要在于其計算前后兩次測量數(shù)據(jù)的幾何平均,而?45°法則是在+45°法的基礎(chǔ)上計算前后兩次測量數(shù)據(jù)的算術(shù)平均。下文將通過具體理論分析來解釋+45°法出現(xiàn)上述現(xiàn)象的原因。

    對兩種方法進行相對誤差分析[23-24],令兩種方法旋轉(zhuǎn)半波片前后反射通道與透射通道探測到的功率分別為與,可得

    式中 δ1與 δ2分別代表?45°法與±45°法定標(biāo)結(jié)果的相對誤差,(S為R,T且n為a,b)代表各個測量值的不確定度(標(biāo)準差)。激光雷達中光子計數(shù)的信號可以認為服從泊松分布[25-26],因此統(tǒng)計誤差等于信號平均值的均方根,即,因此,式(15)與式(16)可進一步推導(dǎo)為與作差可發(fā)現(xiàn),,即?45°法的不確定度小于等于±45°法。事實上,根據(jù)實驗結(jié)果,±45°法在對準偏失角較大的情況下,定標(biāo)的增益比廓線的振蕩幅度的確要大于?45°法,這也解釋了圖7中±45°法在對準偏失角較大的情況下,誤差遠大于?45°法的原因。

    4.2 旋轉(zhuǎn)擬合法

    考慮到實際過程中對準偏失角的誤差不會超過15°,選擇 |θh|≤ 15°的13組數(shù)據(jù)(即θh,j=0°, ±2.5°,±5°···±15°)進行數(shù)據(jù)擬合,旋轉(zhuǎn)擬合法計算結(jié)果如圖8(彩圖見期刊電子版)所示,其中藍色圓圈代表在不同 θh情 況下的 δ?(θ),由式可知,求解增益比G、初始對準偏失角 θinit以及理論退偏比δ 3個未知數(shù)的方程組屬于非線性最小二乘法問題。求解之前需要對G、θinit與δ 3個未知數(shù)的初始值進行預(yù)測。為了得到最佳初始預(yù)測值,由圖8可知,與 θ之間的關(guān)系(藍色圓圈)可以近似h,j用一個二次多項式來表示[27],故以人為定量引入對準偏失角θh,j為自變量,實際測量退偏比為應(yīng)變量構(gòu)建如下二次多項式

    式中,A0、A1與A2均為二次多項式系數(shù)。擬合結(jié)果如圖8中紅色虛線所示,該二次多項式的最小值即代表初始對準偏失角 θinit,計算結(jié)果θinit=?A1/(2×A2)= ?0.35°,該值可作為 θinit的最佳初始預(yù)測值。接著,將θinit= ?0.35°代入式(13)并使用非線性最小二乘法求解方程組,求得增益比G=1.2716。

    4.3 退偏器法

    退偏器法計算結(jié)果如圖9(彩圖見期刊電子版)所示,其中藍色圓圈代表在半波片不同角度下計算的增益比,觀察各藍色圓圈的分布情況,可知其較為符合余弦曲線分布規(guī)律。故以半波片旋轉(zhuǎn)角度φ (θh=2φ) 為自變量,增益比G為應(yīng)變量構(gòu)建如下余弦函數(shù)多項式

    式中,B0、B1、B2與B3均代表余弦函數(shù)多項式的系數(shù)。擬合的結(jié)果如圖9中紅色虛線所示

    從理論上來說,假如回波信號為完全的非偏振光,那么無論如何改變半波片的角度都無法改變非偏振光的狀態(tài)。換句話說,旋轉(zhuǎn)半波片并不會影響增益比的數(shù)值,增益比定標(biāo)的結(jié)果應(yīng)該表征為一條平行于x軸的直線,而非像圖9中那樣表現(xiàn)為余弦的分布情況。導(dǎo)致該問題的原因是目前商用退偏器無法將偏振光完全轉(zhuǎn)化為非偏振光,回波信號在經(jīng)過退偏器之后仍包含一部分的偏振光。浙江大學(xué)羅敬等人以激光為光源,在測試退偏器的退偏效果時,發(fā)現(xiàn)測試結(jié)果也類似圖9中余弦分布的情況[28]。這說明即使在對準偏失角為 0°的情況下,增益比定標(biāo)結(jié)果仍會受到該部分偏振光的影響。

