• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Shadowing Homoclinic Chains to a Symplectic Critical Manifold

    2021-06-08 01:40:58SergeyBolotin
    Analysis in Theory and Applications 2021年1期

    Sergey Bolotin

    Moscow Steklov Mathematical Institute,Russian Academy of Sciences,Moscow,119991,Russia

    Abstract.We prove the existence of trajectories shadowing chains of heteroclinic orbits to a symplectic normally hyperbolic critical manifold of a Hamiltonian system.The results are quite different for real and complex eigenvalues.General results are applied to Hamiltonian systems depending on a parameter which slowly changes with rateε.If the frozen autonomous system has a hyperbolic equilibrium possessing transverse homoclinic orbits,we construct trajectories shadowing homoclinic chains with energy having quasirandom jumps of orderεand changing with average rate of order ε|lnε|.This provides a partial multidimensional extension of the results of A.Neishtadt on the destruction of adiabatic invariants for systems with one degree of freedom and a figure 8 separatrix.

    Key Words:Hamiltonian system,homoclinic orbit,shadowing.

    1 Introduction

    Consider a smooth Hamiltonian system(M,ω,H)with phase space M,symplectic form ωand Hamiltonian H.Let v=J?H be the Hamiltonian vector field andφthe phase flow.Suppose H has a connected symplectic nondegenerate critical manifold N.Then any z∈N is a critical point of H with rank dH(z)=dim M?dim N,and the restriction ω|is nondegenerate.We also assume that N is normally hyperbolic,i.e.,nonzero eigenvalues of the linearizationΛ(z)=Dv(z)have nonzero real parts.Denote by

    E={ξ∈TM:ω(ξ,η)=0 for allη∈TN}the symplectic complement to TN.Since N is symplectic,TM=TN⊕Eandω|is nondegenerate.Hence E=E⊕E,where EareΛ(z)-invariant Lagrangian stable and unstable subspaces of Ecorresponding to the eigenvalues with negative and positive real parts respectively.

    Let

    be the stable and unstable manifolds of z∈N and

    W(N)=∪W(z)

    the stable and unstable manifolds of N.The intersection W(N)∩W(N)N consists of orbitsγ:R→M homoclinic to N,i.e.,heteroclinic from z=γ(?∞)to z=γ(+∞).The heteroclinic orbit is called transverse if TW(z)∩TW(N)=R˙γ(t).

    Define a multivalued partially defined symplectic scattering map F:N→N by F(z)=zif there is a transverse heteroclinic from zto z.We call a sequenceσ=(σ)of transverse heteroclinic orbits a heteroclinic chain ifσ(+∞)=σ(?∞)=z∈N.A heteroclinic chain corresponds to an orbit z=(z)of the scattering map.We call the chain strongly nondegenerate if the orbit z is hyperbolic.

    Without loss of generality let N?Σ=H(0).Our goal is to construct,for smallμ,orbitsγ:R→Σ=H(μ)shadowing strongly nondegenerate infinite heteroclinic chains.This requires several assumptions which are different for real and complex eigenvalues.For degenerate heteroclinic chains we get weaker results.

    Our research is motivated by two classical problems.The first is Poincar′e’s theory of second species almost collision solutions in celestial mechanics.This application was already discussed in[6,7],so we will be brief.Consider the plane 3 body problem with two small masses of orderμ?1.Let the center of mass be at rest and let qbe the relative positions of small bodies with respect to the large one.Then we obtain the Hamiltonian

    where

    In the second application also complex eigenvalues may appear.Consider a slowly time dependent Hamiltonian system on a symplectic manifold M:

    is an adiabatic invariant[1].For smallεthe change of I(t)=I(τ(t),E(t))on long time intervals is small:

    Then the energy changes gradually:(τ,E)approximately follow a level curve I(τ,E)=const.

    However,(1.2)fails for trajectories passing near equilibria,since then the frozen dynamics is slow,and the averaging method does not work.A.Neishtadt[19]considered the case when the plane frozen system has a hyperbolic equilibrium with a figure 8 separatrix–union of two homoclinic loops.The separatrix divides the plane in 3 regions.In the interior of each region there is an adiabatic invariant,so(τ,E)follows its level curves.Neishtadt showed that when a trajectory crosses the separatrix,the adiabatic invariant,and hence also the energy,have jumps of orderε.Then large measure of trajectories have quasirandom behavior,and the energy changes with average speed of orderε|lnε|.

    Let us show how to reduce the problem to a general theorem on shadowing heteroclinic chains to a normally hyperbolic symplectic critical manifold.For simplicity suppose that H(z,τ)is periodic inτ∈T.Replacing H by H?H(z(τ),τ)we may assume that

    Consider an autonomous Hamiltonian system

    and symplectic structure

    and homoclinics of the frozen system define families of homoclinics to the manifold N.

    The shadowing theorems we prove have roots in many classical results in dynamical systems and calculus of variations which are too numerous to mention.Maybe the most important for us were the Turayev–Shilnikov theorem[23]and the works of P.Rabinowitz[12],E.Sere[21]and many others on the existence of multibump homoclinics by variational methods.Some ideas used in this paper were developed over the years in collaboration with Paul Rabinowitz.In particular[8]was a foundation to the present research.However we do not use global variational methods as in[8],since transversality of heteroclinics is assumed.

    Phenomena similar to the ones studied in this paper appear in the problem of Arnold’s diffusion for nearly integrable Hamiltonian systems near a multiple resonance[2,11,14,20,26].Our research is also closely related to the theory of scattering maps[13]and of separatrix maps[25].

