• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Highly Moisture Resistant 5-Aminovaleric Acid Crosslinked CH3NH3PbBr3 Perovskite Film with ALD-Al2O3 Protection

    2021-06-04 03:49:54TianWangTaiyangZhangYuetianChenYixinZhao
    物理化學(xué)學(xué)報 2021年4期

    Tian Wang,Taiyang Zhang,Yuetian Chen ,Yixin Zhao

    School of Environmental Science and Engineering,Shanghai Jiao Tong University,Shanghai 200240,China.

    Abstract:In recent years,hybrid lead halide perovskites have attracted significant research interest in the optoelectronic fields owing to their exceptional physical and chemical properties.However,their commercialization process is limited largely because of the sensitive nature of perovskite materials towards external stresses,such as heat,UV irradiance,oxygen,and moisture.Among various perovskitestabilization methods,deposition of a protective layer over the vulnerable perovskite film via simple atomic layer deposition (ALD)technology is of great potential.However,the corrosive effect of H2O or O3 on perovskites,which is used as the oxygen source during ALD process,is one of the main obstacles in the application of regular ALD technology for coating compact and highly conformal layer directly onto the perovskite film.In this study,by introducing bifunctional 5-aminovaleric acid (AVA)crosslinking into the layers of CH3NH3PbBr3 (MAPbBr3)units,we propose a simple yet effective strategy to prevent the degradation of sensitive perovskite structure during the ALD process when H2O is used as the oxygen source.The formed crosslinked 2D/3D structure of AVA(MAPbBr3)2 perovskite film was extremely dense and ultra-smooth compared to the coarse MAPbBr3 film.With the passivation and protection of AVA,the AVA(MAPbBr3)2 perovskite film exhibited high moisture resistance,thereby leading to the successful deposition of dense and conformal Al2O3 protective layer onto the perovskite surface.The deposition of Al2O3 layer with different thicknesses had a negligible effect on the crystalline phase and morphology of AVA(MAPbBr3)2 film,as confirmed by X-ray diffraction,UV-Vis absorption spectroscopy,and scanning electron microscopy characterizations.The steady-state photoluminescence (PL)intensity and time-resolved PL lifetime of AVA(MAPbBr3)2 film was kept almost unchanged before and after the coating of Al2O3 layer,suggesting that the thin Al2O3 layer did not significantly alter the optical properties of the perovskite material,thereby enabling the potential usages in optical and optoelectronic devices.The thermal stability and water resistance ability of Al2O3-coated AVA(MAPbBr3)2 film was proven to have greatly improved in accelerated circumstances.No impurities or decomposition were detected for Al2O3-coated AVA(MAPbBr3)2 film after the long-time annealing at high temperature (150 °C for 2 h),whereas the crosslinked 2D/3D structure of bare MAPbBr3 film quickly broke down at the elevated temperature.Intriguingly,the AVA(MAPbBr3)2 film with 15-nm-thick Al2O3 coating layer could endure strong water corrosion for at least 10 min when immersed in water.Overall,the proposed strategy could not only give a good reference for successfully depositing metal oxides onto the perovskite films with preservation of the materials’ intrinsic properties,but also provide a method of introducing amino acid to passivate and protect the perovskite materials from H2O corrosion during the ALD process.Therefore,the proposed work has practical potential in improving the device stability against various external stresses under different operating conditions,thereby paving way for various applicational advances.

    Key Words:Lead halide perovskite; Atomic layer deposition; Crosslinked 2D/3D structure; Thermal stability;Water resistance

    1 Introduction

    In recent years,the application of atomic layer deposition(ALD)technology to deposit ultrathin pinhole-free,conformal and compatible Al2O3protective film has gained increased attention22,23,29–33.Due to the self-terminating surface chemistry,the coating thickness of Al2O3film by ALD can be precisely Angstrom-scale-controlled by the number of ALD cycles23,32,34–38.For now,ALD has not only been proven feasible for surface passivation and encapsulation in lab settings,but also facile for commercial large-scale manufacturing39.Despite all the advantages,there still exists one obstacle for ALD application in perovskite protection.In most of ALD processes,water or ozone(H2O or O3)is used as the oxygen source,which could be destructive to the sensitive organic-inorganic lead halide perovskite structure37,39–43.Dong et al.37used O3as oxygen source to deposit Al2O3as capping layer onto the perovskite at 70 °C and found that just one cycle of ALD was adequate to destroy the perovskite.Kim et al.23investigated the effect of H2O and O3on the degradation of perovskite and proposed a non-hydrolytic ALD method using acetic acid as the oxygen source.Koushik et al.44found that the MA+cations got etched from the perovskite lattice when using trimethylaluminum(TMA)and H2O as precursor sources.These damages would cause the decrease of device efficiencies.Therefore,it is of great significance to find out a way to improve the intrinsic stability of perovskite against water to avoid the destruction of perovskite structure during ALD process.

