• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Vertical polarization-induced doping InN/InGaN heterojunction tunnel FET with hetero T-shaped gate?

    2021-05-24 02:28:04YuanHaoHe何元浩WeiMao毛維MingDu杜鳴ZiLingPeng彭紫玲HaiYongWang王海永XueFengZheng鄭雪峰ChongWang王沖JinChengZhang張進(jìn)成andYueHao郝躍
    Chinese Physics B 2021年5期
    關(guān)鍵詞:雪峰

    Yuan-Hao He(何元浩), Wei Mao(毛維),?, Ming Du(杜鳴), Zi-Ling Peng(彭紫玲), Hai-Yong Wang(王海永),Xue-Feng Zheng(鄭雪峰), Chong Wang(王沖), Jin-Cheng Zhang(張進(jìn)成), and Yue Hao(郝躍)

    Key Laboratory of Ministry of Education for Wide Band-Gap Semiconductor Materials and Devices,School of Microelectronics,Xidian University,Xi’an 710071,China

    Keywords: InGaN TFET,hetero T-shaped gate,polarization-doped source and drain

    1. Introduction

    As the size of semiconductor devices continues to shrink into the nanoscale, the problems of short channel effects(SCEs)and off-state leakage in traditional MOSFETs are becoming more and more serious. Especially due to thermal emission mechanism,the subthreshold slope(SS)cannot break through the limit of 60 mV/decade,which is not suitable effectively for energy-efficient and low-voltage applications.[1–4]Tunneling field-effect transistors (TFETs) have been considered as a suitable alternative to nanoscale MOSFETs in future low power electronics applications.[1]Based on the quantum band-to-band tunneling(BTBT)mechanism,TFETs could realize steeper average subthreshold swing (SSavg<60 mV/decade), lower off-state leakage current (IOFF), and great immune to short channel effects in comparison with conventional nanoscale MOSFETs.[5–7]

    However, there still exist many problems needed to be solved during the application of TFETs with conventional physical doping, such as the high thermal budget and expensive annealing techniques due to ion-implantation physical doping,and the random dopant fluctuation(RDF),which can deteriorate the device performances.[8–12]Recently, various dopingless TFETs have been proposed based on the chargeplasma concept,[13–16]which demonstrates an effective way to realize TFETs without physical doping. And based on the polarization effect near III-nitride-based heterointerfaces,[17–21]the lateral polarization-induced InN-based TFETs (PI-InNTFET) have been demonstrated by our group.[22]This also opens a new path to the further development of TFETs without physical doping processing. In addition, in order to improve the on-state current, some effective methods, such as gate engineering,energy band engineering,and source-pocket doping[23–30]have been proposed and investigated.

    In this paper, a novel vertical polarization-induced doping InN/InGaN heterojunction tunnel FET with hetero Tshaped gate (InN-Hetero-TG-TFET) is proposed and investigated. This device features a polarization-doped drain and source combined with a hetero T-shaped gate, which is different from the conventional vertical tunnel FET with physical doping. Based on these features, the problems about the random dopant fluctuation and the high thermal annealing techniques could be avoided, and the on-state performance could be improved. Comparative analyses between the InN-Hetero-TG-TFET and the vertical polarization-induced doping InN/InGaN heterojunction tunnel FET with homo Tshaped gate (InN-Homo-TG-TFET) are conducted. And the systematical simulations of the influence of the work-function and position of hetero T-shaped gate on the performance of the InN-Hetero-TG-TFET are carried out by Silvaco-Atlas.These results demonstrate the excellent characteristics of the InN-Hetero-TG-TFET in comparison with the InN-Homo-TG-TFET and our reported lateral polarization-induced InNbased TFET(PI-InN-TFET),which indicates a great potential of the proposed InN-Hetero-TG-TFET in the low power applications.

    2. Device structure and simulation parameters

    Figure 1 shows the schematic cross-section of InNHomo-TG-TFET (Fig. 1(a)) and InN-Hetero-TG-TFET(Fig. 1(b)). The T-shaped gate and dual channel are used in both devices,and both the devices have the same main dimensions. The main parameters of the InN-Homo-TG-TFET and proposed InN-Hetero-TG-TFET are shown in Table 1. Both devices use the vertical InN/InxGa1?xN/InN layer structure to form the drain and source region without physical doping. Furthermore, the source and drain are set to be at both sides of devices, which is compatible with the planar fabrication process of the GaN-based HEMTs. The InN-Hetero-TG-TFET features a hetero T-shaped gate consisting in two metals with different metal work-functions applied to modulate the InxGa1?xN band between hetero gate at different gate bias voltages,which could be used to control the tunneling distance and thus improving the on-state current and reducing the ambipolar leakage current.