    In this paper we use local variational methods,more precisely generating functions of symplectic relations and discrete action functionals.For Tonelli Hamiltonians one can use global methods of Aubry–Mather theory[2,11,20].However for general Hamiltonians considered in this paper only local variational methods work.

    Next we formulate and prove general shadowing theorems for systems with a normally hyperbolic symplectic critical manifold.In the last section these results are applied to slowly time dependent systems.

    2 Main results

    Let Nbe a connected symplectic normally hyperbolic critical manifold of a Hamiltonian system(M,ω,H).We assume N?Σ=H(0).Define projectionsπ:W(N)→N byπ(x)=z if x∈W(z):

    Following[13],define a scattering relation R?N×N setting(z,z)∈R if there is an orbit heteroclinic from zto z,i.e.,there is a∈W(N)∩W(N)N such that π(a)=z.If R is locally a graph,then it defines a branch of the symplectic scattering map F:N→N.The general theory of scattering maps was developed in[13].However,our case is different because the manifold N is critical and the energy levelΣcontaining N is not a manifold,so the results in[13]do not apply directly.

    If a heteroclinic orbitγ(t)=φ(a),γ(±∞)=c∈N is transverse,then the following equivalent conditions hold.Let v be the Hamiltonian vector field.

    ?TW(c)∩TW(N)=R v(a).

    ?TW(c)∩TW(N)=R v(a).

    ?The symplectic formωdefines a nondegenerate modulo R v(a)bilinear form on TW(c)×TW(c).

    TW(L)∩TW(L)=R v(a).

    Then the scattering map F has a well defined smooth branch f:V→V,where V?N are neighborhoods of c.Let(x,y)∈Rbe local symplectic coordinates in Vsuch thatω|=d y∧d xand

    L={y=b}=B×, L={x=a}={a}×B,

    where c=(a,b)and Bare small balls in Rcentered at aand brespectively. Then for(x,y)in a neighborhood of(a,b),the Lagrangian manifolds W({x}×B)and W(B×{y})intersect transversely inΣalong a heteroclinic trajectoryσ(x,y)joining the points z=(x,y)with f(z)=z=(x,y).We represent f by a generating function S(x,y):

    Although the functional is formal,its derivative is a well defined sequence in l(R).It is well known that the orbit z is hyperbolic(has nonzero Lyapunov exponents)iff the Hessian A(z)has a bounded inverse in l.Then we call the chainσ=(σ)strongly nondegenerate.To shadow the chainσby a trajectory onΣ=H(μ)with smallμ/=0,we need more conditions.

    LetΛ(z)=Dv(z)andΛ(z)=Λ|.Let

    Then

    We call an eigenvalueλofΛ(z)leading if|Reλ|=α(z).Generically leading eigenvalues are simple.Then there are 2 cases:

    ?Real case:±α(z)are real simple leading eigenvalues.

    ?Complex case:±α(z)±iβ(z),β(z)>0,are complex simple leading eigenvalues.

    We assume that one of the cases hold for all z∈N.

    The results in the real and complex case are different.The real case was studied in[7]under the assumption that the eigenvalues have maximal multiplicity.For N a single hyperbolic equilibrium with real eigenvalues the result was discovered much earlier by Turayev and Shilnikov[23],and the proofs(with different generality)were given in[8,24].For N a hyperbolic equilibrium with complex eigenvalues of a system with two degrees of freedom the problem was studied by Devaney[15].In[10],variational methods were used to extend the results of[15]to the case of nontransverse homoclinics.

    First consider the real case.Then the flow on W(z)looks like a node:for any a∈W(z)there exist the limits

    H(z,q,p)=?α(z)pq+O(p,···,p,q,···,q)+O(p,q),

    we have s=?q+O(q)and s=p+O(p).

    For a leading heteroclinic orbitγset

    Note thatρ(γ)does not depend on the choice of the pointγ(0)onγ(R).

    Letσ=(σ)be a leading heteroclinic chain corresponding to an orbit(c)of the scattering map.We callσpositive(negative)if

    ρ(σ)ρ(σ)>0, (ρ(σ)ρ(σ)<0) for all i.

    Positive heteroclinic chains can be shadowed by orbits with small positive energy,and negative chains with small negative energy.

    Theorem 2.1.Suppose leading eigenvalues are real and simple.There isμ>0 such that for anyμ∈(0,μ]and any strongly nondegenerate positive heteroclinic chainσ=(σ)there exists an orbitγ:R→Σshadowing the chainσ.More precisely:

    π(γ(t))shadows the orbit(c)of the scattering map:d(c,z)≤Cμ|lnμ|.

    If the chainσis negative,then shadowing orbits exist onΣwithμ∈[?μ,0).If the chain is not positive or negative,then in general there are no shadowing orbits satisfying conditions in the theorem.

    Theorem 2.1 is a generalization of the main result in[7].In[7]it is assumed that Λ(z)=?α(z)I,and only periodic heteroclinic chains were considered.

    For complex leading eigenvalues there are more shadowing trajectories.

    C is a constant independent ofμand the chainσ.

    Theorem 2.2.Suppose the leading eigenvalues are simple and complex.For any integer mthere existsμ>0 such that for any strongly nondegenerate leading heteroclinic chainσ=(σ),any integer sequence 0≤n≤m,and anyμ∈[?μ,μ]{0},

    Remark 2.2.In the complex case there exist also shadowing orbits onΣ,including multibump homoclinic orbits.For two degrees of freedom and N a single equilibrium this was proved in[10].However we will not discuss this result since it does not apply to slowly time dependent systems.