    To improve the intrinsic stabilities of perovskite structures,a series of approaches have been proposed,such as tuning the composition of perovskite (mixed cations or mixed halide)to obtain a more stable perovskite layer7,45–51,substituting of small cations with long chain or bigger organic molecules to convert the three dimensional (3D)hybrid perovskites to two dimensional(2D)structures (or mixed 2D and 3D structure)46,52–55,adding functional scaffolds or additives47,56and so on.For example,the introduction of AVA (5-aminovaleric acid)or AVAI additives into the perovskite structure can form crosslinked 2D/3D structure or mixed 2D and 3D structure,which could greatly improve the moisture stability57,58.Therefore,we propose that the combination of intrinsic structural-stability enhancement and extrinsic Al2O3protective layer would enable a double protection for the vulnerable perovskite towards external stimuli.

    Here in this study,we introduce the bifunctional 5-aminovaleric acid to passivate and protect MAPbBr3perovskite film from damaging by H2O in the regular ALD method when using TMA and H2O as sources.AVA was inserted into the layer of MAPbBr3units to form AVA(MAPbBr3)2film with crosslinked 2D/3D structure.The AVA(MAPbBr3)2film was extremely stable during the ALD process.And the Al2O3-coated AVA(MAPbBr3)2film exhibited remarkably improved thermal stability and water resistance in accelerated circumstances.

    2 Experimental

    2.1 Materials

    Methylamine ethanol solution (MA,33%,mass fraction (w))and HBr were purchased from Sigma-Aldrich Co.,Ltd.5-Aminovaleric acid (AVA),PbBr2and dimethyl formamide(DMF)were purchased from Aladdin Industrial Inc.Diethyl ether and ethanol were bought from Sinopharm Chemical Reagent Co.,Ltd.All the chemicals were used as-received without further purification.

    2.2 Synthesis of MABr and AVABr

    MABr and AVABr were synthesized according to previous reports57,59.Briefly,MA and HBr with a molar ratio of 1.2 :1 were reacted in an ice bath for 2 h followed by vacuum drying.The product was dissolved in hot ethanol and then injected into diethyl ether for recrystallization.The process was repeated for three times.The washed white powder was dried in a vacuum oven overnight to obtain purified MABr.AVABr was synthesized using the same method as MABr except with AVA as precursor.

    2.3 Film preparation

    The glass substrate was cleaned by soaking in 5% (w)NaOH ethanol solution for hours,then rinsed with deionized water and cleaned under 10 min of plasma.MAPbBr3film was prepared via solvent engineering method by spin coating the precursor solution of MABr and PbBr2(molar ratio of 1 :1)in DMF at 3500 r·min?1for 20 s,and annealed at 100 °C for 10 min.AVA(MAPbBr3)2film was prepared by an in situ gas/solid method previously reported by our group57,60.AVABr and PbBr2with the molar ratio of 1 :2 were dissolved in DMF to form a precursor solution.A drop of 80 μL precursor solution was spin coated on glass substrate at a speed of 4000 r·min?1for 20 s.The film was dried at room temperature for 10 min to evaporate DMF.Then the film was placed upside-down over MA ethanol solution for 3 s and the obtained colorless film were annealed at 100 °C for 10 min to remove the residual vapor and form the AVA(MAPbBr3)2perovskite.

    2.4 Deposition of Al2O3 by ALD process

    The Al2O3layers were deposited directly on perovskite films by the ALD system (ALD f-100-4,MNT)using trimethylaluminum (TMA)vapor as aluminum source and H2O vapor as oxygen source.High purity N2(99.999%)was used as purge gas.The pressure in the ALD reaction chamber was around 27 Pa,and the temperature was set at 85 °C.In each complete ALD cycle,~0.09 nm thickness Al2O3layer was acquired when both TMA and H2O were dosed into the chamber for 15 ms and waited for 5 s before a 20 s purge.

    2.5 Characterizations

    The crystal structure of films with or without ALD deposited Al2O3were analyzed using X-ray diffraction (Shimadzu XRD-6100,Cu Kαradiation).UV-Vis spectroscopy analysis was carried on Cary 60 UV-Vis spectrometer.Steady state photoluminescence (PL)spectra was measured by a LS55 luminescence spectrometer (Perkin Elmer Inc.,USA).Timeresolved photoluminescence was measured by QM/TM/IM fluorescence spectrofluorometer (PTI,USA).The morphologies of the perovskite films were characterized by scanning electron microscope (SEM,FEI Sirion 200).The atomic force microscope (AFM)images were obtained by a Bruker fast scan scanning probe microscope.

