• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Ground States to the Generalized Nonlinear Schr¨odinger Equations with Bernstein Symbols

    2021-06-11 07:45:44JinmyoungSeokandYounghunHong
    Analysis in Theory and Applications 2021年2期

    Jinmyoung Seokand Younghun Hong

    1 Department of Mathematics,Kyonggi Univeristy,Suwon 16227,Korea

    2 Department of Mathematics,Chung-Ang University,Seoul 06974,Korea

    Abstract. This paper concerns with existence and qualitative properties of ground states to generalized nonlinear Schr¨odinger equations (gNLS) with abstract symbols.Under some structural assumptions on the symbol,we prove a ground state exists and it satisfies several fundamental properties that the ground state to the standard NLS enjoys.Furthermore,by imposing additional assumptions,we construct,in small mass case,a nontrivial radially symmetric solution to gNLS with H1-subcritical nonlinearity,even if the natural energy space does not control the H1-subcritical nonlinearity.

    Key Words: Generalized NLS,solitary waves,variational methods,Bernstein symbols.

    1 Introduction

    We consider the generalized nonlinear Schr¨odinger equation (NLS for abbreviation) of the form

    In this article,we are concerned with the ground state solution to the generalized NLS(1.1). By a ground state,we mean a standing wave solution of the form

    which minimizes the value of the action integral. A rigorous definition of a ground state shall be given in Section 4. As for the standard NLS,i.e.,the caseP(λ)=λ,inserting the standing wave ansatz(1.2)into(1.1),we get the standard stationary NLS

    In this case, the theory of ground states has been almost completed during several decades. A criteria for their existence and nonexistence, depending on the range ofμandp, is established in [1,22,23]. Qualitative properties of ground states, such as positiveness,radial symmetry,monotonicity,and uniqueness have been proved in[4,13,14].

    With a general symbolP,the stationary generalized NLS is given by

    In this paper,we are interested in finding general conditions on the symbolPwhich allow ground states to the generalized NLS (1.4) to have the same kinds of qualitative properties. We propose the following structural assumptions for the symbolP:

    (H1)P:[0,∞)→[0,∞)is continuous on[0,∞)and smooth on(0,∞);

    (H2)Pis a Bernstein function,i.e.,P′is totally monotone(see Section 2 for definition);

    Our first theorem states that by assuming(H1)–(H3),one can construct a ground state to(1.4)that fulfills desired qualitative properties.

    Theorem 1.1(Existence of a ground state).Suppose(H1)–(H3).Let p ∈(1,(d+s)/(d ?s))be given. Then for anyμ>0,the generalizedNLS

    possesses a ground state u ∈HP+μwhich is positive,radially symmetric and monotone decreasing in the radial direction.

    The sign-definiteness of a ground state is naturally expected for the original NLS as a result of Hopf maximum principle enjoyed by second order elliptic PDEs. Here, we show that the minimizing property of a ground state and the strict positiveness of the fundamental solution of the operatorP(?Δ)+μgives the same consequence.

    Theorem 1.2 (Sign-definiteness of a ground state).Suppose(H1)–(H3). Let p ∈(1,(d+s)/(d ?s))be given and u ∈HPμ be a ground state to(1.4).Then u0is either positive everywhere or negative everywhere.

    The radial symmetry of a ground state is usually shown by the moving plain method [13] for standard NLS or by strict Riesz rearrangement inequality [17] for fractional NLS and pseudo-relativistic NLS.These methods do not seem to work without the explicit form ofP. As for uniqueness,a standard argument requires spectral information for the linearized operator at the ground state(see[4]). In[16],Lenzmann showed by a perturbative method that a(radial)ground state to pseudo-relativistic nonlinear Hartree equations (NLH for abbreviation) is unique for the small mass case. In [8], the authors developed,in a similar point of view,some perturbative arguments that show the uniqueness,up to a translation,of a(possibly non-radial)ground state to higher-order NLH.In the same spirit,we are able to show the symmetry and uniqueness of a ground state under more restrictive assumptions onPandpwhenμis sufficiently small. More precisely,we require that

    We note that the choices ofP(0)=0 andP′(0)=1 in(H4)are just for numerical simplicity. Indeed,the assumption(H4)can be relaxed to

    by a simple reformulation of Eq.(1.4).

    Theorem 1.3 (Uniqueness of a ground state).Suppose(H1)–(H4). Let p ∈(1,d/(d ?s))be given and u ∈HPμ be a positive ground state to(1.4). Then there exists μ0> 0such that ifμ∈(0,μ0)then u is unique up to a translation.

    The uniqueness result asserted in Theorem 1.3 is perturbative in nature. Indeed,the smallness of the massμis transferred to the smallness of?>0 in the equation plays an indispensable role in the proof.

    Theorem 1.4(Existence of a radial solution forH1subcritical range ofp).Suppose(H1)–(H4). For any p ∈(1,(d+2)/(d ?2))and any q>d/s, there exists μ0> 0such that ifμ∈(0,μ0)then there exists a radially symmetric nontrivial solution u ∈Ws,q(Rd)to(1.4).

    The rest of this paper is organized as follows.In Section 2,we introduce the concept of Bernstein functions and the properties of Fourier multiplier operators made by Bernstein symbols. In Section 3, we construct a nontrivial radial solution to (1.4) for small massμ>0 by using perturbation argument. Section 4 is devoted to the study of existence and qualitative properties on ground states to(1.4).