    需要注意的是,退偏器法測量的數(shù)據(jù)中只有5組數(shù)據(jù)的對準偏失角在?45°~ +45°內(nèi),所以該種方法在圖7中只標(biāo)有5個點。退偏器法在θh=0°時,相對誤差為5.6%。這說明即使在對準偏失角為0°的情況下,增益比定標(biāo)結(jié)果仍會受到該部分偏振光的影響。

    4.4 討論

    通過對實驗結(jié)果進行分析,可得知±45°法、?45°法與旋轉(zhuǎn)擬合法定標(biāo)結(jié)果最為準確,這和前文的理論分析一致。但是±45°法在對準偏失角較大的情況下誤差較大。旋轉(zhuǎn)擬合法定標(biāo)耗時較長,操作繁瑣,只適用于相對穩(wěn)定的大氣環(huán)境下。相比之下,?45°法操作更為簡便,定標(biāo)結(jié)果不受對準偏失角的影響,而且也無需進行初始0°角的搜尋,優(yōu)勢明顯。但是,?45°法也無法排除大氣狀態(tài)變化的影響,相比之下,只有退偏器法同時具有操作簡便,可排除大氣狀態(tài)變化影響的能力,而且也不存在多次旋轉(zhuǎn)半波片會增加角度積累誤差的問題,但目前商用退偏器仍無法產(chǎn)生完全的退偏光,這會引入新的誤差,且難以評估。綜上所述,建議偏振激光雷達研究人員在一般情況下采用?45°法定標(biāo),在有高精度退偏器的情況下采用退偏器法定標(biāo)。

    5 結(jié) 論

    增益比的定標(biāo)準確性對偏振激光雷達探測精度影響很大。本文系首次在原理與實驗上對比了現(xiàn)存多種增益比定標(biāo)方法,并給相關(guān)研究人員提出了增益比定標(biāo)方法選擇的指導(dǎo)意見。

    就可操作性而言,退偏器法只需在系統(tǒng)中插入退偏器即可完成定標(biāo),可排除大氣狀態(tài)改變造成的影響,而其余需要旋轉(zhuǎn)半波片的4種方法至少需要完成兩次旋轉(zhuǎn),操作相對復(fù)雜,而且無法排除大氣狀態(tài)改變造成的影響。就定標(biāo)準確性而言,實驗主要對比了+45°法、±45°法、?45°法、旋轉(zhuǎn)擬合法與退偏器法等5種方法(由于潔凈大氣分子法定標(biāo)誤差較大,本文未作實驗對比)在不同對準偏失角下對增益比定標(biāo)的影響。實驗結(jié)果表明,±45°法、?45°法與旋轉(zhuǎn)擬合法的定標(biāo)準確度相對較高,但±45°法與旋轉(zhuǎn)擬合法操作較為復(fù)雜?!?5°法在對準偏失角較大的情況下誤差較大。?45°法增益比定標(biāo)結(jié)果不受對準偏失角的影響,而且也無需進行初始0°角的搜尋。+45°法相對于前3種方法在沒有對準偏失角的情況下誤差更大。退偏器法受到非理想退偏器的影響較大,如果存在理想退偏器,那么這種方法將是一種理想的增益比定標(biāo)方法。通過對不同增益比定標(biāo)方法理論與實驗的對比,本文給出了增益比定標(biāo)方法的最佳選擇,即建議在一般情況下采用?45°法定標(biāo),有高精度退偏器的情況下采用退偏器法定標(biāo)。

