竇?超,朱仰澤,解?程,謝志棟,楊?娜
梯形波折鋼板剪力墻內(nèi)嵌墻板抗側(cè)性能研究
竇?超,朱仰澤,解?程,謝志棟,楊?娜
(北京交通大學(xué)土木建筑工程學(xué)院,北京 100044)
與普通平鋼板剪力墻相比,波折鋼板剪力墻的抗側(cè)性能與設(shè)計(jì)方法仍有待研究.利用有限元方法分析波折鋼板剪力墻體系中內(nèi)嵌墻板的抗側(cè)性能和承載機(jī)制,提出設(shè)計(jì)建議.首先,通過對(duì)比梯形波折鋼板及與之對(duì)應(yīng)的正弦波折鋼板的抗側(cè)性能,證明梯形波折優(yōu)于正弦波折,且子板面傾斜角度越大,抗側(cè)承載力越大;設(shè)計(jì)正交有限元試驗(yàn)研究波折參數(shù)(寬高比/、高厚比/、波折數(shù)量/l、波折角度)對(duì)內(nèi)嵌鋼板極限和殘余承載力的影響,指出寬高比和波折角度對(duì)墻板抗側(cè)性能的影響最大.其次,通過比較波折鋼板墻與對(duì)應(yīng)平鋼板墻的邊緣框架內(nèi)力分布,揭示了內(nèi)嵌波折鋼板的兩種抗側(cè)力機(jī)制,設(shè)計(jì)合理的波折鋼板能夠?qū)崿F(xiàn)面內(nèi)剪切屈服的抗側(cè)機(jī)制,滿足穩(wěn)定的屈曲后強(qiáng)度的要求;而屈曲后強(qiáng)度下降的墻板,將對(duì)邊緣柱產(chǎn)生較大的附加彎矩,削弱結(jié)構(gòu)整體性能.對(duì)于大寬高比的鋼板墻來說,豎直放置的波折鋼板面外變形更小,剪切屈服能夠充分發(fā)展,具有更優(yōu)越的性能.最后,對(duì)工程常用參數(shù)范圍的波折鋼板進(jìn)行抗側(cè)承載力分析,給出極限承載力的擬合公式,提出保持屈曲后承載力穩(wěn)定的設(shè)計(jì)建議.研究發(fā)現(xiàn),減小內(nèi)嵌墻板的正則化高厚比可以提高其延性.根據(jù)提出的設(shè)計(jì)建議設(shè)計(jì)的墻板可以實(shí)現(xiàn)面內(nèi)剪切屈服的抗側(cè)承載機(jī)制.
波折鋼板剪力墻;抗側(cè)機(jī)制;抗側(cè)承載力;屈曲后性能;設(shè)計(jì)建議
平鋼板剪力墻(FSSWs)體系具有良好的抗側(cè)力性能,一直以來被廣泛應(yīng)用于高層結(jié)構(gòu)中.1973年日本學(xué)者Takahashi等[1]對(duì)非加勁薄鋼板墻及加勁鋼板墻進(jìn)行了擬靜力試驗(yàn),隨后大量研究工作在國(guó)內(nèi)外相繼展開[2-5].理論研究及工程實(shí)例表明,鋼板剪力墻結(jié)構(gòu)是一種優(yōu)越的延性耗能雙重抗側(cè)力體系.經(jīng)過四十余年的發(fā)展,平鋼板剪力墻、加勁鋼板墻的計(jì)算理論及設(shè)計(jì)方法趨于完善.但內(nèi)嵌薄平鋼板墻仍存在以下問題:①在風(fēng)荷載或小震作用下易屈曲變形或振動(dòng)而影響舒適度,運(yùn)輸安裝過程中的變形也不易控制;②往復(fù)荷載作用下,滯回曲線存在明顯的捏縮現(xiàn)象,降低了其耗能能力;③屈曲后薄鋼板墻的拉力帶錨固于框架梁柱,對(duì)邊緣框架帶來較大負(fù)擔(dān),產(chǎn)生的附加彎矩將導(dǎo)致框架柱過早破壞.