    2 Preliminaries

    2.1 Bernstein functions

    A continuous functionf: [0,∞)→[0,∞)is said to betotally monotoneif it is smooth on(0,∞),and

    for all nonnegative integernandλ> 0, wheref(n)is then-th derivative off. Totally monotone functions are an important class of functions in many areas of analysis. We refer the book[21]for a comprehensive overview. As for totally monotone functions,an important theorem is Bernstein’s theorem. It asserts that a totally monotone function is the Laplace transform of a Borel measure.

    Theorem 2.1(Bernstein’s theorem[2]).If f:[0,∞)→[0,∞)is totally monotone,then there exists a non-negative Borel measureμon[0,∞)such that

    From now on,we assume thatf: [0,∞)→[0,∞)andf′is totally monotone. Such a function is called aBernstein function. Note that the symbols(λ+m2)s ?m2s,0

    This function space is equipped with the inner product

    First,we prove that the symmetric decreasing rearrangement reduces the norm.

    Proposition 2.1 (P′olya-Szeg¨o inequality).Suppose that f: [0,∞)→[0,∞)is a Bernstein function. Then,for any non-negative function u ∈Hf(Rd;R),we have

    where u?is the symmetric decreasing rearrangement of u.

    Proof.We claim that iffis a Bernstein function,thene?f(λ)is totally monotone. For the claim,it suffices to show that then-th derivative ofe?f(λ)is of the form(?1)ne?f(λ)gn(λ),wheregnis a(non-negative)totally monotone function. Whenn=0,it is obviously true withg0= 1. Suppose that the claim holds whenn=k. Then,the next order derivative ofe?f(λ)is(?1)k+1e?f(λ)gk+1(λ),where

    By functional calculus,we write

    Note that by the claim and Bernstein’s theorem,for eachs ≥0,there exists a non-negative Borel measureμssuch that Hence, insertingλ=?Δ, we see that the operatore?s f(?Δ)is the convolution of the radially symmetric,non-negative and decreasing function

    Thus we complete the proof.

    Next,we prove the symmetry and the positivity of the fundamental solution.

    Proposition 2.2(Positivity of the fundamental solution).If f: [0,∞)→[0,∞)is a Bernstein function, then the fundamental solutionΦ = Φf for the differential operator f(?Δ)is radially symmetric,strictly positive and decreasing.Proof.It follows from

    (2.1)and the heat kernel.

    We also show that a real-valued function inHfcan be orthogonally decomposed into two functions having different signs.

    Proposition 2.3 (Orthogonal decomposition).Suppose that f: [0,∞)→[0,∞)is a Bernstein function. Then, for any u ∈ Hf(Rd;R), there exist u± ∈ Hf(Rd;R)such that u=u+?u?,u± ≥0a.e. and〈u+,u?〉Hf(Rd;R)=0.

    Proof.LetKbe the set of non-negative functions inHf(Rd;R),which is a closed convex non-empty cone inHf(Rd;R). Then, by Theorem 3.4 in [12] (see [19] for the original work),there exists a unique decompositionu=u1+u2,withu1∈Kandu2∈K?,such that〈u1,u2〉Hf(Rd;R)=0,whereK?is the dual cone ofKdefined by

    It remains to show that everyw ∈K?is non-positive. Indeed,ifu ∈C∞c(Rd;R)is nonnegative,then by Proposition 2.2,so is Φ?u. Therefore,for anyw ∈K?,we have

    However,sinceuis arbitrary,this proves thatwis non-positive.

    2.2 Assumptions on the symbol P and its properties

    Here we recall the structural assumptions for the symbolP:

    (H1)P:[0,∞)→[0,∞)is continuous on[0,∞)and smooth on(0,∞);

    (H2)Pis a Bernstein function,i.e.,P′is totally monotone;

    (H4)P(0)=0,P′(0)=1 andP′′(0)exists.

    The advantage of assuming (H2) is to provide a nice integral representation of the symbol from which several important properties in our analysis are deduced.

    Lemma 2.1(Integral representation of the symbol).Suppose that the symbol P:[0,∞)→Rsatisfies(H2). Then,there exists a unique measureμon[0,∞)such that

    As a consequence,if we further assume(H4),then the zeroth and the first moments of the measure is finite and

    Proof.By the fundamental theorem of calculus,we have

    By(H2),it follows from Bernstein’s theorem for complete monotone functions[21,Theorem 1.4]that

    for some unique measureμon[0,∞). Therefore,inserting the integral formula forP′(λ)and then integrating in?,we obtain(2.2).

    By(H2),the symbolPis sub-linear,and differentiation reduces the degree of the symbol.

    Lemma 2.2(Properties of the symbol).Suppose that P:[0,∞)→Rsatisfies(H2).

    (i) For all λ1,λ2≥0,we have P(λ1+λ2)≤P(λ1)+P(λ2).

    (ii) For any integer k ≥0and λ ≥0,we have|P(k)(λ)|λ?kP(λ).

    Proof.(i)By(2.2),we have

    (ii)Differentiating(2.2)ktimes,we write

    and then apply the elementary inequality

    Thus we complete the proof.

    3 Construction of a radial solution to the generalized NLS in H1 subcritical range of p

    This section is devoted to prove Theorem 1.4. Consider a one-parameter family of nonlinear elliptic equations

    whereP?(λ) =P(?λ)/λ. IfP′(0) exists, Eq. (3.1) formally converges to the nonlinear elliptic equation

    We remark that Eq.(3.1)is possibly supercritical,since the differential operator may have a lower order than the Laplacian(see Lemma 2.2(i)).