    猜你喜歡
    對準定標(biāo)偏振
    我國為世界大豆精準選種“定標(biāo)”
    基于恒星的電離層成像儀在軌幾何定標(biāo)
    偏振糾纏雙光子態(tài)的糾纏特性分析
    電子制作(2019年12期)2019-07-16 08:45:20
    基于LabVIEW的偏振調(diào)制激光測距測量控制系統(tǒng)
    對準提升組織力的聚焦點——陜西以組織振興引領(lǐng)鄉(xiāng)村振興
    一種改進的速度加姿態(tài)匹配快速傳遞對準算法
    基于角反射器的機載毫米波云雷達外定標(biāo)實驗
    偏振旋轉(zhuǎn)效應(yīng)在全光緩存器中的應(yīng)用與實現(xiàn)
    INS/GPS組合系統(tǒng)初始滾轉(zhuǎn)角空中粗對準方法
    4m直徑均勻擴展定標(biāo)光源
    最近中文字幕高清免费大全6| 夜夜爽夜夜爽视频| 国产精品蜜桃在线观看| 韩国高清视频一区二区三区| 久久精品国产亚洲网站| 国产老妇伦熟女老妇高清| 在线观看美女被高潮喷水网站| 国产精品三级大全| 一边亲一边摸免费视频| 久久精品综合一区二区三区| 91久久精品国产一区二区三区| 日日干狠狠操夜夜爽| 国产片特级美女逼逼视频| 国产精品蜜桃在线观看| 成人高潮视频无遮挡免费网站| 亚洲精品久久久久久婷婷小说| 国产精品三级大全| 国产精品久久久久久精品电影小说 | 少妇的逼好多水| 一区二区三区乱码不卡18| 99热这里只有精品一区| 国产黄片美女视频| 久久久久久伊人网av| 免费观看无遮挡的男女| 亚洲图色成人| 99视频精品全部免费 在线| 亚洲欧美成人综合另类久久久| 久久综合国产亚洲精品| 亚洲成人一二三区av| 在线播放无遮挡| 中文天堂在线官网| 日本猛色少妇xxxxx猛交久久| 在现免费观看毛片| 可以在线观看毛片的网站| 成人毛片60女人毛片免费| 亚洲怡红院男人天堂| 最近中文字幕高清免费大全6| 麻豆精品久久久久久蜜桃| 亚洲三级黄色毛片| 日本黄大片高清| 亚洲一级一片aⅴ在线观看| 国精品久久久久久国模美| 亚洲精品成人av观看孕妇| 又黄又爽又刺激的免费视频.| 久久久久久久久久人人人人人人| 亚洲美女视频黄频| 97热精品久久久久久| 99热这里只有精品一区| 欧美不卡视频在线免费观看| 2021天堂中文幕一二区在线观| 青春草亚洲视频在线观看| 久久精品夜色国产| 精品久久久久久久人妻蜜臀av| 午夜福利高清视频| 青春草亚洲视频在线观看| 亚洲精品第二区| 国产激情偷乱视频一区二区| freevideosex欧美| 97超视频在线观看视频| 老司机影院成人| 男女那种视频在线观看| 91久久精品电影网| 国产精品精品国产色婷婷| 韩国高清视频一区二区三区| 精品少妇黑人巨大在线播放| 日韩精品有码人妻一区| 亚洲精品国产av成人精品| 亚洲国产精品国产精品| 精品一区二区三区人妻视频| 久久久久久久午夜电影| 免费黄色在线免费观看| 国产激情偷乱视频一区二区| 国产黄色免费在线视频| 国产精品女同一区二区软件| 非洲黑人性xxxx精品又粗又长| 成人午夜精彩视频在线观看| 免费看a级黄色片| 一级毛片 在线播放| 精品久久久久久久末码| 国产免费又黄又爽又色| 男的添女的下面高潮视频| 97在线视频观看| 最近2019中文字幕mv第一页| 日日摸夜夜添夜夜添av毛片| 欧美bdsm另类| 99久国产av精品国产电影| 免费少妇av软件| 我的老师免费观看完整版| 亚州av有码| 亚洲精品国产av成人精品| videos熟女内射| 九九在线视频观看精品| 国产国拍精品亚洲av在线观看| 国产片特级美女逼逼视频| 精品一区二区三卡| 日韩精品青青久久久久久| 99九九线精品视频在线观看视频| 亚洲av电影不卡..