相比傳統(tǒng)平鋼板剪力墻,波折鋼板剪力墻(SCSWs)具有更優(yōu)越的性能.波折的存在大大增強(qiáng)了面外剛度,使其綜合了厚鋼板墻和加勁鋼板墻的優(yōu)勢(shì),不會(huì)過早屈曲,設(shè)計(jì)合理時(shí)呈現(xiàn)受剪屈服的抗側(cè)機(jī)制,對(duì)邊緣框架的錨固剛度要求以及附加彎矩的不利影響大幅降低,滯回曲線更為飽滿[6-12].
國(guó)內(nèi)外學(xué)者針對(duì)波折鋼板墻在單向推覆和循環(huán)荷載下的結(jié)構(gòu)性能進(jìn)行了研究.Farzampour等[13-14]提出了一種基于拉力帶抗側(cè)力機(jī)制的名為“CPFI”的設(shè)計(jì)方法.Shon等[15]進(jìn)行了波折鋼板墻的循環(huán)荷載試驗(yàn),結(jié)果證明波折鋼板墻的耗能能力優(yōu)于平鋼板墻.Vigh等[16]發(fā)現(xiàn),在某些波折參數(shù)設(shè)計(jì)不合理的情況下,波折鋼板墻表現(xiàn)出較差的延性.Zhao等[17]對(duì)波折鋼板墻和平鋼板墻進(jìn)行了數(shù)值模擬,指出與薄平鋼板墻的拉力帶抗側(cè)機(jī)制[18]不同,深波紋鋼板墻依靠鋼板剪切屈服抵抗側(cè)力.Tong等[19-20]研究了豎向加勁波折鋼板剪力墻的抗側(cè)承載力.Dou等[21-22]研究了正弦波折鋼板墻在單向荷載下的抗側(cè)承載力和屈曲后性能,提出了預(yù)測(cè)荷載-位移曲線的擬合公式.Hosseinzadeh等[23]進(jìn)行了兩種不同波折角的梯形波折鋼板墻試驗(yàn).Cao等[24]研究了一個(gè)雙層單跨波折鋼板墻的滯回性能,并且提出了其在側(cè)向荷載作用下的板框相互作用模型.
然而,前述研究大都局限于通過變參數(shù)對(duì)比分析得到波折鋼板墻性能影響規(guī)律的定性結(jié)論,其相關(guān)設(shè)計(jì)方法尚不明確,設(shè)計(jì)人員在初步設(shè)計(jì)時(shí)墻板的具體參數(shù)選取仍無章可循.此外,本課題組已有研究[22, 25-26]發(fā)現(xiàn),盡管波折鋼板墻有較高的極限承載力,但在特定參數(shù)范圍內(nèi)存在屈曲后強(qiáng)度大幅下降的情況.目前大多數(shù)研究?jī)H給出內(nèi)嵌墻板最大極限抗側(cè)承載力的設(shè)計(jì)公式,而忽視了其屈曲或屈服后承載性能及延性.
針對(duì)上述問題,筆者基于有限元數(shù)值分析,對(duì)單向推覆受力下的內(nèi)嵌波折墻板的抗側(cè)性能進(jìn)行研究,揭示關(guān)鍵參數(shù)對(duì)墻板抗側(cè)機(jī)制以及屈曲或屈服后承載力和延性性能的影響;通過引入墻板抗剪的正則化高厚比,提出墻板極限承載力的計(jì)算公式和保證殘余承載力穩(wěn)定的幾何參數(shù)的優(yōu)化取值建議,供設(shè)計(jì)人員采用.
如圖1所示,分析中采用單層單跨框架,內(nèi)嵌水平放置的梯形波折鋼板.邊緣框架為剛性,鋼板與框架之間四邊剛接,梁柱鉸接以保證內(nèi)嵌墻板單獨(dú)承擔(dān)剪力.不考慮體系的豎向荷載,其影響在后續(xù)研究中討論.