    3 Results and discussion

    We firstly investigated the effect of Al2O3deposition on MAPbBr3perovskite film by ALD.The XRD patterns and UVVis spectra of the MAPbBr3perovskite films with and without deposition of 10 nm thickness Al2O3were compared.The strong diffraction peaks (Fig.1a)at 14.84° and 30.08° assigning to the(100)and (200)planes (blue dashed lines)of MAPbBr3disappeared,indicating the decomposition of MAPbBr3by reacting with H2O vapor during the ALD process61,62.The comparison in the UV-Vis spectra before and after the Al2O3deposition as shown in Fig.1b also confirmed the destruction of MAPbBr3after ALD.It is obvious that MAPbBr3perovskite film could be damaged when depositing Al2O3directly onto it,let alone providing the originally expected surface protection23,63.On the contrary,after directly depositing 10 nm Al2O3onto the surface of AVA-passivated AVA(MAPbBr3)2films,the XRD patterns remained unchanged in comparison with the pristine AVA(MAPbBr3)2perovskite (Fig.1c),suggesting the remarkable resistance of AVA(MAPbBr3)2film against H2O in the process of ALD.We also investigated the influence of ALD processing time (which is proportional to the thickness of Al2O3)on the structure of AVA(MAPbBr3)2films.Prolonging ALD time means longer exposure to TMA,H2O and longer annealing time at the operation temperature (85 °C).Intriguingly,no change that reflects the degradation of perovskite films were observed when 5 and 15 nm thicknesses of Al2O3layers were coated onto the AVA(MAPbBr3)2films.Fig.1d displayed the UV-Vis spectra of AVA(MAPbBr3)2films with different thickness of Al2O3layers.The Al2O3-coated films exhibited the same characteristic perovskite absorption as the pristine one.All these results strongly indicate that,the introduction of bifunctional AVA groups into the MAPbBr3structure would effectively passivate and protect MAPbBr3from moisture-induced decomposition during the ALD process.

    Fig.1 (a)XRD patterns and (b)UV-Vis spectra of the MAPbBr3 perovskite films before and after ALD of Al2O3; (c)XRD patterns and(d)UV-Vis spectra of the AVA(MAPbBr3)2 perovskite films before and after ALD of Al2O3.

    Fig.2 shows the morphologies of prepared perovskite films before and after the ALD process.The bare MAPbBr3perovskite film has a rough surface scattered with different sized MAPbBr3crystals (Fig.2a).While the AVA(MAPbBr3)2film was ultrasmooth with no obvious sign of grain boundaries (Fig.2b).The extremely dense morphology was due to the introduction of bifunctional AVA groups into the precursor solution forming a special crosslinked 2D/3D structure,where H3+and COO?in AVA crosslinked the MAPbBr3units by occupying the MA+sites and Br?sites respectively on the surface of two nearby unit57.The deposition of compact and conformal Al2O3directly onto AVA(MAPbBr3)2film had no distinct impact on the perovskite morphology as confirmed by SEM and AFM images (Fig.2c,d).It was also revealed by AFM height profiles that the Al2O3-coated film was quite compact with less than 20 nm roughness on the surface.The enhanced stability of AVA(MAPbBr3)2film towards H2O during the ALD process was benefiting from its denser morphology and the crosslinked 2D/3D structure57.On one hand,researches claimed that the pinhole-free morphologies and 2D structure can improve the stability of perovskite when exposed to moisture46,52–55.On the other hand,the organic ammonium cation in AVA could modify the surface of MAPbBr3perovskite grains and hence block the approach of H2O to the perovskite,avoiding the decomposition of MAPbBr3units46,64.Therefore,the AVA inserting into the lattice structure of MAPbBr3can passivate and protect the MAPbBr3units from reacting with H2O and suppressing their degradation during the whole ALD process.

    Fig.2 SEM images of bare (a)MAPbBr3 and (b)AVA(MAPbBr3)2 film before ALD; (c)SEM image and(d)AFM image of AVA(MAPbBr3)2 film after ALD of 10 nm conformal Al2O3 layer.The scale bar is 1 μm.

    The steady-state photoluminescence (PL)spectra and timeresolved PL decays of AVA(MAPbBr3)2films before and after the coating of Al2O3layer were compared.The steady-state PL intensity of AVA(MAPbBr3)2film barely changed after the deposition of different thickness of Al2O3(Fig.3a).The average PL lifetime for AVA(MAPbBr3)2with or without 10 nm Al2O3coating was 10.55 and 10.63 ns,respectively (Fig.3b),suggesting that the thin Al2O3did not affect the optical dynamic properties,which holds promise for using this perovskite film for optical and optoelectronic devices.The photos of bare and coated AVA(MAPbBr3)2films in Fig.3b showed comparable brightness.The above measurements strongly suggest that the compact and compatible Al2O3layer had been successfully deposited onto the AVA(MAPbBr3)2perovskite film through ALD process without damaging the film or affecting the optical properties of the perovskite film.

    Fig.3 (a)Steady-state PL spectra and (b)time-resolved PL decay curves of AVA(MAPbBr3)2 films with and without the deposition of different thickness Al2O3 by ALD.Insert photos in (b)are bare AVA(MAPbBr3)2 film (left)and AVA(MAPbBr3)2 film with 10 nm Al2O3 coating (right).