    Devices are simulated with two-dimensional numerical software Silvaco-Atlas. A Poisson’s equation is used to solve self-consistently the carrier current continuity equations. Device models in this paper are mainly based on our early research.[16,22,31]The nonlocal BTBT model is used for the consideration of the spatial variation of the energy band and the more accurate calculation of the tunneling process. The Shockley–Read–Hall and Auger recombination models are adopted to consider the effect of carrier recombination. Besides, band-gap narrowing model, concentration-dependent and field-dependent mobility models are also used. Main material parameters in simulations are given in Table 2.

    Fig.1. Schematic cross-section of(a)InN-Homo-TG-TFET and(b)InN-Hetero-TG-TFET.

    Table 1. Design parameters used in simulations.

    Table 2. Material parameters in simulations.[17,32,33]

    The detailed distributions of the polarization-induced carrier concentration in the InN-Hetero-TG-TFET can be observed in Fig. 2. As shown in the figure, the source region exhibits the P-type doping with the peak hole concentration near the top InN/InGaN junction, while the drain region exhibits the N-type doping with the peak electron concentration near the bottom InGaN/InN junction. Figure 3 displays the vertical distribution diagram of carrier concentration and polarization charge concentration in the source region and drain region corresponding to Fig.2 along the line D–in Fig.1(b).As shown in Fig. 3, there is a great negative polarization charge density peak σtopnear the top InN/InGaN junction because of the spontaneous and piezoelectric polarization effect,which indicates a large number of net negative bound polarization charges are located near the junction. Based on the local neutralization principle,holes are consequently induced to neutralize these negative bound sheet charges, which thus forms the P-type doping of source region. A positive polarization charge density peak σbottomappears near the bottom In-GaN/InN junction,and thus the electrons can be induced near the bottom InGaN/InN junction in the same way,which forms N-type doping of drain region. The results are consistent with experimental results reported previously.[34]

    Fig.2. Distribution of polarization-induced(a)hole concentration(Conc.) and(b)electron concentration in InN-Hetero-TG-TFET.

    Fig.3. Vertical distribution of carrier concentration and polarization charge concentration in source region and drain region along line D–in Fig.1(b).

    3. Results and discussion

    3.1. Device performance of InN-Homo-TG-TFET and proposed InN-Hetero-TG-TFET

    Figure 4 shows the transfer characteristic curves of the InN-Homo-TG-TFET (? = 5.65 eV), InN-Homo-TG-TFET(? = 4.8 eV), and proposed InN-Hetero-TG-TFET (?0=5.65 eV, ?1=4.8 eV). As can be seen, both InN-Homo-TGTFETs exhibit almost the same transfer characteristic curves,which is due to the fact that the change of work-function of the gate in the InN-Homo-TG-TFET can nearly only affect the threshold. Compared with the InN-Homo-TG-TFET,the InNHetero-TG-TFET shows a high IONof 4.45×10?5A/μm at VDS=0.5 V and Voverdrive=0.5 V.And,an IONof more than 10?4A/μm can be achieved in the InN-Hetero-TG-TFET at VDS=0.5 V and Voverdrive=1 V.Besides,the calculated SSavgof the InN-Hetero-TG-TFET is 7.5 mV/dec which is much smaller than that of the InN-Homo-TG-TFET(39.4 mV/dec).As shown in the figure, all the three devices have almost the same good off-state characteristics, which lead to a higher ION/IOFFof 1013in the InN-Hetero-TG-TFET than that in the InN-Homo-TG-TFET (with ION/IOFFof 1011) at Voverdrive=0.5 V.These results demonstrate that the device with a hetero T-shaped gate possesses an excellent turn-on performance.

    Fig. 4. Transfer characteristic curves of InN-Homo-TG-TFET (? =5.65 eV), InN-Homo-TG-TFET (? =4.8 eV), and proposed InN-Hetero-TG-TFET(?0=5.65 eV,?1=4.8 eV).

    In order to reveal the tunneling mechanism of the proposed InN-Hetero-TG-TFET, figure 5 gives the contour of the nonlocal BTBT e-tunneling rate in the right half part of the InN-Homo-TG-TFET and proposed InN-Hetero-TGTFET. As shown in Fig. 5, comparing with the InN-Homo-TG-TFET, a wide tunneling region along the line E–in Fig.1(b)can be realized in the InN-Hetero-TG-TFET,which results in a wider one-dimensional tunneling rate profile in Fig.6.And from Fig.6 it is seen that the tunneling rate peak in the InN-Hetero-TG-TFET is much larger than that in the InNHomo-TG-TFETs near the interface of InN/InGaN. Besides,the introduction of gate 1 can play an effective role in improving the tunneling rate near the bottom of gate trench in the InN-Hetero-TG-TFET.Because the integral of the area under each tunneling rate curve can represent the value of the tunneling current,the greater area under the tunneling rate curve in the InN-Hetero-TG-TFET indicates a greater tunneling current than in the InN-Homo-TG-TFET.

    Fig. 5. Contours of nonlocal BTBT e-tunneling rate of half part of (a) InN-Homo-TG-TFET and (b) proposed InN-Hetero-TG-TFET when Voverdrive=0.5 V and VDS=0.5 V.