    It follows from the proof that the orbits in Theorems 2.1 and 2.2 are hyperbolic with nonzero Lyapunov exponents.Sinceμis independent of the chain,if F has a compact hyperbolic invariant set,then shadowing orbits form a compact hyperbolic invariant set inΣ.If the heteroclinic chain(and the sequence(n)in Theorem 2.2)are periodic,then the shadowing orbits will be periodic.

    Unfortunately in our application to slowly time dependent systems the heteroclinic chains are degenerate.So we need weaker results for finite homoclinic chains.

    In particular,

    In the complex case we have

    In particular,by(2.8),

    The proofs of Theorems 2.3 and 2.4 are simplified versions of the proofs of Theorems 2.1 and 2.2,so we skip them.These theorems work for finite chains with n independent ofμ.But then one can continue the procedure using a version of the continuation lemma,see[25,26]and[17].The details will be published in another paper.

    3 Proofs of the shadowing theorems

    3.1 Generating functions of local symplectic relations

    First we describe trajectories passing close to the critical manifold N.Take a small domain V?N with symplectic coordinates z=(x,y)and identify V with a domain in R.If V is small enough,a tubular neighborhood U of V in M can be identified with

    in such a way that

    and the coordinates in U are symplectic:

    ω|=d y∧d x+d p∧d q, z=(x,y)∈V.

    Then

    where

    g=O(q), g=O(p), h=O(q), h=O(p).

    They can be also represented by generating functions.

    Proposition 3.1.There exist smooth functions

    on open sets in R×R×Rsuch that for any z= (x,y) ∈ V and A=(x,y,q,p)∈U,

    Equivalently,

    Define a symplectic relation L?U×U as follows:(A,A)∈L if there exists z∈V such that A∈W(z).The relation is represented by the generating function

    F(z,Z)=S(y,x,q)+S(x,y,p)?〈x,y〉, Z=(x,y,q,p),via the equations

    Let

    L(Z)=CritF(z,Z)=F(ζ(Z),Z),

    which means taking the critical value at the nondegenerate critical point z=ζ(Z)with respect to z.We obtain

    Proposition 3.2.The generating function L defines the symplectic relation(A,A)∈L by the equations

    d L(Z)=yd x+xd y+pd q+qd p.

    From now on we assume that r>0 is small enough.The next proposition is a minor generalization of Shilnikov’s theorem[22],orλ-lemma.The proof is an application of the contraction principle,see[7,16].

    Proposition 3.3.For any(z,q,p)∈V×B×Band T≥1:

    ?There exists a unique solutionγ:[?T,T]→U,

    satisfying the initial–boundary conditions

    ?γsmoothly depends on z,q,p,T.

    ?Letγ(?T)=A=(z,q,p).Then

    We write for simplicityα=α(z).Let

    If Z=(x,q,y,p)is given,we can solve Eqs.(3.9a)–(3.9b)for z=ζ(Z)+O(Te).

    Then we obtain a symplectic relation(A,A)∈Lif the points are joined by a trajectoryγ:[?T,T]→U.The relation Lis defined by the generating function

    L(Z)=L(Z)+O(Te).

    To construct trajectories with given energy we need to find H(γ(0))for the trajectory γin Proposition 3.3.Up to now it did not matter if the leading eigenvalues were real or complex.Now we have to consider these cases separately.

    H(γ(0))=αes(z,q)s(z,p)+O(e), ν>0.

    LetΩbe a compact set contained in

    {(z,q,p)∈V×B×B:s(z,q)s(z,,p)>0}.

    Later on we takeΩ=V×Q×P,where P,Q?BBare small closed balls.Letμ>0 be small enough andμ∈(0,μ].Solving the equation H(γ(0))=μfor T we obtain:

    Proposition 3.4.For anyμ∈(0,μ]and(z,q,p)∈Ω:

    ?There exist

    and a unique solution(3.7)onΣ∩U satisfying(3.8).

    ?γand T smoothly depend on z,q,p,μ.

    ?γconverges to the concatenationγ·γasμ→0.

    ?The boundary points Aofγsatisfy d(A,B)≤Cμ|lnμ|.

    Proposition 3.4 was proved in[7]for equal real eigenvalues.In[16]the proof was extended to the generic real case.

    We have a symplectic relation:(A,A)∈Lif there exists zsuch that the points Aare joined by a trajectory in Proposition 3.4.The generating function of the relation is

    where L is the generating function in Proposition 3.2.

    Lemma 3.1.We have whereν>0 and f,g are linear functions such that

    The proof is a computation similar to the one in[10].LetΛ=Λ(z).We have

    We obtain:

    Proposition 3.5.For any integer mthere existsμ>0 such that forμ∈[?μ,μ]{0}and any(z,q,p)∈Ω:

    ?γand Tsmoothly depend on z,q,p,μ.

    ?γconverges to the concatenationγ·γasμ→0.

    Without restricting toΩwe get a multivaluedψ.

    ?The boundary points satisfy d(A,B)≤Cμ|lnμ|.

    The following corollary works both for real and complex cases.Let the sets P and Q be chosen as above.In the complex case we fix an integer k∈[0,m]and drop the dependence on k from the notation.Letμ∈(0,μ]in the real case,andμ∈[?μ,0)∪(0,μ]in the complex case.Let F be the generating function in(3.6).