在线观看| 一级毛片黄色毛片免费观看视频| 亚洲欧洲日产国产| 成年人午夜在线观看视频 | 日韩欧美精品v在线| 日本av手机在线免费观看| 欧美极品一区二区三区四区| 你懂的网址亚洲精品在线观看| 精品一区二区免费观看| 一区二区三区免费毛片| 国产免费又黄又爽又色| 日日啪夜夜撸| 毛片一级片免费看久久久久| 国产色婷婷99| 亚洲成人中文字幕在线播放| 能在线免费看毛片的网站| 99热这里只有是精品50| 亚洲精品久久久久久婷婷小说| 欧美一区二区亚洲| 蜜桃亚洲精品一区二区三区| 熟女电影av网| 99九九线精品视频在线观看视频| 别揉我奶头 嗯啊视频| 精品熟女少妇av免费看| 听说在线观看完整版免费高清| 亚洲成人一二三区av| 久久鲁丝午夜福利片| 国内揄拍国产精品人妻在线| 国产亚洲精品久久久com| 一级毛片aaaaaa免费看小| 一区二区三区高清视频在线| 日本av手机在线免费观看| 别揉我奶头 嗯啊视频| 欧美区成人在线视频| 国产国拍精品亚洲av在线观看| 欧美xxxx性猛交bbbb| 日日摸夜夜添夜夜添av毛片| 亚洲av成人精品一二三区| 99热网站在线观看| 久久午夜福利片| 午夜激情福利司机影院| 干丝袜人妻中文字幕| 国产单亲对白刺激| 国产精品伦人一区二区| 丝袜喷水一区| 国产成人午夜福利电影在线观看| 国产伦在线观看视频一区| 成人综合一区亚洲| 国产探花极品一区二区| 美女脱内裤让男人舔精品视频| freevideosex欧美| 看非洲黑人一级黄片| 国产男人的电影天堂91| 在线观看美女被高潮喷水网站| 搡老乐熟女国产| 成年人午夜在线观看视频 | 久久久久精品久久久久真实原创| 2021少妇久久久久久久久久久| 国产免费又黄又爽又色| 国产一区二区在线观看日韩| 一区二区三区乱码不卡18| 青春草视频在线免费观看| 日日啪夜夜撸| 免费观看无遮挡的男女| 国产色爽女视频免费观看| 精品人妻偷拍中文字幕| 男女视频在线观看网站免费| 啦啦啦韩国在线观看视频| 91午夜精品亚洲一区二区三区| 国产高清国产精品国产三级 | 看非洲黑人一级黄片| 亚洲18禁久久av| 国产成人a∨麻豆精品| 国产中年淑女户外野战色| 久久精品国产亚洲av天美| 看黄色毛片网站| 日本免费在线观看一区| 黄片wwwwww| 一级a做视频免费观看| 综合色丁香网| 亚洲精品影视一区二区三区av| 99热6这里只有精品| 啦啦啦韩国在线观看视频| 九九在线视频观看精品| 婷婷六月久久综合丁香| 午夜激情欧美在线| 成人亚洲欧美一区二区av| 丰满乱子伦码专区| 亚洲国产精品国产精品| 欧美日韩在线观看h| 国产精品久久视频播放| 看黄色毛片网站| 在线观看一区二区三区| 水蜜桃什么品种好| 三级经典国产精品| 嫩草影院精品99| 中文字幕免费在线视频6| 精品熟女少妇av免费看| 国产免费视频播放在线视频 | or卡值多少钱| 国产乱人偷精品视频| ponron亚洲| 欧美日韩视频高清一区二区三区二| 极品少妇高潮喷水抽搐| 日韩精品青青久久久久久| 日韩av在线大香蕉| 日韩在线高清观看一区二区三区| 久久久久久久久大av| 精品人妻熟女av久视频| 99视频精品全部免费 在线| 激情 狠狠 欧美| 别揉我奶头 嗯啊视频| 久久精品人妻少妇| 一区二区三区乱码不卡18| 中国美白少妇内射xxxbb| 亚洲伊人久久精品综合| 欧美成人精品欧美一级黄| 成年女人看的毛片在线观看| 日日摸夜夜添夜夜爱| 一级毛片aaaaaa免费看小| 日韩欧美精品v在线| 久久久色成人| 免费无遮挡裸体视频| 高清av免费在线| 欧美 日韩 精品 国产| 一级毛片黄色毛片免费观看视频| 搡老乐熟女国产| 尤物成人国产欧美一区二区三区| 亚洲欧美日韩无卡精品| 在线免费观看不下载黄p国产| 免费无遮挡裸体视频| a级毛片免费高清观看在线播放| 免费看av在线观看网站| 1000部很黄的大片| 18禁在线无遮挡免费观看视频| 亚洲丝袜综合中文字幕| 日韩不卡一区二区三区视频在线| 亚洲精品第二区| 一个人看的www免费观看视频| 国产成人免费观看mmmm| 简卡轻食公司| 岛国毛片在线播放| 免费大片18禁| 亚洲丝袜综合中文字幕| www.