    In this section, we impose the hypotheses (H1)–(H4) on the symbolPto establish existence of a non-trivial solution to (3.1) by the contraction mapping argument in [6]provided that?is sufficiently small.

    The following two lemmas will be employed in the contraction mapping argument.The first lemma asserts a certain coercivity of the Fourier multiplierP?(?Δ).

    Lemma 3.1(Coercivity).Suppose that(H1)–(H3)hold for some s ∈(0,2]. Letμ> 0. Then,for any1

    where‖·‖L(Lq;Ws,q)denotes the standard operator norm from Lq to Ws,q.

    Proof.By the H¨ormander-Mikhlin theorem,it suffices to show that for all integerk ≥0,

    withj1+···jm=k. We prove the claim by induction. The zeroth step is trivial. If the claim is true for thek-th step, then the (k+1)-th step follows, because when the derivative hits one of the fractions,it generates fractions of the same kind. Precisely,we have

    The second lemma claims the convergenceP?(?Δ)→?Δ in the norm resolvent sense.

    Lemma 3.2(Norm resolvent convergence ofP?).Suppose that(H1)–(H4)hold for some s ∈(0,2]. Letμ>0. Then,for any1

    Proof.By the H¨ormander-Mikhlin theorem again,it suffices to show that

    and by(3.4),we have

    It is obvious that

    and we have shown that

    (see(3.4)). Thus,it remains to consider the last factor(λ ?P?(λ)). Indeed,differentiating(2.2)and using(2.3),one can show that

    Therefore,collecting all,we complete the proof of(3.7).

    3.1 Construction of a non-trivial solution

    Now,we seek for a solution of the form near the ground state to the limit equation. Note that Theorem 3.1 below obviously includes Theorem 1.4.

    Theorem 3.1(Existence and local uniqueness of a non-trivial solution).Suppose that(H1)–(H4)for some s ∈(0,2]. Assuming(3.3),let u0be the unique radially symmetric solution to the limit equation(3.2). Then,there exists small ?0>0such that Eq.(3.1)has a non-trivial radially symmetric solution u?∈Ws,q for all r ≥2. Moreover, u?is a unique radial solution in the neighborhood of u0with respect to the norm‖·‖Ws,q.

    We insertu?=u0+w?,assuming that the differencew?is small. Then,reorganizing in the linearized form,the equation forw?is derived as

    We claim that the linearized operator on the left hand side is invertible.

    Lemma 3.3(Invertibility of the linearized operator).Suppose that(H1)–(H4)hold for some s ∈(0,2]. Then,for any q ∈[2,∞),there exists small ?0> 0such that if0

    Proof.We write

    where

    Therefore,

    is invertible onLqr, and its inverse is uniformly bounded. Therefore, inverting(3.9)and applying Lemma 3.1,we complete the proof.

    We aim to find a solution to (3.10) by a contraction mapping argument. The following elementary inequality is helpful to handle the nonlinearity in the equation.

    Lemma 3.4.If a>0and p>1,then

    Proof.By the fundamental theorem of calculus,

    If 1

    we obtain the desired bound. Ifp> 2, we apply the fundamental theorem of calculus again to get

    Therefore, there exists small?0> 0 (depending on the functionu0) such that for?∈(0,?0],

    while ifp>2,

    Collecting all, we conclude that Φ is contractive onBδ(0). Therefore, Eq. (3.10) (consequently,(3.1))has a unique solution inBδ(0).

    4 Ground state for the generalized lower-order NLS

    In this section we prove Theorems 1.1–1.3. Throughout this section,μdenotes a positive constant.

    4.1 Variational settings

    For a symbolPsatisfying(H1)–(H3),we consider the Hilbert spaceHP+μ=HP+μ(Rd;R).We note thatP+μis a Bernstein function because so isP. By(P2)and Sobolev embedding,one has a natural embedding

    Then the functionalIgiven by

    is well-defined andC1onHP+μ. It is clear that (1.4) is the Euler-Lagrange equation of(4.1).

    We sayu0∈HP+μis a ground state to(1.4)ifu0is a critical point ofIandI(u0)≤I(v)for any nontrivial critical pointv ∈HP+μofI.

    4.2 Existence of a ground state

    In this subsection,we construct a ground state for the generalized NLS,which is positive,radially symmetric and monotone decreasing up to translation. We shall be done by establishing existence of a minimizer for the variational problem

    Such a minimizer is of course a ground state for the generalized NLS,since every critical point ofIsatisfies the constraint.

    The following lemma is trivial, but we write it as a lemma, because it will be used frequently.

    Lemma 4.1.Suppose that u is admissible for the variational problem(4.2),i.e.,u/=0and

    We assume that

    Then,there exists t ∈(0,1]such that t?u is admissible and

    If we further assume that either the inequality(4.3a)or(4.3b)holds strictly,then

    Proof.Since

    there existst ∈(0,1]such thatt?uis admissible,i.e.,

    Therefore,by(4.3a),it follows that

    If either(4.3a)or(4.3b)holds strictly,thent<1 andI(t?u)

    Proof of Theorem1.1.By the constraint,

    for admissibleu. Let{un}∞n=1?HP+μbe a minimizing sequence. For eachn, applying Proposition 2.3, we writeun=un,+?un,?such thatun,± ∈HP+μ,u± ≥0 and〈un,+,un,?〉HP+μ= 0. We define a new sequence{?un}∞n=1by ?un=un,++un,?≥|un|.Then,we have

    Thus,it follows from Lemma 4.1 that there exists{tn}∞n=1?(0,1]such that{tn?un}∞n=1is also a minimizing sequence. Replacingunbytn?un,we assume thatunis nonnegative.