    Corollary 3.1.The symplectic relation Lis given by the generating function

    via the equations

    3.2 Discrete variational problem

    To formulate a variational problem for shadowing orbits we need to relate the generating functions of the stable and unstable manifolds W(N)and of the scattering map F.

    Let f:V→Vbe a local branch of F represented by a generating function S as in(2.1).Then to any(x,y)in a small open set W?Rthere corresponds the transverse heteroclinicσ(x,y)joining z=(x,y)∈Vwith z=f(z)=(x,y)∈V.As in(3.1),let(x,y,q,p)be symplectic coordinates in a neighborhood

    Let A(x,y)∈Ube the first intersection point ofσ(x,y)with the cross section|q|=r,and A(x,y)∈Uthe last intersection point with the cross section|p|=r.Let Obe a small neighborhood of A(W)in U.

    We introduce a symplectic relation R?O×Oas follows:(B,B)∈R if there is a trajectory on the energy levelΣjoining Bwith Band close to the heteroclinics inσ(W).Under certain transversality conditions(nonconjugacy of Aand Aalongσ),which one can verify as in[7],to any X=(y,p,x,q)in an open set D?Rthere correspond points B=(x,y,q,p)∈Osuch that(B,B)∈R.We obtain:

    Proposition 3.6.The relation R is given by a generating function R(X),X =(y,p,x,q)∈D,as follows:

    We denote by B(X)the points corresponding to X∈D.

    Suppose now thatμ>0 is sufficiently small and letμ∈[?μ,μ].Proposition 3.6 implies

    Corollary 3.2.For anyμ∈[?μ,μ]and X=(y,p,x,q)∈D there exist x,p,y,qsuch that the points B(X,μ)= (x,y,q,p)∈ Σare joined by a trajectory inΣ,smoothly depending onμ.The symplectic relation Rbetween Bis given by a generating function R(X)=R(X)+O(μ):

    (B,B)∈R? d R(X)=pd q+yd x+xd y+qd p.

    Let Sbe the generating functions(3.3)of the local stable and unstable manifolds W(V).Set

    Eqs.(3.5a),(3.5b)and(3.16)imply:

    Proposition 3.7.

    ?The critical value is the generating function of the scattering map:

    Next we introduce a discrete action functional whose critical points correspond to heteroclinic chains.

    In a neighborhood U~=V×B×Bof Vin M we will use symplectic coordinates(x,y,q,p)as in(3.1).Let

    be the exit point ofσfrom U,and

    given by the generating function R(X)via

    are joined by a trajectory onΣclose toσ.

    Let

    which is the generating function of the symplectic map f.

    Let us define a formal discrete action functional

    where

    The functional is defined on V×D,where

    Proposition 3.8.

    ?For any z∈V close to c(with small‖z?c‖),the function X∈D→B(z,X)has a strongly nondegenerate critical point X(z).

    ?The(formal)critical value equals the action functional(2.2):

    A(z)=B(z,X(z)).

    ?If c is a strongly nondegenerate critical point of A,then(c,X(c))is a strongly nondegenerate critical point of B on V×D.

    We call a critical point strongly nondegenerate if the Hessian has an inverse which is bounded in l.The first item of Proposition 3.8 follows from the fact that for fixed z the functional split into a sum of independent functions of X,and these functions have nondegenerate critical points with the critical values(3.18).The rest follows easily.

    By Corollaries 3.1 and 3.2,

    ‖?A??B‖≤Cμ|lnμ|.

    By Proposition 3.8,the functional B has a strongly nondegenerate critical point(c,X(c)).

    Now the proof is completed by the implicit function theorem in l.

    4 Slowly time dependent systems

    the stable and unstable manifolds of the equilibrium z(τ).Ifγ:R→W(τ)∩W(τ)is a transverse homoclinic orbit of the frozen system:

    then it smoothly depends onτ.The Maupertuis action

    is called the Poincar′e potential,and

    is called Melnikov’s function.Ifωis nonexact,the Poincar′e potential may be multivalued,but P(τ)is always correctly defined.

    Let us find the scattering map for the extended system(1.4).The stable and unstable manifolds W(τ,h)of a point(z(τ),τ,h)∈?N are

    A homoclinicγof the frozen system defines a family of heteroclinics

    of the extended system,where by(4.3),

    The Hamiltonian(1.5)is unbounded as h→0.Thus we fix smallδ>0 and study the system for h∈[δ,δ].Then we can try to apply the results of section 2 to the symplectic critical manifold

    f(τ,h)=(τ,h+n P(τ))

    S(τ,h)=τh+P(τ).

    As in Section 2,we assume that the leading eigenvalues of the equilibrium z(τ)are simple.In the real case they are±α(τ),and in the complex case±α(τ)±iβ(τ).

    We construct trajectories with negative energy corresponding to a negative code.For positive codes and positive energy there is a similar result.Theorem 2.3 withμ=?ε<0 implies the following:

    ?E(0)=?εhand E(t)<0 for 0≤t≤T=(τ?τ)/ε.

    ?The sequencesτand h=?E(t)/εsatisfy

    Thus(τ,h)shadows a trajectory of the scattering map F.

    Theorem 4.1 was proved in[4]by a different method.The complex case was not considered in[4].Then we use Theorem 2.4.The code is now a pair of sequences(k,n),where the sequence k∈K is arbitrary and 0≤n≤m.The assertion is the same except that(4.4a)is replaced by

    where O(ε)is bounded independent of n.