色视频.com| 久久久久九九精品影院| 午夜爱爱视频在线播放| www.色视频.com| 中文精品一卡2卡3卡4更新| 最近手机中文字幕大全| 女的被弄到高潮叫床怎么办| 真实男女啪啪啪动态图| 色网站视频免费| 精品午夜福利在线看| 国产在视频线精品| 国产在视频线在精品| 精品酒店卫生间| 国产成人精品婷婷| 午夜福利视频精品| 一级黄片播放器| 欧美潮喷喷水| 日韩av在线免费看完整版不卡| 久久久久久久久久黄片| 插阴视频在线观看视频| 国产综合懂色| 亚洲欧美一区二区三区黑人 | 中文资源天堂在线| 午夜福利高清视频| 久久精品综合一区二区三区| 成人av在线播放网站| 夜夜爽夜夜爽视频| 午夜福利在线观看免费完整高清在| 精品午夜福利在线看| 久久国内精品自在自线图片| av在线老鸭窝| 国产乱人视频| 国产黄a三级三级三级人| 韩国av在线不卡| 久久亚洲国产成人精品v| 国产午夜精品久久久久久一区二区三区| 男女国产视频网站| 麻豆av噜噜一区二区三区| 国产精品一区二区三区四区免费观看| 亚洲av成人精品一二三区| 两个人视频免费观看高清| 极品少妇高潮喷水抽搐| 亚洲电影在线观看av| 亚洲内射少妇av| 99热这里只有是精品在线观看| 国产伦在线观看视频一区| 欧美日韩精品成人综合77777| 久久韩国三级中文字幕| 午夜精品国产一区二区电影 | 精品久久久久久久人妻蜜臀av| 久久久亚洲精品成人影院| 久久人人爽人人爽人人片va| 国产精品嫩草影院av在线观看| 赤兔流量卡办理| 日韩人妻高清精品专区| 欧美性感艳星| 亚洲精品乱码久久久v下载方式| 亚洲色图av天堂| 人人妻人人澡欧美一区二区| 国产高清国产精品国产三级 | www.色视频.com| 春色校园在线视频观看| 波多野结衣巨乳人妻| 亚洲乱码一区二区免费版| 国产高清国产精品国产三级 | 久久久久久久久久黄片| 一区二区三区乱码不卡18| av黄色大香蕉| 麻豆久久精品国产亚洲av| av一本久久久久| 久久草成人影院| 黄色日韩在线| 少妇的逼好多水| 女的被弄到高潮叫床怎么办| 看免费成人av毛片| 日韩av在线免费看完整版不卡| 97在线视频观看| 中文乱码字字幕精品一区二区三区 | 身体一侧抽搐| 观看美女的网站| 啦啦啦韩国在线观看视频| 天堂中文最新版在线下载 | 久久精品久久久久久噜噜老黄| 国精品久久久久久国模美| 一级爰片在线观看| 永久免费av网站大全| 国产综合精华液| 狠狠精品人妻久久久久久综合| 国产成人精品久久久久久| 91在线精品国自产拍蜜月| 国产成人a区在线观看| 婷婷色麻豆天堂久久| 欧美性猛交╳xxx乱大交人| 别揉我奶头 嗯啊视频| 只有这里有精品99| 一二三四中文在线观看免费高清| 久久这里有精品视频免费| 亚洲精品日韩av片在线观看| 日韩欧美精品免费久久| 欧美变态另类bdsm刘玥| 国产精品福利在线免费观看| 男插女下体视频免费在线播放| 午夜精品一区二区三区免费看| 久久99蜜桃精品久久| 国产在视频线精品| 国产精品不卡视频一区二区| 日韩不卡一区二区三区视频在线| 亚洲国产精品成人久久小说| 亚洲色图av天堂| 中文精品一卡2卡3卡4更新| 女人被狂操c到高潮| 99视频精品全部免费 在线| 一边亲一边摸免费视频| 久久草成人影院| 最近最新中文字幕大全免费视频 | 97在线人人人人妻| 亚洲欧美一区二区三区黑人 | 美女中出高潮动态图| 日韩av在线免费看完整版不卡| 久久影院123| 伊人久久国产一区二区| av.