圖1?波折鋼板剪力墻分析模型
采用軟件ANSYS13.0[27]建立有限元模型,所有構(gòu)件均采用SHELL181殼單元進(jìn)行模擬.通過耦合梁柱連接處節(jié)點(diǎn)位移的方式實(shí)現(xiàn)鉸接,設(shè)置邊緣梁柱彈性模量為100(為鋼材彈性模量)來模擬其剛性.為了保證計(jì)算精度,根據(jù)文獻(xiàn)[22]的建議,每個(gè)波折子板面(圖1中1和2邊)至少劃分5個(gè)殼單元,并保證每個(gè)殼單元的長(zhǎng)寬比小于1.5.波折鋼板選用雙折線等向強(qiáng)化本構(gòu)和von Mises屈服準(zhǔn)則,彈性模量=206GPa,泊松比=0.3.需要指出的是,在之前的研究[22]中發(fā)現(xiàn),材料的強(qiáng)化對(duì)推覆荷載下的屈曲后強(qiáng)度有顯著影響.所以,本文采用雙折線材料模型,屈服強(qiáng)度y=235MPa,切線模量t=0.01.以1階彈性屈曲模態(tài)/750倍的歸一化位移值作為初始缺陷,與參考文獻(xiàn)[17,22]一致.
加載方式為頂梁處位移加載,最大層間位移角/=2.0%[28].約束邊緣梁的面外位移.如圖1所示,分析中涉及5個(gè)獨(dú)立參數(shù),分別是寬高比/、高厚比/、波折數(shù)量/l、波形比a/l和波折角度.其中、、、l、a分別代表鋼板的寬度、高度、厚度、波長(zhǎng)與波高.
為了驗(yàn)證有限元方法的有效性與準(zhǔn)確性,將有限元與試驗(yàn)結(jié)果對(duì)比.選取Qiu等[7]文章中的試件HCoPSW-Ⅰ進(jìn)行模擬,材料本構(gòu)與試驗(yàn)得到的應(yīng)力應(yīng)變曲線一致,選用隨動(dòng)強(qiáng)化模型,推覆和循環(huán)加載的結(jié)果與試驗(yàn)結(jié)果見圖2.有限元計(jì)算值與試驗(yàn)值擬合良好,證明可以用ANSYS進(jìn)行波折鋼板墻的分析.
圖2?有限元與試驗(yàn)結(jié)果對(duì)比
之前的研究表明波折鋼板墻中的內(nèi)嵌鋼板有較高的初始側(cè)向剛度和極限承載力[17].但在某些情況下,其延性可能較差[7,20,22],在荷載-位移曲線中表現(xiàn)為承載力達(dá)到峰值后出現(xiàn)明顯下降.
考慮如下兩個(gè)典型算例:
(1)=3.2m,=2.0,l=0.40m,a=0.20l,=8mm,=90°;
(2)=3.0m,=1.0,l=0.30m,a=0.10l,=6mm,=45°.
如圖3所示,典型的荷載-位移曲線包括上升部分和屈曲后部分.定義達(dá)到最大抗側(cè)承載力s或側(cè)向剛度突然改變時(shí)為“極限狀態(tài)”,達(dá)到最大層間位移時(shí)為“殘余狀態(tài)”,對(duì)應(yīng)的承載力為殘余承載力r;y=y(tǒng)是波折板的剪切屈服荷載,y是鋼材剪切屈服應(yīng)力.
本文中,“穩(wěn)定的屈曲后強(qiáng)度”或“良好的延性”表示達(dá)到最大層間位移角2.0%之后,r仍大于85%s.相反地,“屈曲后強(qiáng)度不足”或“延性不足”表示殘余承載力r遠(yuǎn)小于85%s.對(duì)于算例1,殘余承載力系數(shù)r0.97s,而算例2的殘余承載力系數(shù)r0.67s.這表明,必須適當(dāng)選擇波折鋼板的參數(shù)以避免屈曲后承載力出現(xiàn)大幅度下降.
圖3?典型波折鋼板的荷載-位移曲線
改變兩個(gè)典型算例中波折鋼板子板面的波折角度,并與對(duì)應(yīng)的正弦波折鋼板對(duì)比,圖4給出了其抗側(cè)承載力的計(jì)算結(jié)果.
可以看出,對(duì)于給定的波折鋼板,極限和殘余承載力隨著子板面傾斜角度的增大而增大.波折鋼板可以視作是正交異性板,增加其波折角度,垂直于波折方向的彎曲剛度x隨之增加,進(jìn)而減小面外變形,增強(qiáng)側(cè)向承載力.此外,相比正弦波折鋼板墻,一般的梯形波折鋼板墻擁有更好的抗側(cè)性能.因此,在設(shè)計(jì)梯形波折鋼板墻時(shí),應(yīng)當(dāng)選用更大的波折角度,以實(shí)現(xiàn)更優(yōu)的抗側(cè)性能.