    Appendix

    We have seen that for H=o(ε)the reduction(1.5)does not work.Let us discuss this case briefly.The frozen system has a compact normally hyperbolic invariant manifold N={(z(τ),τ):τ∈T}in M×T.Hence for smallεthere is a normally hyperbolic compact invariant manifold

    N={(z(τ),τ):τ∈T}, z(τ)=z(τ)+O(ε).

    By(1.3)we have H|=H(z(τ),τ)=O(ε).Let us describe multibump trajectories coming exponentially close to N.

    0<δ

    Atrajectory will correspond to a code which is a strictly increasing sequence(τ∈T).

    Theorem A.1.Suppose thatε>0 is sufficiently small.Then for any code(τ)there exists a unique trajectoryγ(t)∈M,τ=τ+εt,such that for all i∈Z,

    ?d((γ(t),τ),N)≤efor min|τ?τ|≥δ.

    Acknowledgements

    This work is supported by the Russian Science Foundation under grant No.19-71-30012.

    好男人视频免费观看在线| 黄片小视频在线播放| 尾随美女入室| 黄片无遮挡物在线观看| 校园人妻丝袜中文字幕| 在线观看www视频免费| 久久婷婷青草| 亚洲精品自拍成人| 亚洲国产精品一区三区| 妹子高潮喷水视频| 十八禁网站网址无遮挡| 免费在线观看黄色视频的| 人人妻人人添人人爽欧美一区卜| 国产精品久久久久久精品古装| 免费看不卡的av| av网站免费在线观看视频| 国产在线视频一区二区| 久久天躁狠狠躁夜夜2o2o | av天堂久久9| 曰老女人黄片| 国产又色又爽无遮挡免| 免费人妻精品一区二区三区视频| 亚洲av电影在线观看一区二区三区| 午夜激情av网站| 久久国产精品男人的天堂亚洲| 人体艺术视频欧美日本| 各种免费的搞黄视频| 一本久久精品| 免费少妇av软件| 黄频高清免费视频| 爱豆传媒免费全集在线观看| 老司机亚洲免费影院| 精品亚洲成a人片在线观看| 久久国产精品大桥未久av| 午夜老司机福利片| 午夜福利视频精品| 免费黄频网站在线观看国产| 国产免费福利视频在线观看| 国产激情久久老熟女| 国产老妇伦熟女老妇高清| 午夜影院在线不卡| 欧美精品一区二区大全| 精品一区在线观看国产| 韩国av在线不卡| 亚洲精华国产精华液的使用体验| 欧美精品一区二区免费开放| 在线观看免费高清a一片| 中文字幕亚洲精品专区| 美女高潮到喷水免费观看| 欧美日韩福利视频一区二区| 卡戴珊不雅视频在线播放| 久久久久久久国产电影| 免费高清在线观看日韩| 少妇的丰满在线观看| 超碰成人久久| 久久精品熟女亚洲av麻豆精品| 午夜福利网站1000一区二区三区| 国产成人啪精品午夜网站| 下体分泌物呈黄色| 久久亚洲国产成人精品v| av在线观看视频网站免费| 国产日韩一区二区三区精品不卡| 久久久精品区二区三区| 91精品三级在线观看| 波多野结衣一区麻豆| 91老司机精品| 熟妇人妻不卡中文字幕| 国产男女超爽视频在线观看| 可以免费在线观看a视频的电影网站 | 国产精品麻豆人妻色哟哟久久| 欧美激情高清一区二区三区 | 亚洲精华国产精华液的使用体验| 国产精品成人在线| 91精品国产国语对白视频| 韩国精品一区二区三区| 欧美日韩综合久久久久久| 桃花免费在线播放| 久久精品亚洲熟妇少妇任你| 两个人免费观看高清视频| 视频在线观看一区二区三区| 久久人人爽av亚洲精品天堂| 成年av动漫网址| 久久国产精品大桥未久av| 一级毛片 在线播放| 欧美人与性动交α欧美软件| 天天影视国产精品| 亚洲一码二码三码区别大吗| 午夜久久久在线观看| 97精品久久久久久久久久精品| 1024香蕉在线观看| 免费在线观看黄色视频的| 91精品伊人久久大香线蕉| 成年av动漫网址| 欧美日韩综合久久久久久| e午夜精品久久久久久久| 美国免费a级毛片| 一级爰片在线观看| 亚洲一区二区三区欧美精品| 国产99久久九九免费精品| 久久久久久人妻| 国产av精品麻豆| xxx大片免费视频| 老司机在亚洲福利影院| 欧美人与善性xxx| 操出白浆在线播放| 国产免费视频播放在线视频| 