    Thermal stability and water resistance of the Al2O3-coated AVA(MAPbBr3)2films were investigated under accelerated circumstances.Samples were annealed at 150 °C for 2 h in atmosphere with up to 90% relative humidity.Without Al2O3deposition,the crosslinked 2D/3D structure of AVA(MAPbBr3)2soon broke down to mixed 2D and 3D structure as indicated by the appearance of a strong peak at 8.5° related to 2D structure(Fig.4a)57.While the films with different thickness of Al2O3coatings exhibited excellent thermal stability as no impurities were formed after the long time annealing at high temperature(Fig.4b).The enhanced peak intensity was ascribed to the regrowth of AVA(MAPbBr3)2crystals65,66.The compact Al2O3layer can effectively prevent the escaping of organic cations(MA+)from the AVA(MAPbBr3)2perovskite structure during annealing,therefore leading to outstanding thermal stability.The water resistance of bare AVA(MAPbBr3)2and Al2O3deposited films were evaluated by directly immersing them in water (Fig.5).Not surprisingly,the uncovered AVA(MAPbBr3)2film rapidly decomposed within 3 s.As expected,the Al2O3-coated AVA(MAPbBr3)2films displayed remarkably improved tolerance of water erosion,and the water resistance abilities of those films exhibited positive relation with the thickness of coated protection layers.The results were easily understood as the thicker and compacter the layer was,the stronger protection it would provide.The films with 5 to 15 nm Al2O3coverage could endure the water corrosion from seconds to minutes.As can be seen from the pictures,the decomposition began from the edges as uneven points and then extended to areas.For the 15 nm Al2O3-coated film,no apparent damages can be observed within 3 min in water,and the film even could go through the water stimulation for at least 10 min before completely decomposing.This test result confirmed that,the Al2O3layer that armored onto the surface of AVA(MAPbBr3)2perovskite could separate the vulnerable perovskite from intimate contact with water,resulting in significantly improved water resistance.

    Fig.4 XRD patterns of (a)bare AVA(MAPbBr3)2 film and(b)conformal Al2O3-coated AVA(MAPbBr3)2 films before and after annealing at 150 °C for 2 h as comparison of thermal stabilities.

    Fig.5 Optical photos to compare the water resistance abilities of bare and Al2O3-coated AVA(MAPbBr3)2 films as a function of time in water.

    4 Conclusions

    In summary,the Al2O3protection layer was successfully deposited onto the perovskite film via regular ALD method using TMA and H2O as aluminum and oxygen source,respectively.This direct deposition method effectively protected the perovskite film with no damage or sacrifice to the film performances.For the perovskite film used in this study,the insertion of bifunctional AVA into MAPbBr3layer not only worked as a crosslinker to form ultra-dense AVA(MAPbBr3)2film with a more stable crosslinked 2D/3D structure,but also passivated the perovskite crystal boundaries and impeded the direct contact of MAPbBr3and H2O,leading to the successful Al2O3deposition.The Al2O3-coated films exhibited significant improvement in both thermal stability and water resistance under accelerated circumstances (i.e.annealed at 150 °C and immersed in water).The strategy of introducing amino acid to passivate and protect perovskite from H2O corrosion during ALD process has practical potential in improving device stability in the future.