為了研究波折鋼板幾何參數(shù)對(duì)抗側(cè)性能的影響,進(jìn)行正交有限元分析.板面整體高度3.0m,每一個(gè)子板面的寬度均相同(1=2),因此/、/、/l和決定了鋼板特性.基于正交試驗(yàn)陣列,對(duì)每一個(gè)因素(///l、分別記作A、B、C、D)選擇4個(gè)水平,如表1所示.
圖4?子板面傾斜角度對(duì)抗側(cè)承載力的影響
表1?波折鋼板的幾何參數(shù)及水平
Tab.1?Factors and levels of steel corrugated shear walls
選擇4個(gè)指標(biāo)來評(píng)價(jià)以上參數(shù)對(duì)墻板抗側(cè)性能的影響,分別是極限承載力系數(shù)s、殘余承載力系數(shù)r、內(nèi)嵌板正則化高厚比n以及最大面外變形系數(shù),計(jì)算公式為
式中:cr為波折板彈性屈曲應(yīng)力;max為最大面外?位移.
推覆分析的結(jié)果如表2所示.
表2?正交有限元試驗(yàn)結(jié)果
Tab.2?Orthogonal test results
在正交有限元試驗(yàn)中,指標(biāo)的平均值變化能夠反映各影響因素的重要性,結(jié)果繪于圖5.可以看出:①增大波折角度或減小寬高比/、波折數(shù)量/l能夠顯著降低正則化高厚比n,即波折板剛度增大,性能得到提升;②除大寬高比(/2.0)的情況外,極限承載力系數(shù)均接近1.0;③減小寬高比、增大板厚或波折角度可以提高殘余承載力;④在這4個(gè)參數(shù)中,寬高比和波折角度對(duì)所有指標(biāo)的影響最大.降低寬高比、增大波折角度可以提高波折板的剛度,有助于降低面外變形,增強(qiáng)其屈曲后強(qiáng)度.
基于以上正交有限元分析,提出以下建議:①對(duì)于梯形波折鋼板推薦采用大波折角度(≥60°),波形比a/l盡量大于等于0.10;②對(duì)寬高比較大(/≥1.5)的試件,應(yīng)選擇適當(dāng)?shù)陌搴褚员苊馇髲?qiáng)度不足的情況,/應(yīng)不小于1/500(對(duì)于表2中的算例,≥6mm).
分析表2中的兩個(gè)算例(No.5和No.7).將推覆作用下的荷載-位移曲線繪于圖6.算例No.7正則化高厚比n=0.69,No.5的板面波折角度和板厚更大,正則化高厚比n=0.23.算例No.5在推覆過程中表現(xiàn)出穩(wěn)定的抗側(cè)承載力.與之相反,No.7的抗側(cè)承載力自峰值點(diǎn)后下降了約34%.圖7分別給出了兩個(gè)算例在極限和殘余狀態(tài)下的應(yīng)力和變形情況,其中應(yīng)力圖中的灰色區(qū)域代表應(yīng)力超過了屈服強(qiáng)度.對(duì)于算例No.5,殘余狀態(tài)(/=2.0%)下墻板幾乎所有區(qū)域進(jìn)入塑性,同時(shí)有r>s,即殘余承載力大于極限承載力.從面外變形方面來看,算例No.5的面外位移約為/908,遠(yuǎn)小于No.7的/28.
因此,可以通過增大面外剛度的方式來減小波折板的面外變形,進(jìn)而提高其抗側(cè)性能.如Tong等[20]在研究中提到的通過增加豎向加勁肋的方式能夠有效提高波折鋼板的抗側(cè)性能.
圖6?兩種典型算例的荷載-位移曲線
圖7?殘余狀態(tài)下的von Mises應(yīng)力和面外變形
為了探究波折鋼板剪力墻的抗側(cè)力機(jī)制和板框相互作用,下面分析在推覆荷載作用下極限和殘余狀態(tài)的框架內(nèi)力.
