• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Enhanced interface properties of diamond MOSFETs with Al2O3 gate dielectric deposited via ALD at a high temperature*

    2021-05-24 02:23:44YuFu付裕RuiMinXu徐銳敏XinXinYu郁鑫鑫JianJunZhou周建軍YueChanKong孔月嬋TangShengChen陳堂勝BoYan延波YanRongLi李言榮ZhengQiangMa馬正強(qiáng)andYueHangXu徐躍杭
    Chinese Physics B 2021年5期
    關(guān)鍵詞:建軍

    Yu Fu(付裕), Rui-Min Xu(徐銳敏), Xin-Xin Yu(郁鑫鑫), Jian-Jun Zhou(周建軍),Yue-Chan Kong(孔月嬋), Tang-Sheng Chen(陳堂勝), Bo Yan(延波),Yan-Rong Li(李言榮),3, Zheng-Qiang Ma(馬正強(qiáng)), and Yue-Hang Xu(徐躍杭),?

    1University of Electronic Science and Technology of China,Chengdu 611731,China

    2Nanjing Electronic Devices Institute,Nanjing 210016,China

    3Sichuan University,Chengdu 610041,China

    4University of Wisconsin-Madison,Madison,WI 53705,USA

    Keywords: diamond MOSFET,ALD temperature,pulsed I–V,interface trap,conductance method

    1. Introduction

    The ultra-wide band gap semiconductor diamond,due to its superior material properties, is considered to be a remarkable candidate for high-power and highfrequency applications.[1–3]Hydrogen-terminated (C–H) diamond, which has a negative electron affinity, forms a twodimensional hole gas (2DHG) surface channel regardless of how high the activation energy associated with p-type dopants is.[4]The conduction of the C–H diamond surface can be realized by exposing it to the air adsorbates or overcoating it with different oxides such as Al2O3and transition metal oxides (TMO). For these oxide materials, the empty electron states below diamond’s valence band maximum (VBM) capture the electrons in the diamond surface,which results in the upward band bending of VBM and the formation of the 2DHG layer.[2]Compared with high electron affinity insulators and other high-k oxides,[5]Al2O3forming by atomic layer deposition (ALD) is considered as a promising gate insulator and passivation layer for perusing high-performance C–H diamond MOSFETs.[6–9]Even so, the stability of device operation is still a critical limitation for the Al2O3-based C–H diamond FETs.[10]Theoretically, there are no surface states in a complete C–H diamond surface due to non-existence of dangling bonds. For this reason, there has not been made much effort devoted to the interface trap issues in C–H diamond.As a matter of fact, the gate dielectric Al2O3deposition condition can give rise to the traps at the interface. The trap-induced DCRF dispersion in diamond microwave device can restrict the available current and output power of diamond MOSFETs.[11]Interface traps have been investigated for diamond MOSFETs with ALD Al2O3deposited below 200°C.[12]However, the understanding of the Al2O3/C–H interface behavior for Al2O3deposited at even higher temperatures is still limited.

    Since the C–H bonds and adsorbates generating holes are sensitive to factors such as environment and heat, the quality of the Al2O3films deposited at different temperatures[13]and their relevant transistor behaviors have been reported.[14]In fact, the bond enthalpy of C–H is higher than those of C–C and C–O,[15]which means that the C–H bond itself is quite stable. For the surface adsorbates, Al2O3deposited at 80°C proved to be an effective solution to preserve air adsorption.[8]However, it was shown that the adsorbate desorption occurs even at moderate temperatures(<200°C).[16]Notably,it was reported that a high-temperature(450°C)ALD process could also induce surface p-type conduction after the removal of air adsorbates, during which the surface holes were regenerated by the negative fixed charges in Al2O3.[7,9]But the thin 450-°C deposition Al2O3film is difficult to preserve new origins of hole accumulation,[17]it may limit the further development of the corresponding diamond MOSFETs in the high-frequency application, where high aspect-ratio is required.[18]Recently,the band offset of the 300-°C Al2O3depositing on C–H diamond claimed that this condition could also induce the p-type diamond conduction,[19]thus it is expected to achieve high output-current diamond devices using the thin 300-°C ALD grown Al2O3. Up to now, the significant interface properties of the C–H diamond MOSFETs with or without air adsorbates have not been unveiled. In this paper,we find that the fixed charges in Al2O3films are much lower than the 2DHG density. Our DC/pulsed I–V and frequency-dependent conductance measurements show that the interface trap states of the C–H diamond MOSFETs can be effectively suppressed at 300°C for ALD-Al2O3deposition in comparison with those deposited at 80°C, which indicates that the ALD deposition temperature is sufficiently high to achieve a high-quality interface for C–H diamond.

    2. Device fabrication and characterization

    The C–H diamond MOSFETs were fabricated on (100)-oriented type-IIa commercial diamond substrates. The substrates were prepared by using a strong acid solution(HNO3/H2SO4),and the purpose of this process is to remove the nondiamond phase.[1]The surface hydrogen-termination was realized by exposing the diamond surface to hydrogen plasma at 850°C for 20 min. Then, the samples were exposed to the air for a few hours to induce a high conductive 2DHG channel in the diamond surface. The gold(Au)metals were evaporated to protect the C–H diamond surface, afterwards, the metals covering the non-device areas were etched by using the potassium iodide (KI) solution. After exposing the diamond surface to the oxygen plasma,the device isolation was realized by replacing the C–H surface termination with the high resistive C–O surface termination.Drain and source electrode metals were formed by wet etching using KI solution.A 10-nm-thick (confirmed by the ellipsometry) Al2O3layer was coated on the C–H surface through the ALD method using Al(CH3)3and H2O as precursors. For one sample, the ALD deposition temperature was 80°C and for the other sample,it was 300°C.Aluminum(Al)gate metal was formed by using the thermal evaporation and lift-off process.The schematic diagrams of the fabrication processes are shown in Fig. 1. The gate width (WG) was 200 μm and the gate lengths (LG) were 0.1μm and 50μm,respectively.