    Fig. 6. One-dimensional distribution of nonlocal BTBT tunneling rate extracted from InN-Homo-TG-TFET (? =5.65 eV), InN-Homo-TG-TFET (? = 4.8 eV), and proposed InN-Hetero-TG-TFET (?0 =5.56 eV,?1 =4.8 eV)when Voverdrive =0.5 V and VDS =0.5 V along the line E–in Fig.1(b).

    In Fig. 5(b), there exist three typical types of tunneling paths in the InN-Hetero-TG-TFET.For the convenience of the analysis afterwards,the three typical types of tunneling paths are marked in Figs. 5(b) and 6, namely, along the line A–(type 1),line B–(type 2),and line C–(type 3)corresponding to Fig.1(b). The type 1 and type 2 describe the tunneling from InN to InGaN under the control of gate 0 and gate 1,respectively. And the type 3 describes the tunneling path in InGaN under the control of gate 1.

    Further explanation about the modulation mechanism of the hetero T-shaped gate is shown by Fig. 7. The arrowed lines represent the tunneling paths and tunneling distances in devices at on-state. Almost the same energy band of the InNHomo-TG-TFETs with ? =5.56 eV or ? =4.8 eV can be seen,indicating the slight effect of the metal work-function on the performance. This is consistent with the result in Fig.4.

    In Fig.7,in all devices,the tunneling distances of type 2 are all less than 5 nm which are obviously smaller than those of types 1 and 3. It indicates a dominant effect of type 2 on the tunneling current. Because of the effective modulation effect of the hetero T-shaped gate,the tunneling distance of type 2 in the InN-Hetero-TG-TFET is shorter than that in the InN-Homo-TG-TFET,resulting in a greater tunneling rate and thus a larger tunneling current as well as a smaller average subthreshold swing in the InN-Hetero-TG-TFET.This accords well with the results in Figs.4 and 6. Besides,nearly no tunneling can be seen for type 3 in InN-Homo-TG-TFETs,while there still exits a certain tunneling for type 3 in the InN-Hetero-TG-TFET,which further demonstrates an effective modulation effect of the bottom of gate trench in InN-Hetero-TG-TFET on the energy band. In Fig.7(d),nearly no tunneling can be seen in all devices at off-state,which indicates a significantly small off-state leakage current. These results demonstrate excellent characteristics of the InN-Hetero-TG-TFET.

    3.2. Influence of hetero T-shaped gate1 work-function ?1 on InN-Hetero-TG-TFET

    Figure 8 shows the influence of hetero gate1 workfunction ?1on transfer characteristics in InN-Hetero-TGTFET. As shown in the figure, the transfer curves shift towards the negative voltage direction when ?1decreases. And with the help of hetero gate, the SSavgand IONcan be improved efficiently. The variation extracted from Fig. 8(a) is shown in Fig. 8(b) and the corresponding energy band diagrams are also depicted in Fig.9. It could be seen in Fig.8(b)that IONcontinuously increases while SSavgdecreases with ?1decreasing. The results can be illustrated by the energy band diagrams in Fig.9. As it is shown,the tunneling distance decreases with ?1decreasing and reaches a minimum value at ?1=4.70 eV,which results in a highest ION. And,due to the improved modulation ability of the gate with ?1decreasing,the SSavgkeeps on falling. In order to achieve the enhancement mode device,?1=4.8 eV is chosen as the optimal value in the following.

    Fig. 8. Influence of hetero gate-1 work-function ?1 on InN-Hetero-TG-TFET performance,showing(a)transfer characteristics and(b)extracted ION and SSavg.

    Fig. 9. Influence of hetero gate-1 work-function ?1 on energy band of InN-Hetero-TG-TFET along line B–in Fig. 1(b) when VDS =0.5 V and Voverdrive=0.5 V.

    3.3. Influence of hetero T-shaped gate-0 work-function ?0 on InN-Hetero-TG-TFET

    Fig. 10. Influence of hetero gate-0 work-function ?0 on InN-Hetero-TG-TFET performance: (a) transfer characteristics and (b) extracted ION and SSavg.

    Figure 10 shows the influence of hetero gate-0 workfunction ?0on transfer characteristics in the InN-Hetero-TG-TFET. As it is shown, the transfer curves shift towards the negative voltage direction and the subthreshold characteristics are degraded gradually as ?0decreases. The variation extracted from Fig.10(a)is shown in Fig.10(b),and the corresponding energy band diagrams are also depicted in Fig.11.It could be seen in Fig. 10(b) that IONdecreases and SSavgincreases with ?0decreasing, which is attributed to the increase in tunneling distance as shown in Fig. 11. Therefore,?0=5.56 eV is adopted in the following investigation.

    Fig. 11. Influence of hetero gate-0 work-function ?0 on energy band of InN-Hetero-TG-TFET along line B–in Fig. 1(b) when VDS =0.5 V and Voverdrive=0.5 V.