    av电影中文网址| 一级黄色大片毛片| 91精品三级在线观看| 亚洲精品中文字幕一二三四区 | 国产1区2区3区精品| 一边摸一边做爽爽视频免费| 日韩欧美一区二区三区在线观看 | 午夜福利视频在线观看免费| 美女高潮到喷水免费观看| 午夜福利在线免费观看网站| 男女下面插进去视频免费观看| 亚洲av男天堂| 亚洲av成人一区二区三| 999久久久国产精品视频| 亚洲成av片中文字幕在线观看| 一级,二级,三级黄色视频| 精品欧美一区二区三区在线| 欧美日韩国产mv在线观看视频| 国产成人欧美| 亚洲中文av在线| 亚洲熟女精品中文字幕| 精品少妇久久久久久888优播| 麻豆乱淫一区二区| 高清视频免费观看一区二区| 久9热在线精品视频| 在线av久久热| 亚洲一区中文字幕在线| 精品人妻在线不人妻| 最近最新中文字幕大全免费视频| 免费久久久久久久精品成人欧美视频| 777久久人妻少妇嫩草av网站| 在线观看一区二区三区激情| 欧美在线一区亚洲| 免费av中文字幕在线| 我要看黄色一级片免费的| 女人高潮潮喷娇喘18禁视频| 天堂中文最新版在线下载| e午夜精品久久久久久久| 亚洲 欧美一区二区三区| 亚洲精品在线美女| 国产三级黄色录像| av片东京热男人的天堂| 男人爽女人下面视频在线观看| tube8黄色片| 国产有黄有色有爽视频| 高清av免费在线| 在线十欧美十亚洲十日本专区| 丝袜喷水一区| 久久免费观看电影| 丰满迷人的少妇在线观看| 午夜两性在线视频| 岛国毛片在线播放| 性少妇av在线| 亚洲专区字幕在线| 国产亚洲av片在线观看秒播厂| 黄色视频,在线免费观看| 国产极品粉嫩免费观看在线| 大片免费播放器 马上看| 99久久人妻综合| 91成年电影在线观看| bbb黄色大片| 中文字幕高清在线视频| 无遮挡黄片免费观看| 91av网站免费观看| 免费av中文字幕在线| 亚洲精品成人av观看孕妇| 亚洲视频免费观看视频| 国产一区二区三区av在线| 我的亚洲天堂| 精品人妻1区二区| 天天添夜夜摸| 日本猛色少妇xxxxx猛交久久| av免费在线观看网站| 亚洲国产看品久久| av网站免费在线观看视频| 国产成人啪精品午夜网站| 老司机在亚洲福利影院| 美女高潮喷水抽搐中文字幕| 后天国语完整版免费观看| 免费在线观看日本一区| 日本五十路高清| 美女脱内裤让男人舔精品视频| 亚洲精品乱久久久久久| 国产精品久久久久久精品电影小说| 精品一区二区三卡| 日韩大码丰满熟妇| 日日夜夜操网爽| 男人舔女人的私密视频| 成年美女黄网站色视频大全免费| 黑人猛操日本美女一级片| 国产日韩欧美视频二区| 19禁男女啪啪无遮挡网站| 人人妻人人澡人人看| 免费一级毛片在线播放高清视频 | 欧美日韩亚洲综合一区二区三区_| 亚洲免费av在线视频| 亚洲欧美清纯卡通| av欧美777| 男女边摸边吃奶| 久久久精品94久久精品| 蜜桃国产av成人99| 久久精品人人爽人人爽视色| 人妻久久中文字幕网| 亚洲精品一卡2卡三卡4卡5卡 | 法律面前人人平等表现在哪些方面 | 悠悠久久av| www.av在线官网国产| 黄色片一级片一级黄色片| 久久 成人 亚洲| 日韩欧美国产一区二区入口| 国产精品久久久久久人妻精品电影 | 国产高清videossex| 国产精品一二三区在线看| 十八禁网站免费在线| 女警被强在线播放| 欧美国产精品va在线观看不卡| 在线观看一区二区三区激情| 欧美成狂野欧美在线观看| 两个人看的免费小视频| 岛国在线观看网站| 蜜桃在线观看..| 成年美女黄网站色视频大全免费| 久久久久国产一级毛片高清牌| 亚洲国产精品成人久久小说| 精品人妻熟女毛片av久久网站| av在线播放精品| 国产成人欧美| 满18在线观看网站| 亚洲欧美日韩高清在线视频 | videosex国产| 午夜成年电影在线免费观看| 欧美日韩亚洲高清精品| 亚洲国产精品一区二区三区在线| 精品国产乱子伦一区二区三区 | 大片电影免费在线观看免费| 国产成人欧美| 亚洲一码二码三码区别大吗| 中文精品一卡2卡3卡4更新| 亚洲欧美日韩另类电影网站| 人人妻人人澡人人爽人人夜夜| 最新在线观看一区二区三区| 99热全是精品| 美女脱内裤让男人舔精品视频| 免费久久久久久久精品成人欧美视频| 国产欧美日韩一区二区三区在线| 永久免费av网站大全| 国产高清videossex| 欧美 日韩 精品 国产| 91成年电影在线观看| 亚洲国产欧美在线一区| 国产精品久久久久久精品古装| 视频区欧美日本亚洲| 