在线天堂| 国产精品欧美亚洲77777| 水蜜桃什么品种好| 亚洲视频免费观看视频| 国产黄色免费在线视频| 久久 成人 亚洲| 国产精品蜜桃在线观看| 亚洲在久久综合| 久久久久精品久久久久真实原创| 国产成人免费无遮挡视频| 日本欧美视频一区| 国产极品天堂在线| 好男人视频免费观看在线| 国产欧美日韩一区二区三区在线| 亚洲欧美精品自产自拍| 一本—道久久a久久精品蜜桃钙片| 一本大道久久a久久精品| 欧美97在线视频| av在线观看视频网站免费| 亚洲 欧美一区二区三区| 国产精品久久久久久久久免| 国产欧美亚洲国产| 色吧在线观看| 欧美日韩精品网址| 中文字幕人妻丝袜一区二区 | 五月伊人婷婷丁香| 久久97久久精品| 男女午夜视频在线观看| 国产成人精品在线电影| 国产精品秋霞免费鲁丝片| 精品国产露脸久久av麻豆| 中国国产av一级| 免费看不卡的av| 久久午夜综合久久蜜桃| 十八禁网站网址无遮挡| 精品少妇内射三级| 99精国产麻豆久久婷婷| 免费在线观看视频国产中文字幕亚洲 | 天天操日日干夜夜撸| 97在线视频观看| 久热久热在线精品观看| 亚洲在久久综合| 欧美日韩精品成人综合77777| av在线播放精品| 亚洲图色成人| 人成视频在线观看免费观看| 青春草亚洲视频在线观看| 久热久热在线精品观看| 叶爱在线成人免费视频播放| 新久久久久国产一级毛片| 婷婷色av中文字幕| 捣出白浆h1v1| 国产一区二区在线观看av| 激情视频va一区二区三区| 最近中文字幕2019免费版| 黄色毛片三级朝国网站| 亚洲第一青青草原| 成人影院久久| 精品视频人人做人人爽| 99热网站在线观看| 中文字幕制服av| 如日韩欧美国产精品一区二区三区| 97精品久久久久久久久久精品| 老鸭窝网址在线观看| 99久国产av精品国产电影| 精品国产一区二区三区久久久樱花| 99九九在线精品视频| 午夜福利在线免费观看网站| 久久 成人 亚洲| 成人免费观看视频高清| 卡戴珊不雅视频在线播放| 精品人妻熟女毛片av久久网站| 国产成人av激情在线播放| 一区二区日韩欧美中文字幕| 又粗又硬又长又爽又黄的视频| 国产又爽黄色视频| 亚洲欧洲国产日韩| 黄网站色视频无遮挡免费观看| 欧美激情高清一区二区三区 | 熟妇人妻不卡中文字幕| 午夜福利一区二区在线看| 最近最新中文字幕大全免费视频 | 日韩一区二区视频免费看| 亚洲伊人久久精品综合| 亚洲欧美一区二区三区国产| 成人亚洲精品一区在线观看| 青春草亚洲视频在线观看| 午夜福利视频在线观看免费| av福利片在线| 亚洲五月色婷婷综合| 纵有疾风起免费观看全集完整版| 亚洲婷婷狠狠爱综合网| 亚洲国产日韩一区二区| 七月丁香在线播放| 国产精品人妻久久久影院| 老汉色∧v一级毛片| 亚洲一区二区三区欧美精品| 成年人午夜在线观看视频| 欧美日韩综合久久久久久| 综合色丁香网| tube8黄色片| 久久精品久久久久久噜噜老黄| 少妇熟女欧美另类| 免费女性裸体啪啪无遮挡网站| 黑人欧美特级aaaaaa片| 亚洲精品久久成人aⅴ小说| av片东京热男人的天堂| 黄色 视频免费看| 欧美日韩成人在线一区二区| 人妻少妇偷人精品九色| 黄片无遮挡物在线观看| 乱人伦中国视频| 久久久久国产一级毛片高清牌| 亚洲视频免费观看视频| 91精品国产国语对白视频| 叶爱在线成人免费视频播放| 国产成人aa在线观看| 91aial.com中文字幕在线观看| 久久人人爽人人片av| 日韩精品有码人妻一区| 巨乳人妻的诱惑在线观看| 