    3.4. Influence of hetero T-shaped gate position Tg1 on InNHetero-TG-TFET

    The influence of hetero gate-1 thickness Tg1on the performance of InN-Hetero-TG-TFET is shown in Fig. 12 and the corresponding energy band diagrams are shown in Fig.13.As shown in Fig.12,the transfer curves shift towards the negative voltage direction when Tg1is raised. And IONincreases continuously with Tg1increasing. Based on the energy band in Fig. 13, the energy band on gate side will shift down with Tg1increasing, which can shorten the tunneling distance and increase the tunneling rate,resulting in the variation of ION. It can be observed that SSavgfirst decreases and then increases but reaches a minimum value at Tg1=23 nm. This is due to the changing of modulation ability of the hetero gate around Tg1=23 nm. With Tg1increasing, the modulation ability of the whole hetero gate(gate 0 and gate 1)converts from that of the high metal work-function homo gate to that of hetero gate,then to that of the low metal work-function homo gate,which results in the trend of SSavg. Based on these analyses,it is important to find the balance point of Tg1, and Tg1is chosen to be 23 nm for the proposed device in this paper. The characteristics of the proposed device in comparison with those of our previous reported lateral PI-InN-TFET and the state-of-the-art III-nitride-based TFETs are given in Table 3, which demonstrates the excellent performance of InN-Hetero-TG-TFET.

    Fig.12. Influence of hetero gate-1 thickness Tg1 on InN-Hetero-TG-TFET performance for total gate trench thickness Tgate of 30 nm,showing(a)transfer characteristics and(b)extracted ION and SSavg.

    Fig.13. Influence of hetero gate-1 thickness Tg1 on energy band along line B–in Fig.1(b)when VDS=0.5 V and VGS=0.5 V.

    Table 3. Comparison of characteristic between proposed device and state-of the-art nitride TFETs.

    4. Conclusions

    In this paper, we present a new vertical polarizationinduced doping InN/InGaN heterojunction tunnel FET with hetero T-shaped gate (InN-Hetero-TG-TFET). The proposed device can realize the drain and source region doping by means of polarization effect without the conventional physical doping processing, which can avoid the random dopant fluctuation (RDF) and the problems related to the high thermal annealing techniques in the conventional physical doping tunnel FETs. In addition, the improvement of the IONand SSavgcan be achieved,benefitting from the utilization of the hetero T-shaped gate with different metal work-functions. The device electrical characteristics and the physical mechanisms are studied systematically. Simulation results demonstrate the excellent performance of InN-Hetero-TG-TFET in comparison with those of the InN-Homo-TG-TFET and our previously reported lateral polarization-induced InN-based TFET(PI-InNTFET), which could provide an effective method for the further development of TFETs.