    Letu?n, wheref?is the symmetric decreasing rearrangements off ≥0. Then, by P′olya-Szeg¨o inequality(Proposition 2.1)and the measure preserving property of the rearrangement,

    Hence,by Lemma 4.1 again,we can find a sequence{tn}∞n=1?(0,1]such that{tnu?n}∞n=1is also a minimizing sequence. Replacingunbytnu?n,we assume thatunis radially symmetric and monotone decreasing.

    We now have a minimizing sequence{un}∞n=1of nonnegative radially symmetric functions monotone decreasing in the radial direction. Hence,passing to a subsequence,{un}weakly converges to someuinHP+μ,which implies that

    and{un}converges toua.e. This shows thatuis also nonnegative radial symmetric function monotone decreasing in radial direction.

    This implies a positive lower bound of‖un‖HP+μ, which makes a contradiction. Thus,choosing appropriatet ∈(0,1]by Lemma 4.1 as above,we can maketuadmissible,and

    Therefore,we conclude thattuis a minimizer.

    We once more redefiningtuasuso thatuis a nonnegative ground state to(1.4)which is radially symmetric and decreasing in radial direction. It remains to show thatuis strictly positive everywhere. Let ΦP+μbe the fundamental solution of the differential operatorP(?Δ)+μ. By Proposition 2.2,it is strictly positive. Since the ground stateuis represented by

    we see thatuis strictly positive. This completes the proof.

    4.3 Sign-definiteness of a ground state

    This subsection is devoted to prove Theorem 1.2,the sign-definiteness of a ground state to(1.4).

    Proof of Theorem1.2.By Proposition 2.3,there are non-negativeu± ∈HP+μsuch thatu=u+?u?,〈u+,u?〉HP+μ= 0. We observe thatu+(x)u?(x) = 0 for allx ∈Rd. In other words,u+andu?have disjoint supports,

    Indeed,if(4.4)does not hold,the function ?u=u++u?obeys‖?u‖2HP+μ=‖u‖2HP+μand

    where the inequality holds strictly due to cross terms. Thus, it follows from Lemma 4.1 that there existst ∈(0,1]such thattuis admissible andI(tu)

    Next,we claim that

    To prove the claim,we note that by(4.4),the equality holds in(4.5).As a consequence,the function ?udefined previously is also a minimizer, so it is a solution to (1.4). Moreover,?u=|u|. For contradiction, we assume thatu+/= 0 andu?/= 0. Observe from the orthogonality ofu+andu?that

    Then either

    The strict inequality is due to the assumption thatu?/= 0. Sinceuis a minimizer, this makes a contradiction and the claim is proved. Finally, we have already seen in the proof of Theorem 1.1 that a nonnegative (nonpositive) minimizer is positive (negative)everywhere since the fundamental solution ΦP+μofP+μis strictly positive. This ends the proof.

    4.4 Uniqueness of a ground state

    Here, we prove Theorem 1.3. Throughout this subsection, we assume(H1)–(H4)on the symbolPhold. We fix arbitrarily chosenp ∈(1,d/(d ?s))and denote byu0the unique radial positive ground state to the original NLS,

    As mentioned in Section 3,the generalized NLS

    is equivalently transformed to

    Lemma 4.2 (Convergence).Let v?∈HP?+1be a positive ground state to(4.9). Then there exists{a?}?Rd such that

    Proof.The lemma is a natural consequence of energy minimality of the ground statesv?to(4.9). We refer to Proposition 2.3 in[8],with which their proof follows the exactly same lines. We omit the proof for avoiding the paper too lengthy.

    Lemma 4.3 (Nondegeneracy).Let {v?} ?HP?+1be a family positive ground state to(4.9)such that{v?}converges to u0in HP?+1as ?→0. Define the linearized operator by

    Then there exists a constant β>0independent of small ?>0such that

    for any g ∈HP?+1which is HP?+1orthogonal to ?xiv?for each i=1,···,d.

    Proof.This lemma can be proved in the same spirit with Lemma 3.3 but one should take care on the change of function spaces from the radial function space (Ws,qr →span{?xiv?|i= 1,···,d}⊥). This can be easily done by repeating the proof of Proposition 3.3 in[8]. We omit it.

    Proof of Theorem1.3.Let{v?},{?v?} ?HP?+1be two families of positive radially symmetric ground states to (4.9). By Lemma 4.2, we may assume that both of{v?}and{?v?}converge tou0inHP?+1as?→0 by taking translations if necessary. This means that

    Let{a?}?Rdbe a family of vectors such that

    Then one has

    since

    We redefine ?v?(·?a?)by ?v?so that ?v?is still a ground state, ?v??v?is orthogonal to?xiv?inHP?+1and lim?→0‖v???v?‖HP?+1=0 by definition ofa?.