選擇算例No.5和No.7及與之相對(duì)應(yīng)的平鋼板墻(、、均相等)進(jìn)行比較,將有限元分析得到的框架的內(nèi)力分布繪于圖8和圖9.max和max代表對(duì)應(yīng)的平鋼板墻在推覆過程中的最大框架內(nèi)力.可以看出:①算例No.5的極限承載力更高、屈曲后強(qiáng)度更穩(wěn)定,與平鋼板墻相比,框架彎矩非常?。@說明與平鋼板墻的拉力帶抗側(cè)機(jī)制不同,其利用板內(nèi)剪切屈服來抵抗側(cè)力;②算例No.7在極限狀態(tài)下柱子的彎矩(0.23max)小于對(duì)應(yīng)平鋼板墻的柱子彎矩(0.80max),但不可忽略.隨著層間位移的增大,柱子最大彎矩顯著增大,殘余狀態(tài)時(shí)達(dá)到1.1max,超過了對(duì)應(yīng)平鋼板墻的柱子彎矩(1.0max).這說明內(nèi)嵌板的變形會(huì)導(dǎo)致柱子產(chǎn)生附加面內(nèi)彎矩;③算例No.7中梁的附加彎矩非常小,這是因?yàn)椴ㄕ郯迨撬椒胖玫模Q向的壓縮剛度很小,拉力無法傳遞到梁上;④觀察軸力分布,可以看到左柱受拉而右柱受壓.與平鋼板墻相比,左柱的軸力峰值更大而右柱更小,在施加從上層結(jié)構(gòu)傳來的壓力之后,能夠抵消左柱的拉力,對(duì)結(jié)構(gòu)是有利的.
圖8?算例No.5的框架內(nèi)力
圖9?算例No.7的框架內(nèi)力
總地來說,設(shè)計(jì)合理的波折鋼板墻有較高且穩(wěn)定的抗側(cè)承載力,通過板內(nèi)剪切屈服來抵抗側(cè)向力,這也使得邊緣框架的附加彎矩很?。喾吹?,對(duì)于屈曲后強(qiáng)度不足的鋼板,邊緣框架產(chǎn)生很大的附加彎矩,會(huì)削弱結(jié)構(gòu)整體性能.
波折鋼板剪力墻中的內(nèi)嵌墻板既可以水平放置也可以豎直放置[7],放置方式不同導(dǎo)致性能也有差異.下面分析表2中的16個(gè)算例在內(nèi)嵌板豎直放置時(shí)的抗側(cè)性能.圖10給出了內(nèi)嵌板豎直與水平放置時(shí)的殘余承載力的對(duì)比.
圖10?波折板不同放置方式殘余承載力的對(duì)比
可以看出,當(dāng)/≤1.0時(shí),波折方向?qū)η笮阅苡绊懞苄。?dāng)/≥1.5時(shí),波折板豎直放置能顯著增強(qiáng)其殘余承載力,此時(shí)大多數(shù)算例的殘余承載力系數(shù)r≥0.85.
以算例No.13為例,對(duì)波折板水平和豎直放置兩種情況進(jìn)行分析,將其在殘余狀態(tài)下的變形和應(yīng)力分布繪于圖11.結(jié)果表明,波折豎直放置時(shí)的面外變形小于水平放置時(shí),這使得鋼板剪切屈服能充分發(fā)展,從而有更高的殘余承載力.因此,大寬高比的鋼板墻的內(nèi)嵌波折鋼板可以選擇波紋豎直放置.
圖11?波折板不同放置方式的變形與內(nèi)力對(duì)比
為了提出極限與殘余承載力設(shè)計(jì)公式,進(jìn)一步進(jìn)行有限元計(jì)算.算例參數(shù)?。?.0m,=6~12mm,a/l=0.10~0.25,/=0.5~2.0,/l=6~12,=45°~90°,基本涵蓋工程常用的參數(shù)范圍.極限承載力系數(shù)s隨正則化高厚比n的變化趨勢(shì)如圖12所示.
從圖中可以看出,除寬高比=2.0的情況外,波折板的極限承載力都接近全板屈服時(shí)的剪力.結(jié)果表明,極限承載力隨正則化高厚比連續(xù)分布,給出擬合公式為
殘余承載力系數(shù)隨正則化高厚比的變化趨勢(shì)如圖13所示.然而,與極限承載力系數(shù)不同,其分布較為離散,很難獲得統(tǒng)一的擬合公式.可以看出當(dāng)/=0.5時(shí),大多數(shù)算例的r不小于0.95;當(dāng)/=1.5或2.0時(shí),大多數(shù)算例的r小于0.85,即屈曲后強(qiáng)度出現(xiàn)明顯下降.