首页视频小说图片口味搜索| 性色av一级| 性高湖久久久久久久久免费观看| 欧美另类一区| 精品人妻1区二区| 久久久久久久久久久久大奶| 精品少妇内射三级| 亚洲精品一二三| 国产欧美日韩一区二区精品| www日本在线高清视频| 亚洲精品一二三| 久久久精品国产亚洲av高清涩受| 亚洲一区中文字幕在线| 视频区欧美日本亚洲| 婷婷丁香在线五月| 丰满饥渴人妻一区二区三| 性高湖久久久久久久久免费观看| 亚洲精品国产色婷婷电影| 女人被躁到高潮嗷嗷叫费观| 在线看a的网站| 久久国产精品人妻蜜桃| 国产精品久久久av美女十八| 久久香蕉激情| 欧美精品亚洲一区二区| 人人妻人人澡人人爽人人夜夜| 人妻久久中文字幕网| 欧美日韩黄片免| 老司机影院毛片| 国产精品免费大片| 国产精品影院久久| 欧美日韩成人在线一区二区| 一本大道久久a久久精品| 考比视频在线观看| 久久久久久亚洲精品国产蜜桃av| 亚洲精品在线美女| 欧美精品人与动牲交sv欧美| av国产精品久久久久影院| 国产亚洲av片在线观看秒播厂| 亚洲精品久久久久久婷婷小说| 啦啦啦在线免费观看视频4| 国产精品麻豆人妻色哟哟久久| 18在线观看网站| 真人做人爱边吃奶动态| 宅男免费午夜| 熟女少妇亚洲综合色aaa.| 999精品在线视频| 久久人妻熟女aⅴ| 久久影院123| 日本五十路高清| 十八禁人妻一区二区| 色播在线永久视频| 深夜精品福利| 一本—道久久a久久精品蜜桃钙片| 亚洲精品第二区| videosex国产| av天堂久久9| 涩涩av久久男人的天堂| tocl精华| av免费在线观看网站| 久久久国产精品麻豆| 一级片'在线观看视频| 亚洲国产欧美日韩在线播放| 久久天躁狠狠躁夜夜2o2o| 真人做人爱边吃奶动态| 日本精品一区二区三区蜜桃| 日本猛色少妇xxxxx猛交久久| 天天躁夜夜躁狠狠躁躁| 国产精品偷伦视频观看了| 搡老熟女国产l中国老女人| 亚洲视频免费观看视频| 色综合欧美亚洲国产小说| 国产一级毛片在线| 亚洲精品自拍成人| 大片免费播放器 马上看| 国产一卡二卡三卡精品| 亚洲综合色网址| 老熟妇仑乱视频hdxx| 欧美在线一区亚洲| 亚洲自偷自拍图片 自拍| 美女高潮喷水抽搐中文字幕| 多毛熟女@视频| 99国产极品粉嫩在线观看| 免费看十八禁软件| 国产成+人综合+亚洲专区| 男女床上黄色一级片免费看| 久久久久精品国产欧美久久久 | 日本一区二区免费在线视频| 妹子高潮喷水视频| 久久精品国产亚洲av高清一级| 精品国内亚洲2022精品成人 | 久热爱精品视频在线9| 90打野战视频偷拍视频| 国产99久久九九免费精品| 亚洲精品久久成人aⅴ小说| 精品久久久久久电影网| 成人av一区二区三区在线看 | 老熟妇乱子伦视频在线观看 | 淫妇啪啪啪对白视频 | 操美女的视频在线观看| 久久久久久人人人人人| 如日韩欧美国产精品一区二区三区| 欧美激情久久久久久爽电影 | 午夜老司机福利片| 一级a爱视频在线免费观看| 天天添夜夜摸| 久久 成人 亚洲| 国产主播在线观看一区二区| 女人精品久久久久毛片| 男人舔女人的私密视频| 美女主播在线视频| 99热全是精品| 色精品久久人妻99蜜桃| 五月天丁香电影| 国产一区二区激情短视频 | 国产三级黄色录像| 国产精品一区二区在线不卡| av欧美777| 操美女的视频在线观看| 老司机靠b影院| 啪啪无遮挡十八禁网站| 在线十欧美十亚洲十日本专区| 亚洲av日韩精品久久久久久密| 亚洲欧洲精品一区二区精品久久久| av在线老鸭窝| 欧美黄色淫秽网站| 久久人人97超碰香蕉20202| 亚洲精品久久久久久婷婷小说| www日本在线高清视频| 日本av手机在线免费观看| 丁香六月天网| 亚洲熟女毛片儿| 国产精品一区二区精品视频观看| 少妇粗大呻吟视频| 欧美在线黄色| 国产欧美日韩精品亚洲av| 国产精品.