国产 精品1| 久久精品久久久久久久性| 在线亚洲精品国产二区图片欧美| 日韩视频在线欧美| 啦啦啦 在线观看视频| 欧美xxⅹ黑人| 菩萨蛮人人尽说江南好唐韦庄| 色视频在线一区二区三区| 超碰成人久久| 18禁观看日本| 亚洲人成网站在线观看播放| 大陆偷拍与自拍| 亚洲熟女精品中文字幕| 中文精品一卡2卡3卡4更新| 国产1区2区3区精品| 日韩一区二区三区影片| 精品视频人人做人人爽| 男人操女人黄网站| 我要看黄色一级片免费的| avwww免费| 只有这里有精品99| 午夜91福利影院| 国产色婷婷99| 亚洲熟女精品中文字幕| 不卡av一区二区三区| 国产av一区二区精品久久| 亚洲美女黄色视频免费看| 91精品伊人久久大香线蕉| 丁香六月天网| 麻豆av在线久日| 久久99热这里只频精品6学生| 久久精品国产a三级三级三级| 男女之事视频高清在线观看 | 黄色怎么调成土黄色| 嫩草影视91久久| 国产成人精品久久久久久| av一本久久久久| 飞空精品影院首页| 免费观看人在逋| 欧美另类一区| 97在线人人人人妻| 亚洲人成电影观看| 欧美乱码精品一区二区三区| 国产精品 欧美亚洲| 建设人人有责人人尽责人人享有的| 国产在线视频一区二区| 色综合欧美亚洲国产小说| 麻豆乱淫一区二区| 99国产综合亚洲精品| 午夜久久久在线观看| 亚洲av综合色区一区| 大陆偷拍与自拍| 国产男女内射视频| 999久久久国产精品视频| 久久人妻熟女aⅴ| av天堂久久9| 久久人人97超碰香蕉20202| 男女免费视频国产| 亚洲色图综合在线观看| 久久狼人影院| 99热国产这里只有精品6| av不卡在线播放| 欧美老熟妇乱子伦牲交| 国产精品人妻久久久影院| 国产精品国产三级国产专区5o| 看十八女毛片水多多多| 自拍欧美九色日韩亚洲蝌蚪91| 丰满饥渴人妻一区二区三| 成人免费观看视频高清| 美女扒开内裤让男人捅视频| 自线自在国产av| 午夜福利网站1000一区二区三区| 少妇猛男粗大的猛烈进出视频| 国产色婷婷99| 最黄视频免费看| 热99国产精品久久久久久7| 亚洲第一青青草原| 可以免费在线观看a视频的电影网站 | 中文字幕人妻丝袜制服| 精品一区二区三区av网在线观看 | 亚洲精品自拍成人| 女人爽到高潮嗷嗷叫在线视频| av视频免费观看在线观看| 国产欧美日韩综合在线一区二区| 国产精品免费视频内射| 国产av精品麻豆| 少妇的丰满在线观看| av一本久久久久| 一区二区av电影网| 国产精品秋霞免费鲁丝片| 国产片内射在线| 老司机亚洲免费影院| 亚洲国产毛片av蜜桃av| 亚洲人成77777在线视频| 午夜日本视频在线| 成人18禁高潮啪啪吃奶动态图| 侵犯人妻中文字幕一二三四区| 欧美精品高潮呻吟av久久| 在线天堂最新版资源| 成人国产麻豆网| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲精品国产色婷婷电影| 在线观看免费高清a一片| av女优亚洲男人天堂| 日韩视频在线欧美| 亚洲精品aⅴ在线观看| 国产亚洲欧美精品永久| 国产精品久久久久成人av| 国产不卡av网站在线观看| 这个男人来自地球电影免费观看 | 无遮挡黄片免费观看| 免费人妻精品一区二区三区视频| www日本在线高清视频| 久久精品国产亚洲av涩爱| xxx大片免费视频| 美女视频免费永久观看网站| 亚洲精品自拍成人| 精品久久久精品久久久| 亚洲国产日韩一区二区| 搡老乐熟女国产| 91成人精品电影| 街头女战士在线观看网站| 欧美 亚洲 国产 日韩一| 久久久久精品人妻al黑| 国产亚洲最大av| 国产野战对白在线观看| 99热国产这里只有精品6| 亚洲欧美精品综合一区二区三区| 亚洲欧美一区二区三区黑人| 少妇猛男粗大的猛烈进出视频| 赤兔流量卡办理| av片东京热男人的天堂| 纯流量卡能插随身wifi吗| 天天躁夜夜躁狠狠久久av| 国产免费视频播放在线视频| 男女床上黄色一级片免费看| av一本久久久久| 国产亚洲av片在线观看秒播厂| 成人毛片60女人毛片免费| 制服人妻中文乱码| av在线播放精品| 亚洲伊人久久精品综合| xxxhd国产人妻xxx| 亚洲国产欧美日韩在线播放| 国产不卡av网站在线观看| 国产福利在线免费观看视频| 亚洲精品国产一区二区精华液| 美女国产高潮福利片在线看| 国产色婷婷99| 日韩人妻精品一区2区三区| xxx大片免费视频| 老司机在亚洲福利影院| 亚洲人成网站在线观看播放| 日韩av不卡免费在线播放| 国产视频首页在线观看| 国产精品国产三级国产专区5o| 人妻一区二区av| 99精品久久久久人妻精品| 国产av国产精品国产| 999久久久国产精品视频| 51午夜福利影视在线观看| 欧美另类一区| 国产欧美日韩一区二区三区在线| 欧美日韩视频精品一区| 狂野欧美激情性bbbbbb| 亚洲第一区二区三区不卡| 91精品国产国语对白视频| 熟女av电影| 又粗又硬又长又爽又黄的视频| 