    猜你喜歡
    雪峰
    珠穆朗瑪不只有雪峰
    奧秘(2023年3期)2023-05-30 04:58:26
    57Fe M¨ossbauer spectrometry: A powerful technique to analyze the magnetic and phase characteristics in RE–Fe–B permanent magnets*
    命途多舛的數(shù)學(xué)家:安德烈·韋依
    少兒科技(2021年10期)2021-01-20 23:19:26
    要退休了
    雜文月刊(2019年19期)2019-12-04 07:48:34
    白描作品《花卉寫(xiě)生》
    西部論叢(2017年8期)2017-12-01 01:10:14
    看山是山?看山非山?
    雪峰下的草場(chǎng)
    解析幾何中一類定點(diǎn)問(wèn)題及其證法
    王雪峰國(guó)畫(huà)
    歌海(2016年1期)2016-03-28 10:08:55
    韓雪峰的“臺(tái)賬”
    国产精品久久久av美女十八| 天堂中文最新版在线下载| 宅男免费午夜| 亚洲精品乱久久久久久| 老司机靠b影院| 制服诱惑二区| 男人爽女人下面视频在线观看| 91老司机精品| 亚洲精品久久成人aⅴ小说| 国产亚洲一区二区精品| 午夜免费鲁丝| 桃花免费在线播放| 国产日韩一区二区三区精品不卡| 一级毛片我不卡| 亚洲欧美一区二区三区久久| 久久久久久久大尺度免费视频| 丁香六月天网| 啦啦啦 在线观看视频| 黄频高清免费视频| 精品熟女少妇八av免费久了| 九草在线视频观看| 欧美精品人与动牲交sv欧美| 美女主播在线视频| 久久久久精品国产欧美久久久 | 亚洲伊人久久精品综合| 亚洲精品国产一区二区精华液| 欧美黄色淫秽网站| 黄色怎么调成土黄色| 又紧又爽又黄一区二区| 国产精品麻豆人妻色哟哟久久| 免费高清在线观看日韩| 69精品国产乱码久久久| 又粗又硬又长又爽又黄的视频| 天天躁日日躁夜夜躁夜夜| 久久久久国产精品人妻一区二区| 国产精品久久久av美女十八| 久久99一区二区三区| 91国产中文字幕| 国产成人免费观看mmmm| 人人妻人人澡人人看| 国产高清videossex| 国语对白做爰xxxⅹ性视频网站| 秋霞在线观看毛片| 美女中出高潮动态图| 欧美人与善性xxx| 国产成人精品无人区| 日本一区二区免费在线视频| 热re99久久国产66热| 黄色视频在线播放观看不卡| 丁香六月天网| 99国产精品一区二区蜜桃av | 色播在线永久视频| 免费看av在线观看网站| 一本一本久久a久久精品综合妖精| 精品国产乱码久久久久久男人| 国产精品久久久av美女十八| 久久久久久人人人人人| 免费久久久久久久精品成人欧美视频| 69精品国产乱码久久久| 国产人伦9x9x在线观看| 女性被躁到高潮视频| 狠狠精品人妻久久久久久综合| 中文字幕人妻丝袜一区二区| 国产精品国产三级专区第一集| 男女边摸边吃奶| 国产成人啪精品午夜网站| 中文字幕av电影在线播放| 九色亚洲精品在线播放| 欧美在线黄色| 亚洲精品自拍成人| 国产一区亚洲一区在线观看| 日韩大片免费观看网站| 激情五月婷婷亚洲| 天堂8中文在线网| 女人爽到高潮嗷嗷叫在线视频| 亚洲精品在线美女| 青春草视频在线免费观看| 亚洲欧美精品自产自拍| 亚洲国产av影院在线观看| 亚洲 欧美一区二区三区| 老司机在亚洲福利影院| 深夜精品福利| 只有这里有精品99| 国产亚洲午夜精品一区二区久久| 在线观看www视频免费| 美女中出高潮动态图| 欧美日韩综合久久久久久| 精品熟女少妇八av免费久了| 国精品久久久久久国模美| 精品少妇一区二区三区视频日本电影| 韩国精品一区二区三区| 久久av网站| 日本a在线网址| 国产精品秋霞免费鲁丝片| 亚洲欧洲精品一区二区精品久久久| 国产精品一区二区在线不卡| 97人妻天天添夜夜摸| 亚洲伊人色综图| 深夜精品福利| 日本午夜av视频| 欧美少妇被猛烈插入视频| 国产成人精品久久二区二区免费| 国产爽快片一区二区三区| 国产不卡av网站在线观看| 狠狠婷婷综合久久久久久88av| videosex国产| 男的添女的下面高潮视频| 免费不卡黄色视频| 亚洲欧美一区二区三区久久| 波多野结衣av一区二区av| 蜜桃在线观看..