圖13?殘余承載力系數(shù)
實(shí)際工程中應(yīng)用波折鋼板墻時(shí),其內(nèi)嵌板應(yīng)該具有較高的極限承載力和穩(wěn)定的屈曲后強(qiáng)度.在圖14中重新繪制殘余承載力的結(jié)果,當(dāng)n≤0.35(1區(qū))時(shí),殘余承載力系數(shù)大多大于0.90,這時(shí)內(nèi)嵌墻板表現(xiàn)出板內(nèi)剪切屈服的性質(zhì).對(duì)于0.35<n<0.60的部分,經(jīng)過合理的設(shè)計(jì),也有可能實(shí)現(xiàn)r≥0.85s,保持良好的延性性能(2區(qū)).
在大量數(shù)值分析結(jié)果的基礎(chǔ)上,表3給出了波折鋼板幾何參數(shù)的建議取值范圍,可供初步設(shè)計(jì)時(shí)選用.在此范圍內(nèi)的波折墻板大部分均處于圖14中的“1區(qū)”和“2區(qū)”,表現(xiàn)為以剪切屈服機(jī)制為主,極限承載力s接近剪切屈服強(qiáng)度,同時(shí)殘余承載力s>0.85r,意味著墻板到達(dá)最大層間位移角時(shí)仍具有良好的延性.
圖14?波折鋼板的設(shè)計(jì)準(zhǔn)則
表3?波折鋼板參數(shù)的設(shè)計(jì)建議
Tab.3 Parameter recommendations for corrugated pan-els
筆者主要研究了波折鋼板剪力墻中內(nèi)嵌鋼板的抗側(cè)承載力與承載機(jī)制,提出了鋼板參數(shù)的設(shè)計(jì)建議,以滿足極限承載力與屈曲后強(qiáng)度的要求.主要結(jié)論如下.
(1) 梯形波折鋼板的抗側(cè)承載力優(yōu)于正弦波折鋼板.在設(shè)計(jì)中推薦使用子板面傾斜角度更大的梯形波折剛板,以保證穩(wěn)定的屈曲后強(qiáng)度.
(2) 波折方向?qū)箓?cè)承載力的影響與寬高比有關(guān),當(dāng)/≥1.5時(shí),波折板豎直放置能顯著增強(qiáng)其殘余承載力.
(3) 大多數(shù)梯形波折鋼板能夠?qū)崿F(xiàn)全板剪切屈服,達(dá)到較高的極限承載力.文中給出的擬合公式可以用來預(yù)估構(gòu)件的極限承載力.
(4) 按照設(shè)計(jì)準(zhǔn)則設(shè)計(jì)的鋼板墻能夠?qū)崿F(xiàn)足夠的面外剛度、較高的極限承載力、穩(wěn)定的屈曲后強(qiáng)度和良好的延性,在側(cè)向力作用下,其表現(xiàn)出面內(nèi)剪切屈服受力特征,對(duì)邊緣框架產(chǎn)生的附加彎矩很?。?/p>
[1] Takahashi Y,Takemoto Y,Takeda T,et al. Experimental study on thin steel shear walls and particular bracings under alternative horizontal load:Preliminary report[C]// IABSE Symposium on Resistance and Ultimate Deformability of Structures Acted on by Well-Defined Repeated Loads. Lisbon,Portugal,1973,260(10):185-191.
[2] Thorburn L J,Kulak G L,Montgomery C J. Analysis of Steel Plate Shear Walls[R]. Edmonton:Department of Civil Engineering,University of Alberta,1983.
[3] Sabelli R,Bruneau M. AISC Design Guide 20—Steel Plate Shear Walls[R]. Chicago:American Institute of Steel Construction,2006.
[4] 聶建國(guó),樊健生,黃?遠(yuǎn),等. 鋼板剪力墻的試驗(yàn)研究[J]. 建筑結(jié)構(gòu)學(xué)報(bào),2010,31(9):1-8.