黑人巨大精品欧美一区二区蜜桃| 如日韩欧美国产精品一区二区三区| 下体分泌物呈黄色| 大话2 男鬼变身卡| 欧美人与性动交α欧美软件| 美女脱内裤让男人舔精品视频| 国产av国产精品国产| a级片在线免费高清观看视频| 国产成人免费观看mmmm| 精品亚洲乱码少妇综合久久| 制服诱惑二区| 热re99久久精品国产66热6| 美女大奶头黄色视频| 夜夜骑夜夜射夜夜干| 性高湖久久久久久久久免费观看| 亚洲情色 制服丝袜| 欧美97在线视频| 桃花免费在线播放| 久久精品国产a三级三级三级| 国产高清国产精品国产三级| 如何舔出高潮| 两性夫妻黄色片| 少妇 在线观看| 高清黄色对白视频在线免费看| netflix在线观看网站| 国产一区二区三区综合在线观看| 国产一区二区 视频在线| 日韩一区二区视频免费看| 久久久久视频综合| 亚洲欧美色中文字幕在线| 午夜老司机福利片| 久久久久久久大尺度免费视频| 国产精品偷伦视频观看了| 一边摸一边抽搐一进一出视频| 精品国产乱码久久久久久男人| 91精品伊人久久大香线蕉| 日本黄色日本黄色录像| 国产99久久九九免费精品| 黄片小视频在线播放| 欧美国产精品一级二级三级| 人妻 亚洲 视频| 777米奇影视久久| 亚洲av在线观看美女高潮| 亚洲一卡2卡3卡4卡5卡精品中文| 性色av一级| 天天躁夜夜躁狠狠久久av| www日本在线高清视频| 欧美日韩亚洲综合一区二区三区_| av在线播放精品| 99re6热这里在线精品视频| 国产人伦9x9x在线观看| 宅男免费午夜| 久久久久人妻精品一区果冻| 18禁国产床啪视频网站| 久久久久人妻精品一区果冻| 亚洲国产精品999| 欧美精品av麻豆av| 久久亚洲国产成人精品v| 伦理电影免费视频| av视频免费观看在线观看| 2018国产大陆天天弄谢| 国产xxxxx性猛交| 女人精品久久久久毛片| 亚洲国产毛片av蜜桃av| 自拍欧美九色日韩亚洲蝌蚪91| tube8黄色片| 最近最新中文字幕免费大全7| 女人高潮潮喷娇喘18禁视频| 一本色道久久久久久精品综合| 亚洲国产精品国产精品| 亚洲美女黄色视频免费看| 欧美 亚洲 国产 日韩一| 欧美人与善性xxx| 亚洲精品久久成人aⅴ小说| 国产精品久久久久久人妻精品电影 | 啦啦啦在线观看免费高清www| 亚洲欧美激情在线| 精品酒店卫生间| 久久热在线av| 美女午夜性视频免费| 男人操女人黄网站| 国精品久久久久久国模美| 国产色婷婷99| 99久久精品国产亚洲精品| 国产一级毛片在线| 国产黄频视频在线观看| 亚洲国产精品成人久久小说| 天天添夜夜摸| 一区二区三区四区激情视频| 国产精品一国产av| 欧美人与性动交α欧美精品济南到| 中文字幕高清在线视频| 在线观看人妻少妇| 99精品久久久久人妻精品| 美女国产高潮福利片在线看| 黑丝袜美女国产一区| 青春草亚洲视频在线观看| 日韩电影二区| 亚洲免费av在线视频| 777久久人妻少妇嫩草av网站| av有码第一页| 丰满乱子伦码专区| 涩涩av久久男人的天堂| 观看av在线不卡| 建设人人有责人人尽责人人享有的| 肉色欧美久久久久久久蜜桃| av天堂久久9| 美女午夜性视频免费| 看非洲黑人一级黄片| 亚洲精品成人av观看孕妇| 最近最新中文字幕大全免费视频 | 校园人妻丝袜中文字幕| www.自偷自拍.com| 日韩一本色道免费dvd| 黄色毛片三级朝国网站| av线在线观看网站| 国产精品偷伦视频观看了| 高清欧美精品videossex| 1024香蕉在线观看| 国产欧美日韩综合在线一区二区| 亚洲四区av| 在线天堂中文资源库| 日本猛色少妇xxxxx猛交久久| 伊人久久大香线蕉亚洲五| 欧美精品一区二区大全| 美女福利国产在线| 美女午夜性视频免费| 精品国产乱码久久久久久小说| 国产 精品1| 黄频高清免费视频| av卡一久久| 在线精品无人区一区二区三| 多毛熟女@视频| 国产精品秋霞免费鲁丝片| 亚洲欧美一区二区三区久久| 国产又色又爽无遮挡免| 观看av在线不卡| 国产 精品1| 大陆偷拍与自拍| 一级片'在线观看视频| 一级毛片 在线播放| 丝袜脚勾引网站| 亚洲在久久综合| 熟女少妇亚洲综合色aaa.| 如何舔出高潮| 纵有疾风起免费观看全集完整版| 国产成人免费无遮挡视频| 赤兔流量卡办理| 一本色道久久久久久精品综合| 国产精品久久久久久久久免| 老鸭窝网址在线观看| 大片免费播放器 马上看| 考比视频在线观看| 一本色道久久久久久精品综合| 久久精品久久久久久久性| 国产女主播在线喷水免费视频网站| 啦啦啦视频在线资源免费观看| 国产精品久久久人人做人人爽| 日韩不卡一区二区三区视频在线| 欧美日韩精品网址| 久久久久久久久久久免费av| 成人影院久久| 午夜福利乱码中文字幕| 亚洲av男天堂| 久久人人97超碰香蕉20202| a级毛片在线看网站| 青春草国产在线视频| av福利片在线| 国产精品久久久av美女十八| 国产精品一区二区在线不卡| 