    Let us definer?= ?v??v?. From Eq.(4.9),one has

    so that by Lemma 4.3,

    It is easy to see from (H3) that there exists a uniform constantC> 0 independent of?∈(0,1)such that

    Then we invoke Lemma 3.4 and H¨older inequality to obtain

    Combining this with(4.16)and using the fact that lim?→0‖r?‖HP?+1=0,we getr?=0 for sufficiently small?>0. This shows ?v?=v?and ends the proof.

    Acknowledgements

    This research of the first author was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT(NRF-2020R1A2C4002615). This research of the second author was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Science and ICT(NRF-2020R1C1C1A01006415)

    女人爽到高潮嗷嗷叫在线视频| 国产老妇伦熟女老妇高清| 啦啦啦在线观看免费高清www| 中文字幕人妻熟女乱码| 又大又爽又粗| 亚洲美女黄色视频免费看| 日韩av在线免费看完整版不卡| 黄频高清免费视频| 亚洲成色77777| 美女高潮到喷水免费观看| 欧美激情极品国产一区二区三区| av视频免费观看在线观看| 黄片小视频在线播放| 久久av网站| 五月开心婷婷网| 久久国产精品大桥未久av| 国产精品.久久久| 国产精品.久久久| 夫妻性生交免费视频一级片| 亚洲国产精品999| 欧美黑人欧美精品刺激| 日韩一区二区视频免费看| 天天影视国产精品| 亚洲精品一区蜜桃| 乱人伦中国视频| 亚洲伊人色综图| 丝袜喷水一区| 精品国产一区二区三区四区第35| 国产av一区二区精品久久| 人妻一区二区av| 亚洲第一青青草原| 十八禁网站网址无遮挡| 国产在线免费精品| 尾随美女入室| 久久鲁丝午夜福利片| videos熟女内射| 欧美日韩亚洲高清精品| 又黄又粗又硬又大视频| 日韩免费高清中文字幕av| 热99国产精品久久久久久7| 亚洲一区中文字幕在线| 亚洲欧美激情在线| 亚洲av综合色区一区| 999久久久国产精品视频| 日韩制服丝袜自拍偷拍| 久久久久久久大尺度免费视频| 国产一级毛片在线| 飞空精品影院首页| 乱人伦中国视频| 免费黄频网站在线观看国产| 精品少妇内射三级| 在线观看免费午夜福利视频| 亚洲av成人精品一二三区| 亚洲国产av新网站| 久久久久国产一级毛片高清牌| 国产人伦9x9x在线观看| 各种免费的搞黄视频| 在线观看国产h片| 丰满迷人的少妇在线观看| 99九九在线精品视频| 一二三四在线观看免费中文在| 欧美亚洲日本最大视频资源| 纯流量卡能插随身wifi吗| 伊人久久大香线蕉亚洲五| 国产又爽黄色视频| 日韩一区二区视频免费看| 亚洲在久久综合| 久久女婷五月综合色啪小说| 黄频高清免费视频| 国产成人精品久久久久久| 天天操日日干夜夜撸| 丝袜人妻中文字幕| 只有这里有精品99| 午夜老司机福利片| 大片电影免费在线观看免费| 精品一区二区三区av网在线观看 | 日韩一区二区三区影片| 丰满饥渴人妻一区二区三| 国产成人欧美| 一二三四在线观看免费中文在| 国产精品熟女久久久久浪| 美国免费a级毛片| 一本大道久久a久久精品| 丝袜脚勾引网站| 老司机靠b影院| 乱人伦中国视频| 日韩精品免费视频一区二区三区| 美女中出高潮动态图| 国产在线视频一区二区| 你懂的网址亚洲精品在线观看| 久久免费观看电影| 电影成人av| 成人黄色视频免费在线看| 免费不卡黄色视频| 爱豆传媒免费全集在线观看| 制服人妻中文乱码| 最近中文字幕高清免费大全6| 亚洲欧美清纯卡通| 黄色视频在线播放观看不卡| 老汉色∧v一级毛片| 久久精品国产a三级三级三级| 免费少妇av软件| 深夜精品福利| 欧美日韩一区二区视频在线观看视频在线| 久久久久久久久久久久大奶| 国产精品一国产av| 少妇的丰满在线观看| 中文字幕最新亚洲高清| 午夜免费鲁丝| 高清不卡的av网站| 人人澡人人妻人| 9191精品国产免费久久| 在线 av 中文字幕| 在线免费观看不下载黄p国产| 欧美成人精品欧美一级黄| 