Nie Jianguo,F(xiàn)an Jiansheng,Huang Yuan,et al. Experimental research on steel plate shear wall[J]. Journal of Building Structures,2010,31(9):1-8(in Chinese).
[5] 郭彥林,周?明. 鋼板剪力墻的分類及性能[J]. 建筑科學(xué)與工程學(xué)報(bào),2009,26(3):1-13.
Guo Yanlin,Zhou Ming. Categorization and performance of steel plate shear wall[J]. Journal of Architecture and Civil Engineering. 2009,26(3):1-13(in Chinese).
[6] Emami F,Mofid M,Vafai A. Experimental study on cyclic behaviour of trapezoidal corrugated steel shear walls[J]. Engineering Structures,2013,48:750-762.
[7] Qiu Jing,Zhao Qiuhong,Yu Cheng,et al. Experimental studies on cyclic behaviour of corrugated steel plate shear walls[J]. Journal of Structural Engineering,2018,144(11):04018200-1-04018200-12.
[8] Kalali H,Hajsadeghi M,Zirakian T,et al. Hysteretic performance of SPSWs with trapezoidal horizontal corrugated web-plates[J]. Steel and Composite Structures,2015,19(2):277-292.
[9] Elgaaly M,Caccese V,Du C. Postbuckling behavior of steel-plate shear walls under cyclic loads[J]. Journal of Structure Engineering,1993,119(2):588-605.
[10] Roberts T M. Seismic resistance of steel plate shear walls[J]. Engineering Structure,1992,17(5):344-351.
[11] 王?威,張龍旭,蘇三慶,等. 波形鋼板剪力墻抗震性能試驗(yàn)研究[J]. 建筑結(jié)構(gòu)學(xué)報(bào),2018,39(5):40-48.
Wang Wei,Zhang Longxu,Su Sanqing,et al. Experimental research on seismic behaviour of corrugated steel plate shear wall[J]. Journal of Building Structures,2018,39(5):40-48(in Chinese).
[12] Edalati S A,Yadollahi Y,Pakar I,et al. Numerical study on the performance of corrugated steel shear walls[J]. Wind&Structures,2014,19(4):405-420.
[13] Farzampour A,Mansouri I,Lee C H,et al. Analysis and design recommendations for corrugated steel plate shear walls with a reduced beam section[J]. Thin Walled Structures,2018,132:658-666.
[14] Farzampour A,Laman J A,Mofid M. Behavior prediction of corrugated steel plate shear walls with openings[J]. Journal of Constructional Steel Research,2015,114:258-268.
[15] Shon S,Yoo M,Lee S. An experimental study on the shear hysteresis and energy dissipation of the steel frame with a trapezoidal-corrugated steel plate[J]. Materials,2017,261:1-19.
[16] Vigh G L,Liel A B,Deierlein G G,et al. Component model calibration for cyclic behavior of a corrugated shear wall[J]. Thin Walled Structures,2014,75(2):53-62.
[17] Zhao Qiuhong,Sun Junhao,Li Yanan,et al. Cyclic analysis of corrugated steel plate shear walls[J]. Structural Design of Tall& Special Bulidings,2017,26(16):1-17.
[18] Timler P A,Kulak G L. Experimental Study of Steel Plate Shear Walls[D]. Edmonton:University of Al-berta,1983.
[19] Tong Jingzhong,Guo Yanlin. Elastic buckling behavior of steel trapezoidal corrugated shear walls with vertical stiffeners[J]. Thin Walled Structures,2015,95:31-39.
[20] Tong J Z,Guo Y L. Shear resistance of stiffened steel corrugated shear walls[J]. Thin Walled Structures,2018,127:76-89.
[21] Dou Chao,Jiang Ziqin,Pi Yonglin,et al. Elastic shear buckling of sinusoidally corrugated steel plate shear wall[J]. Engineering Structures,2016,121:136-146.
[22] Dou Chao,Pi Yonglin,Gao Wei. Shear resistance and post-buckling behavior of corrugated panels in steel plate shear walls[J]. Thin Walled Structures,2018,131:816-826.
[23] Hosseinzadeh L,Emami F,Mofid M. Experimental investigation on the behavior of corrugated steel shear wall subjected to the different angle of trapezoidal plate[J]. Structural Design of Tall & Special Buildings,2017,26(17):1-17.