久久久| 桃红色精品国产亚洲av| 99精品久久久久人妻精品| 国产亚洲午夜精品一区二区久久| 午夜福利视频精品| 亚洲午夜精品一区,二区,三区| 精品国产超薄肉色丝袜足j| 99国产极品粉嫩在线观看| 国产91精品成人一区二区三区 | 美女福利国产在线| 久久人人爽人人片av| av在线app专区| 亚洲av美国av| 叶爱在线成人免费视频播放| 99国产精品一区二区蜜桃av | 狂野欧美激情性bbbbbb| 狠狠精品人妻久久久久久综合| 欧美97在线视频| 国产精品九九99| 性色av乱码一区二区三区2| 欧美日韩福利视频一区二区| 日本猛色少妇xxxxx猛交久久| 国产1区2区3区精品| 亚洲五月色婷婷综合| 十八禁高潮呻吟视频| 宅男免费午夜| 国产免费现黄频在线看| 在线观看www视频免费| 在线亚洲精品国产二区图片欧美| 人妻 亚洲 视频| 国产av精品麻豆| 欧美日韩视频精品一区| 老司机福利观看| 91精品国产国语对白视频| 欧美日韩精品网址| 精品亚洲乱码少妇综合久久| 他把我摸到了高潮在线观看 | 国产xxxxx性猛交| 另类亚洲欧美激情| 狠狠婷婷综合久久久久久88av| av超薄肉色丝袜交足视频| 日本一区二区免费在线视频| 久久久国产一区二区| 精品少妇内射三级| 777久久人妻少妇嫩草av网站| www.自偷自拍.com| 十八禁网站网址无遮挡| 精品久久久久久久毛片微露脸 | 久久香蕉激情| 男女国产视频网站| 精品高清国产在线一区| 九色亚洲精品在线播放| 午夜福利视频在线观看免费| 成年人免费黄色播放视频| 电影成人av| 成年女人毛片免费观看观看9 | 午夜激情av网站| 啦啦啦免费观看视频1| 久久国产精品大桥未久av| 1024视频免费在线观看| 老司机午夜福利在线观看视频 | 一级片免费观看大全| 色94色欧美一区二区| 50天的宝宝边吃奶边哭怎么回事| videos熟女内射| 日韩 欧美 亚洲 中文字幕| a级片在线免费高清观看视频| 久久av网站| 免费观看av网站的网址| 午夜精品久久久久久毛片777| 老司机亚洲免费影院| 国产深夜福利视频在线观看| 亚洲国产看品久久| 亚洲国产精品999| 亚洲精品粉嫩美女一区| 人成视频在线观看免费观看| 美女主播在线视频| 欧美一级毛片孕妇| 人妻人人澡人人爽人人| 精品人妻一区二区三区麻豆| www.999成人在线观看| 亚洲人成电影观看| 日韩中文字幕视频在线看片| 亚洲精品久久午夜乱码| 亚洲五月色婷婷综合| av天堂在线播放| a级片在线免费高清观看视频| 久久中文字幕一级| 亚洲熟女精品中文字幕| 国产成人啪精品午夜网站| 亚洲欧美一区二区三区久久| 午夜精品国产一区二区电影| 国产av一区二区精品久久| 亚洲精品粉嫩美女一区| 久久免费观看电影| 亚洲国产欧美在线一区| 亚洲av片天天在线观看| 国产精品久久久久久精品古装| 涩涩av久久男人的天堂| 精品人妻熟女毛片av久久网站| 中文欧美无线码| 欧美另类一区| 曰老女人黄片| 波多野结衣av一区二区av| 99re6热这里在线精品视频| 午夜福利在线免费观看网站| 丝袜人妻中文字幕| 亚洲成国产人片在线观看| 一级毛片精品| 亚洲精品一卡2卡三卡4卡5卡 | 国产亚洲av片在线观看秒播厂| 美女高潮喷水抽搐中文字幕| 亚洲欧美一区二区三区黑人| 日本vs欧美在线观看视频| 中文字幕最新亚洲高清| 国产老妇伦熟女老妇高清| 亚洲全国av大片| 欧美日韩中文字幕国产精品一区二区三区 | 两性午夜刺激爽爽歪歪视频在线观看 | 人人妻人人爽人人添夜夜欢视频| 性少妇av在线| 久久国产精品影院| 午夜福利免费观看在线| av一本久久久久| 日本五十路高清| 十八禁人妻一区二区| 人妻人人澡人人爽人人| 久久亚洲国产成人精品v| 十分钟在线观看高清视频www| 又紧又爽又黄一区二区| 精品国产一区二区三区久久久樱花| 国产人伦9x9x在线观看| 人人妻,人人澡人人爽秒播| 超色免费av| 久久精品亚洲熟妇少妇任你| 国产精品久久久人人做人人爽| 极品人妻少妇av视频| 亚洲中文字幕日韩| 中文字幕人妻丝袜制服| 我的亚洲天堂| 久久精品aⅴ一区二区三区四区| 中文字幕人妻熟女乱码| 欧美乱码精品一区二区三区| 亚洲精品一二三| 夜夜夜夜夜久久久久| 蜜桃国产av成人99| 免费观看av网站的网址| xxxhd国产人妻xxx| 欧美av亚洲av综合av国产av| 麻豆国产av国片精品| 亚洲国产精品成人久久小说| 精品久久久久久久毛片微露脸 | 在线 av 中文字幕| 久久久水蜜桃国产精品网| 丰满人妻熟妇乱又伦精品不卡| 久久人人97超碰香蕉20202| 亚洲av国产av综合av卡| 久久国产亚洲av麻豆专区| 热99久久久久精品小说推荐| 亚洲欧美成人综合另类久久久| 国内毛片毛片毛片毛片毛片| 99久久国产精品久久久| 国产精品99久久99久久久不卡| 国产免费现黄频在线看| 欧美久久黑人一区二区| av在线老鸭窝| 久9热在线精品视频| 精品福利观看| 91av网站免费观看| 男男h啪啪无遮挡| 中文字幕人妻丝袜一区二区| 日本猛色少妇xxxxx猛交久久| 日韩欧美国产一区二区入口| 日韩大码丰满熟妇| 欧美性长视频在线观看| 美女高潮到喷水免费观看| www.