| 成年人免费黄色播放视频| 少妇裸体淫交视频免费看高清 | 人人妻,人人澡人人爽秒播 | 国产精品欧美亚洲77777| 国产免费一区二区三区四区乱码| 国产野战对白在线观看| 在线观看一区二区三区激情| 老鸭窝网址在线观看| 各种免费的搞黄视频| 色综合欧美亚洲国产小说| 好男人视频免费观看在线| 韩国精品一区二区三区| 国产男女超爽视频在线观看| 观看av在线不卡| 欧美大码av| 国产精品一区二区精品视频观看| 巨乳人妻的诱惑在线观看| 午夜福利在线免费观看网站| 精品熟女少妇八av免费久了| 丝袜脚勾引网站| 91成人精品电影| 19禁男女啪啪无遮挡网站| 久久99精品国语久久久| 91老司机精品| 老司机靠b影院| 亚洲第一青青草原| 久久精品亚洲av国产电影网| 制服人妻中文乱码| 国产黄色视频一区二区在线观看| 国产主播在线观看一区二区 | 美女福利国产在线| 午夜精品国产一区二区电影| 成年人免费黄色播放视频| 久9热在线精品视频| 18在线观看网站| 18禁国产床啪视频网站| 男女边吃奶边做爰视频| 婷婷丁香在线五月| 国产高清videossex| 少妇猛男粗大的猛烈进出视频| 777久久人妻少妇嫩草av网站| 亚洲精品av麻豆狂野| 一区二区三区四区激情视频| 亚洲中文日韩欧美视频| 国产精品免费视频内射| 在线观看免费视频网站a站| 日韩,欧美,国产一区二区三区| 亚洲一码二码三码区别大吗| 久9热在线精品视频| 欧美黄色淫秽网站| 黑人猛操日本美女一级片| 亚洲av电影在线观看一区二区三区| 不卡av一区二区三区| 在线 av 中文字幕| 国产亚洲av高清不卡| 丝袜在线中文字幕| 国产精品久久久av美女十八| 亚洲精品美女久久久久99蜜臀 | 色网站视频免费| 婷婷色麻豆天堂久久| 中文字幕人妻熟女乱码| 国产男女内射视频| 亚洲色图综合在线观看| 免费在线观看视频国产中文字幕亚洲 | 日本黄色日本黄色录像| 在线观看免费视频网站a站| 黄片小视频在线播放| 国产亚洲欧美在线一区二区| 久久中文字幕一级| 大香蕉久久成人网| 亚洲精品国产色婷婷电影| 青春草亚洲视频在线观看| xxxhd国产人妻xxx| 又黄又粗又硬又大视频| 97人妻天天添夜夜摸| 一区二区三区激情视频| 在线亚洲精品国产二区图片欧美| 在线观看人妻少妇| 捣出白浆h1v1| 人成视频在线观看免费观看| 国产国语露脸激情在线看| 99热网站在线观看| 91麻豆av在线| 高潮久久久久久久久久久不卡| 日日摸夜夜添夜夜爱| 老司机深夜福利视频在线观看 | 欧美xxⅹ黑人| 青草久久国产| 色综合欧美亚洲国产小说| 人人澡人人妻人| 在线观看免费高清a一片| 热re99久久精品国产66热6| 亚洲国产日韩一区二区| 又粗又硬又长又爽又黄的视频| 黄色 视频免费看| 在线天堂中文资源库| 欧美日韩福利视频一区二区| 中文字幕高清在线视频| 国产免费又黄又爽又色| 在线看a的网站| 美国免费a级毛片| 男人舔女人的私密视频| 狠狠婷婷综合久久久久久88av| 可以免费在线观看a视频的电影网站| 亚洲欧美日韩高清在线视频 | 大陆偷拍与自拍| 99热网站在线观看| 我要看黄色一级片免费的| 国产xxxxx性猛交| 亚洲黑人精品在线| 中国国产av一级| 少妇粗大呻吟视频| 国产有黄有色有爽视频| 国产一区亚洲一区在线观看| 丰满饥渴人妻一区二区三| 啦啦啦 在线观看视频| 国产男女内射视频| 国产精品一二三区在线看| 最近中文字幕2019免费版| 91麻豆av在线| 精品国产超薄肉色丝袜足j| 一级毛片黄色毛片免费观看视频| 日日爽夜夜爽网站| 天天躁夜夜躁狠狠躁躁| 色网站视频免费| 一级片'在线观看视频| 18禁观看日本| 最近最新中文字幕大全免费视频 | 日韩中文字幕欧美一区二区 | 精品一区二区三区av网在线观看 | 中文字幕制服av| 亚洲九九香蕉| 国产视频首页在线观看| 久久久久国产精品人妻一区二区| 18禁观看日本| 日韩欧美一区视频在线观看| av有码第一页| 日韩人妻精品一区2区三区| 久久免费观看电影| 国产熟女午夜一区二区三区| 日韩人妻精品一区2区三区| 午夜av观看不卡| 精品一区二区三区四区五区乱码 | 亚洲av成人精品一二三区| av网站在线播放免费| 国产99久久九九免费精品| 免费一级毛片在线播放高清视频 | 久久精品人人爽人人爽视色| 在线av久久热| 999精品在线视频| 国产一区二区激情短视频 | 久久久精品94久久精品| 黄色 视频免费看| 国产精品av久久久久免费| 搡老乐熟女国产| 黑人巨大精品欧美一区二区蜜桃| 国产精品av久久久久免费| 男女边吃奶边做爰视频| 亚洲图色成人| 男的添女的下面高潮视频| 国产精品一区二区免费欧美 | 妹子高潮喷水视频| 夫妻性生交免费视频一级片| 久久久久视频综合| 午夜激情av网站| 大香蕉久久网| 午夜久久久在线观看| 在线观看www视频免费| 国产高清不卡午夜福利| 中文字幕av电影在线播放| 丝袜喷水一区| 久9热在线精品视频| 日韩av免费高清视频| 日韩制服丝袜自拍偷拍| 