国产精品 欧美亚洲| 熟女av电影| 美女福利国产在线| 欧美xxⅹ黑人| 国产亚洲一区二区精品| 久久久精品国产亚洲av高清涩受| 日韩电影二区| 国产一区二区 视频在线| 久久精品人人爽人人爽视色| a 毛片基地| 男人操女人黄网站| 国产野战对白在线观看| 黑人猛操日本美女一级片| 久久鲁丝午夜福利片| 国产免费一区二区三区四区乱码| 电影成人av| 国产精品久久久久久久久免| av片东京热男人的天堂| 久久国产精品男人的天堂亚洲| 久久影院123| 岛国毛片在线播放| 99久国产av精品国产电影| 国产黄频视频在线观看| 九九爱精品视频在线观看| 少妇的丰满在线观看| 精品人妻在线不人妻| 啦啦啦中文免费视频观看日本| 你懂的网址亚洲精品在线观看| 欧美日韩av久久| 波多野结衣一区麻豆| 18禁观看日本| 2018国产大陆天天弄谢| 午夜福利,免费看| 色播在线永久视频| 亚洲av欧美aⅴ国产| 在线亚洲精品国产二区图片欧美| 亚洲综合色网址| 十八禁网站网址无遮挡| 国产精品久久久久成人av| 久久99精品国语久久久| 97在线人人人人妻| 一边亲一边摸免费视频| 国产一区二区激情短视频 | 国产一区二区三区综合在线观看| 亚洲四区av| 国产极品天堂在线| 精品亚洲成a人片在线观看| 午夜久久久在线观看| 黄色一级大片看看| 婷婷色综合www| 国产极品天堂在线| 男女午夜视频在线观看| 国产亚洲午夜精品一区二区久久| 五月开心婷婷网| 一本大道久久a久久精品| 91午夜精品亚洲一区二区三区| 亚洲国产欧美日韩在线播放| 亚洲综合色网址| 老汉色av国产亚洲站长工具| 日本欧美国产在线视频| 午夜av观看不卡| 日本欧美视频一区| 国精品久久久久久国模美| 亚洲一码二码三码区别大吗| 国产欧美日韩一区二区三区在线| 国产精品免费大片| 美女高潮到喷水免费观看| 丝袜脚勾引网站| 国产极品粉嫩免费观看在线| 日韩电影二区| 热re99久久国产66热| 一级,二级,三级黄色视频| 国产欧美日韩一区二区三区在线| 午夜久久久在线观看| 亚洲欧美一区二区三区黑人 | 日本色播在线视频| 一级爰片在线观看| 啦啦啦在线免费观看视频4| 寂寞人妻少妇视频99o| 一区二区三区激情视频| 日日撸夜夜添| 91精品三级在线观看| 亚洲国产最新在线播放| 男女下面插进去视频免费观看| 在线亚洲精品国产二区图片欧美| 免费久久久久久久精品成人欧美视频| 成人亚洲精品一区在线观看| 国产精品久久久久久av不卡| 女人久久www免费人成看片| 香蕉国产在线看| √禁漫天堂资源中文www| 免费少妇av软件| 七月丁香在线播放| 九九爱精品视频在线观看| 亚洲激情五月婷婷啪啪| 狂野欧美激情性bbbbbb| 日本-黄色视频高清免费观看| 亚洲av免费高清在线观看| 免费观看在线日韩| 国产老妇伦熟女老妇高清| 亚洲精品aⅴ在线观看| 国产在视频线精品| 欧美黄色片欧美黄色片| 久久精品国产综合久久久| 亚洲av中文av极速乱| 丝瓜视频免费看黄片| 伦理电影免费视频| 你懂的网址亚洲精品在线观看| 午夜老司机福利剧场| 国产有黄有色有爽视频| 黄色毛片三级朝国网站| 我要看黄色一级片免费的| 亚洲第一区二区三区不卡| 午夜老司机福利剧场| 大陆偷拍与自拍| 免费在线观看视频国产中文字幕亚洲 | 免费人妻精品一区二区三区视频| 国产1区2区3区精品| 在线天堂中文资源库| 9色porny在线观看| 午夜免费观看性视频| 精品第一国产精品| 岛国毛片在线播放| 不卡av一区二区三区| 欧美日韩视频精品一区| 亚洲欧美色中文字幕在线| 天美传媒精品一区二区| 交换朋友夫妻互换小说| 欧美 日韩 精品 国产| 午夜激情久久久久久久| 日韩熟女老妇一区二区性免费视频| 少妇人妻精品综合一区二区|