在线天堂中文资源库| 咕卡用的链子| 亚洲国产欧美一区二区综合| 亚洲精品中文字幕在线视频| e午夜精品久久久久久久| 国产日韩欧美在线精品| 久久影院123| 美女高潮到喷水免费观看| 亚洲精品国产av成人精品| 久久久久久久久久久久大奶| 女人爽到高潮嗷嗷叫在线视频| 国产精品av久久久久免费| 成年人午夜在线观看视频| 国产极品天堂在线| 在线亚洲精品国产二区图片欧美| 狂野欧美激情性xxxx| 赤兔流量卡办理| 亚洲 欧美一区二区三区| 国产熟女欧美一区二区| 少妇 在线观看| 中文字幕人妻熟女乱码| 亚洲美女搞黄在线观看| 高清av免费在线| 深夜精品福利| 人妻人人澡人人爽人人| 亚洲精品视频女| 久久久久久久大尺度免费视频| 亚洲免费av在线视频| 两个人免费观看高清视频| 日本爱情动作片www.在线观看| 午夜福利免费观看在线| a 毛片基地| 街头女战士在线观看网站| 亚洲伊人色综图| 大片电影免费在线观看免费| 亚洲精品美女久久久久99蜜臀 | 一级a爱视频在线免费观看| 成人黄色视频免费在线看| 涩涩av久久男人的天堂| 国产视频首页在线观看| 亚洲成色77777| 在现免费观看毛片| 亚洲色图 男人天堂 中文字幕| 亚洲少妇的诱惑av| 欧美精品av麻豆av| 国产成人精品在线电影| 亚洲国产精品成人久久小说| 免费观看a级毛片全部| 一个人免费看片子| 精品第一国产精品| 国产精品av久久久久免费| 最近的中文字幕免费完整| 国产欧美日韩综合在线一区二区| 男女无遮挡免费网站观看| 日韩成人av中文字幕在线观看| 老司机影院毛片| 国产精品免费视频内射| 久久久精品国产亚洲av高清涩受| 日韩欧美一区视频在线观看| 91精品国产国语对白视频| 国产成人精品无人区| 国产成人欧美| 自拍欧美九色日韩亚洲蝌蚪91| 人人妻人人爽人人添夜夜欢视频| 日韩免费高清中文字幕av| 最新的欧美精品一区二区| av线在线观看网站| 精品一区在线观看国产| 午夜福利在线免费观看网站| 免费黄色在线免费观看| 极品人妻少妇av视频| 人妻 亚洲 视频| 少妇猛男粗大的猛烈进出视频| 人成视频在线观看免费观看| 国产欧美日韩一区二区三区在线| 国产男女内射视频| 性高湖久久久久久久久免费观看| 国产精品一区二区精品视频观看| 成人国产麻豆网| 一区二区日韩欧美中文字幕| 亚洲色图综合在线观看| 欧美在线一区亚洲| 狠狠精品人妻久久久久久综合| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲在久久综合| 日本欧美国产在线视频| 欧美人与性动交α欧美精品济南到| 免费少妇av软件| xxxhd国产人妻xxx| 国产女主播在线喷水免费视频网站| 如何舔出高潮| 国产激情久久老熟女| 九草在线视频观看| 午夜激情av网站| 日韩不卡一区二区三区视频在线| 人妻 亚洲 视频| 99久久综合免费| 又大又爽又粗| 亚洲国产精品国产精品| 青春草亚洲视频在线观看| 国产av码专区亚洲av| 精品国产超薄肉色丝袜足j| 久久久久视频综合| 久久鲁丝午夜福利片| 国产老妇伦熟女老妇高清| 看非洲黑人一级黄片| 亚洲精品久久成人aⅴ小说| 午夜福利视频精品| 精品国产一区二区三区久久久樱花| 丰满少妇做爰视频| 亚洲美女黄色视频免费看| 国产免费又黄又爽又色| 丁香六月欧美| 午夜日本视频在线| 在线观看人妻少妇| 日本av手机在线免费观看| 成人毛片60女人毛片免费| 久久久久久人妻| 亚洲精品国产色婷婷电影| 欧美日韩亚洲综合一区二区三区_| 精品国产超薄肉色丝袜足j| 精品午夜福利在线看| 国产一区二区激情短视频 | 中文字幕精品免费在线观看视频| a级毛片在线看网站| 久久久久久久国产电影| 国产亚洲最大av| 你懂的网址亚洲精品在线观看| 国产精品久久久久久精品古装| 国产亚洲欧美精品永久| 人人妻人人澡人人爽人人夜夜| 亚洲欧美激情在线| 精品久久蜜臀av无| 大香蕉久久网| 韩国av在线不卡| 日韩中文字幕视频在线看片| 岛国毛片在线播放| 亚洲精品成人av观看孕妇| 亚洲精品乱久久久久久| www.av在线官网国产| av不卡在线播放| 成人国产麻豆网| 欧美激情 高清一区二区三区| 老司机亚洲免费影院| 视频区图区小说| 亚洲国产精品999| 老司机影院成人| 日韩精品有码人妻一区| 亚洲第一青青草原| 在线 av 中文字幕| 视频区图区小说| 免费在线观看完整版高清| 女性被躁到高潮视频| 久久这里只有精品19| 人人妻人人爽人人添夜夜欢视频| 亚洲国产精品成人久久小说| 性少妇av在线| 99re6热这里在线精品视频| 国产精品99久久99久久久不卡 | 国产不卡av网站在线观看| av不卡在线播放| 一区二区av电影网| 亚洲久久久国产精品| 国产黄色视频一区二区在线观看| 日韩大片免费观看网站| 19禁男女啪啪无遮挡网站| 韩国av在线不卡| 又粗又硬又长又爽又黄的视频| 亚洲av电影在线进入| 蜜桃国产av成人99|