熟女人妻精品国产| 少妇精品久久久久久久| 免费在线观看黄色视频的| 国产精品国产三级国产专区5o| 成年美女黄网站色视频大全免费| 丁香六月欧美| 宅男免费午夜| 国产亚洲午夜精品一区二区久久| videos熟女内射| 精品熟女少妇八av免费久了| 午夜两性在线视频| 男女下面插进去视频免费观看| 在线观看免费高清a一片| 国产在线视频一区二区| 欧美大码av| 久久久精品免费免费高清| 日本vs欧美在线观看视频| 亚洲 国产 在线| 91国产中文字幕| 亚洲欧美精品综合一区二区三区| 人人妻人人澡人人爽人人夜夜| av国产精品久久久久影院| 少妇被粗大的猛进出69影院| 自拍欧美九色日韩亚洲蝌蚪91| 老熟女久久久| 69精品国产乱码久久久| 国产精品国产三级国产专区5o| 国产精品久久久久久人妻精品电影 | 亚洲精品久久久久久婷婷小说| 2018国产大陆天天弄谢| 99热全是精品| a级毛片在线看网站| 久久久久网色| 免费观看人在逋| 亚洲av成人一区二区三| 欧美黄色片欧美黄色片| 男女国产视频网站| 日韩欧美一区视频在线观看| 十分钟在线观看高清视频www| 中文字幕制服av| 免费高清在线观看视频在线观看| 老司机在亚洲福利影院| 精品免费久久久久久久清纯 | 满18在线观看网站| 精品少妇内射三级| 亚洲精品美女久久av网站| 伦理电影免费视频| 国产主播在线观看一区二区| 夜夜夜夜夜久久久久| 午夜精品国产一区二区电影| 日本av免费视频播放| 麻豆乱淫一区二区| 电影成人av| 手机成人av网站| 男女之事视频高清在线观看| 精品国产国语对白av| 日韩熟女老妇一区二区性免费视频| 亚洲情色 制服丝袜| 欧美午夜高清在线| 亚洲第一欧美日韩一区二区三区 | 91九色精品人成在线观看| 国产欧美亚洲国产| 久久综合国产亚洲精品| 久久久欧美国产精品| 免费av中文字幕在线| 一区二区日韩欧美中文字幕| 老司机午夜福利在线观看视频 | 国产在视频线精品| 叶爱在线成人免费视频播放| 亚洲国产欧美网| 捣出白浆h1v1| 两个人看的免费小视频| 欧美激情 高清一区二区三区| 国产成人啪精品午夜网站| 精品一区二区三卡| 亚洲免费av在线视频| 欧美+亚洲+日韩+国产| 香蕉国产在线看| 亚洲熟女毛片儿| 99精国产麻豆久久婷婷| 久久热在线av| 男女床上黄色一级片免费看| 美女扒开内裤让男人捅视频| 久久久国产成人免费| 一区二区三区激情视频| 亚洲av国产av综合av卡| 亚洲精品成人av观看孕妇| 国产精品偷伦视频观看了| 国产精品1区2区在线观看. | 中文字幕最新亚洲高清| 一区二区日韩欧美中文字幕| 国产亚洲欧美精品永久| 国产精品麻豆人妻色哟哟久久| 欧美黄色淫秽网站| 亚洲第一av免费看| 国产97色在线日韩免费| 97在线人人人人妻| 大码成人一级视频| av欧美777| 午夜久久久在线观看| 久久精品熟女亚洲av麻豆精品| 少妇的丰满在线观看| 亚洲少妇的诱惑av| 十分钟在线观看高清视频www| 亚洲成人免费av在线播放| 亚洲成国产人片在线观看| 啦啦啦免费观看视频1| 国产男女内射视频| av欧美777| 丰满人妻熟妇乱又伦精品不卡| 欧美黑人精品巨大| 国产男女内射视频| kizo精华| 黄色怎么调成土黄色| 日本黄色日本黄色录像| av在线播放精品| 人人妻人人澡人人爽人人夜夜| 女人爽到高潮嗷嗷叫在线视频| 性色av乱码一区二区三区2| 色婷婷久久久亚洲欧美| 亚洲欧美精品自产自拍| 中文字幕精品免费在线观看视频| 免费女性裸体啪啪无遮挡网站| 日韩免费高清中文字幕av| 欧美xxⅹ黑人| 97人妻天天添夜夜摸| 91国产中文字幕| 美女视频免费永久观看网站| 欧美日韩福利视频一区二区| 日本五十路高清| 亚洲综合色网址| 国产精品久久久人人做人人爽| 人人妻人人添人人爽欧美一区卜| 国产欧美日韩精品亚洲av| 中文字幕高清在线视频| 精品国产一区二区三区久久久樱花| 我要看黄色一级片免费的| 国产免费福利视频在线观看| 97人妻天天添夜夜摸| 亚洲五月婷婷丁香| 欧美日韩亚洲高清精品| 两人在一起打扑克的视频| 极品少妇高潮喷水抽搐| 18禁裸乳无遮挡动漫免费视频| 国产又爽黄色视频| av天堂久久9| av有码第一页| 精品卡一卡二卡四卡免费| 免费观看av网站的网址| 黄色视频在线播放观看不卡| 亚洲美女黄色视频免费看| 亚洲专区中文字幕在线|