日韩制服丝袜自拍偷拍| h视频一区二区三区| 久久av网站| 美女脱内裤让男人舔精品视频| 日韩一本色道免费dvd| 久久这里只有精品19| 波多野结衣一区麻豆| √禁漫天堂资源中文www| 天美传媒精品一区二区| 在线观看免费高清a一片| 午夜激情av网站| 晚上一个人看的免费电影| 久久精品国产a三级三级三级| 日韩精品免费视频一区二区三区| 国产探花极品一区二区| 在线天堂最新版资源| av网站免费在线观看视频| 18在线观看网站| 哪个播放器可以免费观看大片| 在线观看三级黄色| 人人妻人人添人人爽欧美一区卜| 夜夜骑夜夜射夜夜干| 亚洲精品在线美女| 黑人巨大精品欧美一区二区蜜桃| 天天影视国产精品| 亚洲在久久综合| 日韩av在线免费看完整版不卡| 菩萨蛮人人尽说江南好唐韦庄| 久久久久精品久久久久真实原创| 精品久久蜜臀av无| 91老司机精品| 国产在视频线精品| 欧美成人午夜精品| 午夜影院在线不卡| 亚洲在久久综合| 交换朋友夫妻互换小说| 久久精品久久久久久噜噜老黄| 熟女少妇亚洲综合色aaa.| 多毛熟女@视频| 丝袜美足系列| 一边摸一边做爽爽视频免费| 免费在线观看完整版高清| 90打野战视频偷拍视频| 国产精品成人在线| 啦啦啦在线观看免费高清www| 国产精品女同一区二区软件| 欧美日韩精品网址| 国产野战对白在线观看| 成年动漫av网址| 国产在线视频一区二区| 电影成人av| 亚洲国产av新网站| 搡老乐熟女国产| 亚洲四区av| 伊人久久大香线蕉亚洲五| 免费在线观看完整版高清| 久久99一区二区三区| 视频区图区小说| 欧美另类一区| 一区二区三区乱码不卡18| 超碰97精品在线观看| 久热这里只有精品99| 色网站视频免费| 男人操女人黄网站| 夫妻午夜视频| 亚洲欧美中文字幕日韩二区| 在线观看人妻少妇| 考比视频在线观看| 久久久亚洲精品成人影院| 少妇的丰满在线观看| 天美传媒精品一区二区| 欧美成人午夜精品| 搡老岳熟女国产| 99精国产麻豆久久婷婷| 中文欧美无线码| 欧美中文综合在线视频| 亚洲欧美清纯卡通| 热re99久久精品国产66热6| 在线观看一区二区三区激情| 免费在线观看完整版高清| 国产黄色免费在线视频| 国产男人的电影天堂91| 王馨瑶露胸无遮挡在线观看| 国产乱来视频区| 国产精品国产av在线观看| 伊人亚洲综合成人网| 十分钟在线观看高清视频www| 国产精品三级大全| 亚洲一区中文字幕在线| 高清在线视频一区二区三区| 美女视频免费永久观看网站| 日韩一区二区视频免费看| 看十八女毛片水多多多| 欧美精品人与动牲交sv欧美| 日韩大片免费观看网站| 9色porny在线观看| 丰满饥渴人妻一区二区三| 宅男免费午夜| 亚洲激情五月婷婷啪啪| 亚洲精品乱久久久久久| 色播在线永久视频| 亚洲国产成人一精品久久久| 午夜福利,免费看| 十八禁人妻一区二区| www.熟女人妻精品国产| 麻豆乱淫一区二区| 欧美黄色片欧美黄色片| 欧美亚洲 丝袜 人妻 在线| av一本久久久久| 夜夜骑夜夜射夜夜干| av线在线观看网站| 黄色一级大片看看| 国产欧美日韩综合在线一区二区| 国产人伦9x9x在线观看| 欧美精品亚洲一区二区| 免费少妇av软件| 午夜福利免费观看在线| 又大又爽又粗| 色综合欧美亚洲国产小说| 丰满少妇做爰视频| www.自偷自拍.com| 亚洲av电影在线进入| 国产国语露脸激情在线看| 校园人妻丝袜中文字幕| 一区二区三区激情视频| 宅男免费午夜| 婷婷色麻豆天堂久久| 夫妻午夜视频| 777久久人妻少妇嫩草av网站| 午夜福利一区二区在线看| 色精品久久人妻99蜜桃| 国产激情久久老熟女| 欧美另类一区| 最近的中文字幕免费完整| 久久久精品免费免费高清| 最近最新中文字幕大全免费视频 | 啦啦啦视频在线资源免费观看| 电影成人av| 亚洲av中文av极速乱| av.在线天堂| 国产精品久久久久久人妻精品电影 | 午夜福利影视在线免费观看| 精品一区在线观看国产| 最新的欧美精品一区二区| 视频在线观看一区二区三区| 菩萨蛮人人尽说江南好唐韦庄| 9色porny在线观看| 成年人午夜在线观看视频| 男女无遮挡免费网站观看| 亚洲精品aⅴ在线观看| av又黄又爽大尺度在线免费看| 国产精品久久久久成人av| 国产日韩欧美在线精品| 99国产综合亚洲精品| 国产成人精品在线电影| 永久免费av网站大全| 日本午夜av视频| 好男人视频免费观看在线| 一级爰片在线观看| 亚洲国产日韩一区二区| 免费高清在线观看视频在线观看| 国产精品免费大片| 美女国产高潮福利片在线看| 国产日韩欧美在线精品| 亚洲人成77777在线视频| 一级毛片 在线播放| 日日爽夜夜爽网站| 如何舔出高潮| 岛国毛片在线播放| 亚洲伊人久久精品综合| 日韩成人av中文字幕在线观看| 国产精品一二三区在线看| 