[24] Cao Qiang,Huang Jingyu. Experimental study and numerical simulation of corrugated steel plate shear walls subjected to cyclic loads[J]. Thin Walled Structures,2018,127:306-317.
[25] 鐘鑫偉. 波形鋼板剪力墻板框相互作用與受力性能分析[D]. 北京:北京交通大學(xué),2019.
Zhong Xinwei. Plate-Frame Interaction and Mechanism Analysis of Corrugated Steel Plate Shear Wall[D]. Beijing:Beijing Jiaotong University,2019(in Chinese).
[26] 王壚濤. 鋼板剪力墻波形內(nèi)嵌墻板受力性能研究和設(shè)計(jì)方法[D]. 北京:北京交通大學(xué),2019.
Wang Lutao. Research on Mechanical Behaviour and Design Method of Corrugated Infill Plates in Steel Plate Shear Wall[D]. Beijing:Beijing Jiaotong University,2019(in Chinese).
[27] ANSYS R15. 0. Canonsburg. PA[Z]. Pennsylvania,USA:ANSYS Inc,2013.
[28] GB 50011—2010 建筑抗震設(shè)計(jì)規(guī)范[S]. 北京:中國(guó)建筑工業(yè)出版社,2016.
GB 50011—2010 Code for Seismic Design of Buildings[S]. Beijing:China Architecture & Building Press,2016(in Chinese).
Lateral Resistance Behavior Analysis of Shear Panels in Trapezoidal Corrugated Steel Shear Walls
Dou Chao,Zhu Yangze,Xie Cheng,Xie Zhidong,Yang Na
(School of Civil Engineering,Beijing Jiaotong University,Beijing 100044,China)
Compared to ordinary steel shear walls with flat infill plates(FSSWs),the lateral resistance behavior and design of steel corrugated shear walls(SCSWs)require further investigation. Finite element analysis was used to ana-lyze the lateral resistance and load-carrying mechanism of trapezoidal corrugated shear panels in SCSWs. First,by comparing the lateral resistance of trapezoidal and sinusoidal corrugated panels,we conclude that the trapezoidal corrugated panel has better lateral resistance performance than the sinusoidal corrugated panel. Moreover,better per-formance can be achieved by increasing the inclined angle. The orthogonal numerical test is conducted to investigate the effects of the corrugation parameters(i.e.,/,/,/1,and)on the maximum and post-buckling shear resistance of infill panels;the results show that the aspect ratio and inclined angle have the most significant effect on the lateral resistance performance. Second,by comparing the inner force distribution in the boundary frame between SCSWs and FSSWs,we observe two different load-carrying mechanisms of infill corrugated panels. Additionally,a properly designed corrugated shear panel has stable post-buckling lateral resistance and exhibits in-plane shear yield-ing under lateral load. For corrugated panels with unstable post-buckling strength,the boundary columns endure sig-nificant unfavorable bending moments,which compromise the structural performance. In the case of SCSWs with large aspect ratio,the out-of-plane displacement can be reduced using vertical corrugation. Furthermore,the yield-ing zone can be fully developed,which results in better lateral resistance performance. Finally,fitting equations for the maximum shear resistance and design recommendations for stable post-buckling strength are established by ana-lyzing the lateral resistance of corrugated panels within the practical range in engineering application. The pushover ductility can be improved by reducing the normalized aspect ratio of panels. The in-plane shear yielding mechanism can be achieved in corrugated shear panels designed according to the proposed criteria.
corrugated steel shear wall;lateral resistance mechanism;shear resistance;post-buckling strength;design recommendation
TU391
A
0493-2137(2021)09-0982-09
10.11784/tdxbz202005027
2020-05-12;
2020-07-07.
竇?超(1984—??),男,博士,副教授,douchao@bjtu.edu.cn.
朱仰澤,zhuyangze@bjtu.edu.cn.
國(guó)家自然科學(xué)基金資助項(xiàng)目(51808032);中央高校基本科研業(yè)務(wù)費(fèi)資助項(xiàng)目(2020JBM041).
Supported by the National Natural Science Foundation of China(No. 51808032),the Fundamental Research Funds for the Central University (No. 2020JBM041).
(責(zé)任編輯:許延芳)