99精品久久久久人妻精品| 老司机深夜福利视频在线观看 | 午夜福利,免费看| 99香蕉大伊视频| 欧美日韩国产mv在线观看视频| 久久精品熟女亚洲av麻豆精品| 日本av免费视频播放| 一本久久精品| 熟女av电影| 欧美黄色淫秽网站| 免费在线观看影片大全网站 | 久久精品久久久久久噜噜老黄| 丰满少妇做爰视频| 亚洲精品一二三| 少妇人妻 视频| 午夜激情av网站| 啦啦啦 在线观看视频| 久久久久视频综合| 欧美 日韩 精品 国产| 精品国产乱码久久久久久男人| 久久久久久亚洲精品国产蜜桃av| 王馨瑶露胸无遮挡在线观看| 久热这里只有精品99| 男女免费视频国产| 多毛熟女@视频| 国产欧美日韩一区二区三区在线| 久久99一区二区三区| 黄色a级毛片大全视频| 日本91视频免费播放| 久久久亚洲精品成人影院| 中文字幕av电影在线播放| av欧美777| 在线av久久热| 欧美成人精品欧美一级黄| 天堂中文最新版在线下载| 9色porny在线观看| 国产淫语在线视频| 极品人妻少妇av视频| 好男人视频免费观看在线| 久久久精品免费免费高清| 操出白浆在线播放| 国产精品国产三级国产专区5o| 久久女婷五月综合色啪小说| 制服人妻中文乱码| av天堂在线播放| 电影成人av| 国产精品一区二区在线不卡| 久久精品熟女亚洲av麻豆精品| 女警被强在线播放| 国产精品久久久久久精品电影小说| 亚洲成av片中文字幕在线观看| 一级片免费观看大全| 免费一级毛片在线播放高清视频 | 90打野战视频偷拍视频| 成人影院久久| 日本五十路高清| 免费高清在线观看日韩| 午夜老司机福利片| 亚洲精品第二区| 国产熟女欧美一区二区| 久久国产精品人妻蜜桃| 在线观看免费视频网站a站| 国产成人av教育| 国产精品久久久久久精品电影小说| 亚洲中文av在线| 久久久久视频综合| 亚洲欧美清纯卡通| 99国产综合亚洲精品| 在线观看国产h片| 亚洲国产毛片av蜜桃av| 人人妻人人澡人人看| 亚洲欧美精品综合一区二区三区| 叶爱在线成人免费视频播放| 亚洲情色 制服丝袜| 欧美av亚洲av综合av国产av| 波多野结衣一区麻豆| 成年人午夜在线观看视频| 精品人妻熟女毛片av久久网站| 成人三级做爰电影| 精品亚洲乱码少妇综合久久| 成人黄色视频免费在线看| 成年人午夜在线观看视频| 国产三级黄色录像| 丰满人妻熟妇乱又伦精品不卡| 男人舔女人的私密视频| 亚洲精品美女久久av网站| 精品福利永久在线观看| 午夜久久久在线观看| 亚洲国产欧美日韩在线播放| 男女之事视频高清在线观看 | 欧美性长视频在线观看| 久久精品国产亚洲av高清一级| 99国产精品一区二区三区| 狠狠婷婷综合久久久久久88av| 精品久久久精品久久久| 免费观看av网站的网址| 老司机亚洲免费影院| 国产女主播在线喷水免费视频网站| 在现免费观看毛片| 久久久亚洲精品成人影院| 久久久久国产精品人妻一区二区| 免费高清在线观看视频在线观看| 国产成人欧美| 成人手机av| 国产精品99久久99久久久不卡| 香蕉丝袜av| 久久国产亚洲av麻豆专区| 国产午夜精品一二区理论片| 在线av久久热| 天天躁夜夜躁狠狠躁躁| 亚洲美女黄色视频免费看| 午夜激情av网站| 欧美日韩综合久久久久久| 色视频在线一区二区三区| 两个人免费观看高清视频| 久久久久视频综合| 国产日韩欧美亚洲二区| 亚洲国产av影院在线观看| 91字幕亚洲| 亚洲五月婷婷丁香| 又紧又爽又黄一区二区| 捣出白浆h1v1| 国产成人a∨麻豆精品| 尾随美女入室| 国产男女内射视频| 男女午夜视频在线观看| 欧美人与性动交α欧美精品济南到| 欧美日韩av久久| 免费高清在线观看日韩| 一区二区三区四区激情视频| 欧美老熟妇乱子伦牲交| 国产精品免费大片| 在线观看人妻少妇| 久久这里只有精品19| 国产亚洲精品第一综合不卡| 午夜激情久久久久久久| 一个人免费看片子| 日本av免费视频播放| 黄色 视频免费看| 久久久久精品人妻al黑| 国产精品秋霞免费鲁丝片| 日韩免费高清中文字幕av| 美女午夜性视频免费| 永久免费av网站大全| 狂野欧美激情性xxxx| 我要看黄色一级片免费的| 涩涩av久久男人的天堂| 中文字幕人妻熟女乱码| 欧美亚洲日本最大视频资源| 免费人妻精品一区二区三区视频| 晚上一个人看的免费电影| 成人手机av| 秋霞在线观看毛片| 美女大奶头黄色视频| 天堂俺去俺来也www色官网| 麻豆av在线久日| 欧美日韩av久久| 性色av乱码一区二区三区2| 亚洲成人手机| 看免费成人av毛片| 亚洲欧美日韩高清在线视频 | 午夜免费鲁丝| 国产精品国产av在线观看| 国产一区亚洲一区在线观看| 精品人妻1区二区| 亚洲av成人精品一二三区| 黄色 视频免费看| 