久久av网站| 日本色播在线视频| 91老司机精品| 999精品在线视频| 国产免费现黄频在线看| 狂野欧美激情性xxxx| 免费黄网站久久成人精品| 青草久久国产| 一级黄片播放器| 亚洲欧美一区二区三区黑人| 欧美 亚洲 国产 日韩一| 岛国毛片在线播放| 精品一区二区三区av网在线观看 | 成人国语在线视频| 亚洲美女搞黄在线观看| 视频区图区小说| 另类精品久久| 亚洲一区二区三区欧美精品| 少妇人妻精品综合一区二区| 亚洲av欧美aⅴ国产| 又黄又粗又硬又大视频| 老司机影院毛片| 校园人妻丝袜中文字幕| 十八禁网站网址无遮挡| 久久99热这里只频精品6学生| 国产又色又爽无遮挡免| 中文字幕最新亚洲高清| 蜜桃在线观看..| 可以免费在线观看a视频的电影网站 | 亚洲精品久久成人aⅴ小说| 男女床上黄色一级片免费看| 国产一卡二卡三卡精品 | 午夜久久久在线观看| 久久人人97超碰香蕉20202| 亚洲成人av在线免费| 国产精品人妻久久久影院| 国产亚洲av高清不卡| 中文字幕人妻丝袜制服| 久久久久久久久免费视频了| 亚洲国产精品国产精品| 永久免费av网站大全| 免费久久久久久久精品成人欧美视频| 免费日韩欧美在线观看| 亚洲成av片中文字幕在线观看| 国产一区二区在线观看av| 黄色视频在线播放观看不卡| 亚洲成av片中文字幕在线观看| 一边亲一边摸免费视频| 国产乱人偷精品视频| 最近最新中文字幕大全免费视频 | 丰满迷人的少妇在线观看| 久久精品久久久久久久性| 熟女av电影| 亚洲精品日韩在线中文字幕| 久久久久人妻精品一区果冻| 蜜桃国产av成人99| 男女无遮挡免费网站观看| 日韩人妻精品一区2区三区| 我的亚洲天堂| 免费黄网站久久成人精品| 女人久久www免费人成看片| 熟女少妇亚洲综合色aaa.| 亚洲五月色婷婷综合| 亚洲精品久久成人aⅴ小说| 日韩一本色道免费dvd| 精品午夜福利在线看| 精品国产超薄肉色丝袜足j| 成人免费观看视频高清| 日日摸夜夜添夜夜爱| 十八禁网站网址无遮挡| 一二三四中文在线观看免费高清| 日本黄色日本黄色录像| 午夜福利视频精品| 国产av精品麻豆| 色播在线永久视频| 久久国产精品大桥未久av| 91精品伊人久久大香线蕉| 成人免费观看视频高清| 欧美日韩国产mv在线观看视频| 老司机影院毛片| 久久国产亚洲av麻豆专区| 人妻一区二区av| 青青草视频在线视频观看| 欧美人与善性xxx| 综合色丁香网| 国产精品.久久久| 美女福利国产在线| 国产av码专区亚洲av| 国语对白做爰xxxⅹ性视频网站| 99精国产麻豆久久婷婷| 欧美国产精品va在线观看不卡| 国产伦人伦偷精品视频| 下体分泌物呈黄色| 丝袜人妻中文字幕| 国产精品久久久久久精品古装| 国产 一区精品| 丝袜在线中文字幕| 少妇被粗大猛烈的视频| 久久人人97超碰香蕉20202| 亚洲美女视频黄频| 午夜福利视频在线观看免费| 精品午夜福利在线看| 亚洲国产看品久久| 男女国产视频网站| 一本一本久久a久久精品综合妖精| 国产日韩一区二区三区精品不卡| 日本黄色日本黄色录像| 色播在线永久视频| 亚洲欧美精品自产自拍| 国产精品99久久99久久久不卡 | 久久久久久久国产电影| 日韩一卡2卡3卡4卡2021年| 精品亚洲乱码少妇综合久久| 亚洲一级一片aⅴ在线观看| 久久久久久人妻| 视频区图区小说| 日日啪夜夜爽| 成年女人毛片免费观看观看9 | 欧美日本中文国产一区发布| 丝袜美足系列| 一级毛片黄色毛片免费观看视频| 久久精品亚洲熟妇少妇任你| 日韩av在线免费看完整版不卡| 国产精品国产三级国产专区5o| 十八禁人妻一区二区| 婷婷色av中文字幕| 午夜老司机福利片| 午夜影院在线不卡| 国产片内射在线| 欧美黑人欧美精品刺激| 啦啦啦视频在线资源免费观看| 亚洲av电影在线进入| 天天躁日日躁夜夜躁夜夜| 51午夜福利影视在线观看| www日本在线高清视频| 男女下面插进去视频免费观看| 一二三四在线观看免费中文在| 这个男人来自地球电影免费观看 | 色吧在线观看| 久久精品熟女亚洲av麻豆精品| 亚洲国产中文字幕在线视频| 亚洲成人国产一区在线观看 | 99久国产av精品国产电影| 男的添女的下面高潮视频| 亚洲欧美一区二区三区国产| 亚洲色图 男人天堂 中文字幕| 亚洲专区中文字幕在线 | 两个人免费观看高清视频| 在线观看国产h片| 免费在线观看完整版高清| 国精品久久久久久国模美| 成人亚洲精品一区在线观看| 老司机亚洲免费影院| 一级,二级,三级黄色视频| 妹子高潮喷水视频| 少妇人妻久久综合中文| 欧美黑人精品巨大| 黄色怎么调成土黄色| 90打野战视频偷拍视频| 99久国产av精品国产电影| 一级,二级,三级黄色视频| 亚洲精品国产区一区二| 亚洲av男天堂| 成年动漫av网址| 久久ye,这里只有精品| 国产在线视频一区二区| 日韩免费高清中文字幕av| 亚洲国产欧美一区二区综合| 欧美亚洲日本最大视频资源| 国产黄色视频一区二区在线观看| 免费观看av网站的网址| 老司机深夜福利视频在线观看 | 51午夜福利影视在线观看| 亚洲欧美一区二区三区国产| 男人操女人黄网站| 亚洲少妇的诱惑av| 国产精品 欧美亚洲| 99re6热这里在线精品视频| 久久韩国三级中文字幕| 国产福利在线免费观看视频| 另类精品久久| 最新在线观看一区二区三区 | 久久久国产精品麻豆| 热99国产精品久久久久久7| 最新的欧美精品一区二区| 999久久久国产精品视频| 18禁裸乳无遮挡动漫免费视频| 午夜福利一区二区在线看| 久久青草综合色| 中文字幕另类日韩欧美亚洲嫩草| 精品少妇一区二区三区视频日本电影 | 欧美久久黑人一区二区| 午夜福利免费观看在线| 黄色视频在线播放观看不卡| 99香蕉大伊视频| av在线老鸭窝| 久久ye,这里只有精品| 国产精品.久久久| 老司机影院成人| 国产黄频视频在线观看| 精品人妻一区二区三区麻豆| 国产精品 欧美亚洲| 国产欧美亚洲国产| 高清欧美精品videossex| 日韩大码丰满熟妇| 久久久久久人妻| 久久久国产一区二区| 亚洲久久久国产精品| 亚洲综合精品二区| 亚洲一区二区三区欧美精品| 韩国精品一区二区三区| 美女扒开内裤让男人捅视频| 精品人妻熟女毛片av久久网站| 亚洲精品国产av成人精品| 久久免费观看电影| 中文字幕制服av| 中文精品一卡2卡3卡4更新| 久久天堂一区二区三区四区| 卡戴珊不雅视频在线播放| 国产av码专区亚洲av| 久久人人爽人人片av| 日本wwww免费看| 亚洲国产看品久久| 啦啦啦在线免费观看视频4| 肉色欧美久久久久久久蜜桃| 激情视频va一区二区三区| 精品久久久久久电影网| 两个人免费观看高清视频| 一二三四中文在线观看免费高清| 中文天堂在线官网| 国产欧美日韩一区二区三区在线| 亚洲精品国产一区二区精华液| 欧美日本中文国产一区发布| 女性被躁到高潮视频| 青草久久国产| 一级爰片在线观看| 亚洲精品久久午夜乱码| 天堂中文最新版在线下载| 超碰97精品在线观看| 爱豆传媒免费全集在线观看| 99re6热这里在线精品视频| 欧美人与性动交α欧美软件| 久久99精品国语久久久| 精品人妻一区二区三区麻豆| 亚洲国产精品一区三区| av.在线天堂| 另类精品久久| 国产男人的电影天堂91| 啦啦啦 在线观看视频| 人妻人人澡人人爽人人| 青草久久国产| 搡老岳熟女国产| 亚洲精品久久午夜乱码| 成人毛片60女人毛片免费| 蜜桃国产av成人99| 色综合欧美亚洲国产小说| 日韩,欧美,国产一区二区三区| 在现免费观看毛片| av福利片在线| 久久婷婷青草| 国产免费视频播放在线视频| 男的添女的下面高潮视频| 自线自在国产av| av一本久久久久| 亚洲成人av在线免费| 日韩中文字幕欧美一区二区 | 2021少妇久久久久久久久久久| 日本黄色日本黄色录像| 欧美日韩精品网址| 国产一区二区在线观看av| 亚洲成人国产一区在线观看 | 青春草视频在线免费观看| 黄色毛片三级朝国网站| 日韩av在线免费看完整版不卡| 国产乱人偷精品视频| 国产一区二区 视频在线| 一级毛片黄色毛片免费观看视频| 超碰97精品在线观看| 午夜激情久久久久久久| www.av在线官网国产| 亚洲欧美精品综合一区二区三区| 亚洲美女视频黄频| 亚洲成人国产一区在线观看 | 国产淫语在线视频| 观看美女的网站| 大话2 男鬼变身卡| 熟妇人妻不卡中文字幕| 黑人猛操日本美女一级片| 亚洲成色77777| 秋霞在线观看毛片| 亚洲免费av在线视频| 一本一本久久a久久精品综合妖精| 免费日韩欧美在线观看| 国产欧美日韩综合在线一区二区| 男人添女人高潮全过程视频| 国产精品一区二区在线不卡| 不卡视频在线观看欧美| 久久精品亚洲熟妇少妇任你| 99热国产这里只有精品6| 欧美在线黄色| 黑人欧美特级aaaaaa片| 成人免费观看视频高清| 在线免费观看不下载黄p国产| 成人国语在线视频| 19禁男女啪啪无遮挡网站| 水蜜桃什么品种好| 一级毛片 在线播放| 亚洲精品美女久久av网站| 国产精品免费视频内射| av片东京热男人的天堂| 十八禁网站网址无遮挡| 最近2019中文字幕mv第一页| 色婷婷av一区二区三区视频| 亚洲男人天堂网一区| 老司机影院成人| 日韩制服骚丝袜av| 在线精品无人区一区二区三| 水蜜桃什么品种好| 中国三级夫妇交换| 久久鲁丝午夜福利片| 秋霞在线观看毛片| 中文精品一卡2卡3卡4更新| 人人妻人人澡人人爽人人夜夜| 国产精品国产三级国产专区5o| 啦啦啦在线观看免费高清www| 欧美最新免费一区二区三区| 国产精品久久久久久精品古装| 丰满乱子伦码专区|