一区二区三区精品91| 一二三四在线观看免费中文在| 男女免费视频国产| 一级毛片我不卡| 亚洲人成77777在线视频| 亚洲色图综合在线观看| 国产成人一区二区在线| 日日摸夜夜添夜夜爱| 看十八女毛片水多多多| 黄色毛片三级朝国网站| 亚洲精品美女久久av网站| 我的亚洲天堂| 在线精品无人区一区二区三| 黑人欧美特级aaaaaa片| 久久av网站| 国产一区二区 视频在线| 女人被躁到高潮嗷嗷叫费观| 成人黄色视频免费在线看| 亚洲精品国产区一区二| 久久久国产欧美日韩av| 黄色片一级片一级黄色片| 久久久久久人人人人人| 欧美日韩一级在线毛片| 欧美日韩亚洲高清精品| 中文欧美无线码| 国产无遮挡羞羞视频在线观看| 一级,二级,三级黄色视频| 日本欧美国产在线视频| 中文字幕人妻丝袜制服| 免费日韩欧美在线观看| 大话2 男鬼变身卡| 老司机影院成人| 男女免费视频国产| 欧美性长视频在线观看| 国产伦人伦偷精品视频| 最近手机中文字幕大全| 亚洲一码二码三码区别大吗| 丁香六月天网| 免费观看a级毛片全部| 9191精品国产免费久久| 久久久国产精品麻豆| 国产成人精品久久二区二区免费| 精品久久久久久久毛片微露脸 | 两个人看的免费小视频| 亚洲国产精品999| 亚洲中文日韩欧美视频| 一级片免费观看大全| 美女视频免费永久观看网站| 欧美人与性动交α欧美精品济南到| 一边摸一边做爽爽视频免费| 亚洲欧美成人综合另类久久久| av一本久久久久| 91麻豆精品激情在线观看国产 | 一区二区三区精品91| 丰满饥渴人妻一区二区三| 日本av免费视频播放| 一区二区三区激情视频| 欧美亚洲 丝袜 人妻 在线| 午夜精品国产一区二区电影| 亚洲伊人久久精品综合| 久久久国产欧美日韩av| 成年女人毛片免费观看观看9 | 国产一区有黄有色的免费视频| 亚洲欧洲日产国产| 久久久精品免费免费高清| 啦啦啦视频在线资源免费观看| 国产免费现黄频在线看| 免费一级毛片在线播放高清视频 | 国产视频首页在线观看| 久久久国产精品麻豆| 777久久人妻少妇嫩草av网站| 天天躁夜夜躁狠狠久久av| 九色亚洲精品在线播放| 波野结衣二区三区在线| 精品国产乱码久久久久久男人| 国产精品人妻久久久影院| 亚洲精品在线美女| 国产精品一区二区在线观看99| 久久久久久亚洲精品国产蜜桃av| 一级黄片播放器| 久久人妻福利社区极品人妻图片 | 中文字幕最新亚洲高清| 国产亚洲一区二区精品| 久久鲁丝午夜福利片| 丰满迷人的少妇在线观看| 搡老岳熟女国产| 国产国语露脸激情在线看| 久久人人爽人人片av| 精品免费久久久久久久清纯 | 男人舔女人的私密视频| 国产精品.久久久| 99热网站在线观看| 亚洲五月色婷婷综合| 大陆偷拍与自拍| 国产成人av激情在线播放| 91精品三级在线观看| av在线播放精品| 青春草视频在线免费观看| 精品国产乱码久久久久久男人| 亚洲欧美清纯卡通| 国产伦人伦偷精品视频| 男人爽女人下面视频在线观看| 国产精品 国内视频| 精品少妇一区二区三区视频日本电影| 久久99精品国语久久久| 亚洲精品国产区一区二| 99热国产这里只有精品6| 国产深夜福利视频在线观看| 七月丁香在线播放| 日本欧美视频一区| 丰满人妻熟妇乱又伦精品不卡| 波野结衣二区三区在线| 日韩一区二区三区影片| 国产97色在线日韩免费| 十八禁网站网址无遮挡| 美女国产高潮福利片在线看| 一区二区av电影网| 国产精品国产av在线观看| 精品高清国产在线一区| 国产伦人伦偷精品视频| 777久久人妻少妇嫩草av网站| 亚洲精品久久久久久婷婷小说| 黄色 视频免费看| bbb黄色大片| 国产在线观看jvid| 亚洲欧洲日产国产| 国产午夜精品一二区理论片| 精品一区在线观看国产| 久久久精品免费免费高清| 91老司机精品| 成年人免费黄色播放视频| 成年人午夜在线观看视频| 黄色片一级片一级黄色片| 1024香蕉在线观看| 国产精品熟女久久久久浪| 精品熟女少妇八av免费久了| 另类亚洲欧美激情| 天天躁日日躁夜夜躁夜夜| 波多野结衣一区麻豆| 人妻 亚洲 视频| 美国免费a级毛片| 69精品国产乱码久久久| 国产精品久久久人人做人人爽| 亚洲精品国产av成人精品| 香蕉国产在线看| 国产免费又黄又爽又色| 国产成人免费无遮挡视频| 1024视频免费在线观看| 亚洲少妇的诱惑av| 我的亚洲天堂| 母亲3免费完整高清在线观看| 精品亚洲乱码少妇综合久久| 国产精品一区二区免费欧美 | 亚洲一码二码三码区别大吗| 国产深夜福利视频在线观看| 9色porny在线观看| 欧美精品一区二区大全| 老熟女久久久| 色视频在线一区二区三区| a级毛片在线看网站| 一个人免费看片子| 真人做人爱边吃奶动态| 青草久久国产|