    Figure 2 shows the top-view SEM pictures of the 0.1-μm-LGdiamond devices. For the 0.1-μm LGdevices, DC and pulsed I–V curves were measured by using a Keithley 4200 semiconductor parameter analyzer. For the 50-μm LGFat-FET devices, besides the DC IGS–VGStest, capacitance and conductance measurements (ranging from 1 kHz to 1 MHz)were performed by using an Agilent B1500A semiconductor device analyzer. All measurements were conducted in a dark environment at room temperature(300 K).

    Fig. 1. C–H diamond MOSFET fabrication processes. (a) Hydrogen-termination treatment, (b) deposition of Au to protect H-terminated diamond surface, and preparation of wet etching process of non-device areas, (c) device isolation by using oxygen plasma, (d) formation of source and drain electrodes,(e)ALD deposition of Al2O3 as gate insulator and passivation layer,and(f)gate fabrication and lift-off.

    Figure 3(a) shows the measured C–VGcharacteristics of the gate–source capacitance of the Fat-FET devices at 1 MHz.The measured dielectric constants (ε) of Al2O3under 80-°C and 300-°C depositions are 8.75 and 6.78, respectively,which are consistent with the reported values.[20,21]The inset of Fig. 3(a) shows the calculated hole sheet density (np)versus gate voltage by integrating the C–VGcurve. The maximum 2DHG concentrations are 8.7×1012cm?2(300°C)and 1.1×1013cm?2(80°C), respectively. The inset shows that less channel holes exist in the 300°C-deposition diamond device than in the 80-°C case, which is possibly due to the fact that the conduction-related surface adsorbates of C–H diamond decrease with ALD deposition temperature increasing,which was indicated by the reported high-resolution transmission electron microscopy(HRTEM)images.[22]Furthermore,the Mott–Schottky plot is shown in Fig.3(b),from which the flat band voltage(VFB)was determined by linear extrapolation of the 1/C2–VGcurves to the abscissa.The background acceptor concentration (NA) extracted from the linear slope[23]are 1.1×1013cm?3and 2.2×1013cm?3for 80°C and 300°C,separately. The values suggest the high purity of the diamond samples. Taking into account the difference in work function between Al (4.3 eV) and C–H diamond (4.9 eV),[24]the theoretical flat band voltage (VFB0) was calculated to be 0.6 V.As indicated in Fig. 3(b), the measured VFBvalues for 80-°C and 300-°C depositions were 0.42 V and 0.74 V,respectively.According to Qox=Cox×(VFB?VFB0)/q, the fixed charges in the oxide layer(Qox)were estimated to be 8.7×1011cm?2(80°C) and ?5.9×1011cm?2(300°C). The negative fixed charges in the Al2O3deposited at 300°C could be due to some unoccupied levels in the bandgap of Al2O3located near the valence band edge of diamond.[25]The positive fixed charges observed in the 80-°C deposition device may be attributed to the oxygen vacancies in the oxide films.[26]

    Fig.2. Topview SEM images of 0.1-μm LG:(a)80-°C deposition device and(b)300-°C deposition device.

    The DC tests (ID?DC) show that both diamond devices’ maximum drain currents exceed ?400 mA/mm (LG=0.1μm), the IDS–VGScurve of the 80-°C and 300-°C deposition devices at VDS=?8 V are shown in Fig.4. Owing to the higher dielectric constant of the 80-°C deposition ALD Al2O3film,the device has exhibited better subthreshold performance.Pulsed I–V test is more effective than DC I–V measurement to characterize the traps-related performances because of its discontinuous signal excitation. Comparatively speaking, there is more severe current degradation in the 80-°C deposition diamond device when it is operated in the pulse I–V mode as shown in Fig. 5. Specifically, pulsed I–V (ID?pulse) measurements are employed to characterize the response of trap charging/discharging for the 0.1-μm-LGdiamond MOSFETs(VGSQ=5 V,VDSQ=?8 V).If the time constant of the charged traps is smaller than the pulse width, reduced holes and thus reduced current will be observed due to insufficient time for discharging from traps.[27]Figure 6 shows the ID?pulse/ID?DCcharacteristics measured at VGS=?2 V and VDS=?6 V.During the measurements, the pulse period used is 1 ms and the pulse width varies from 1μs to 100μs. For the 80-°C deposition device,a much more serious current degradation is observed, which suggests that it has more donor-like traps with a time constant smaller than 100 μs. In addition, it is worth noting that the drain current densities of the 300-°C deposition device in this work is the highest in the reported C–H diamond MOSFETs with 300-°C deposition ALD Al2O3.[14,19]

    Fig. 3. (a) C–VG and (b) 1/C2–VG characteristics of the Al2O3/C–H diamond capacitor measured at 1 MHz and room temperature (RT). VFB of 0.42 V and 0.74 V are measured at 80-°C and 300-°C depositions, respectively,and VFB0 of 0.6 V is the theoretical value,it is fitting with the formula 1/C2=(?2/εε0eNA)(V ?VFB+kT/e).

    Fig.4. DC IDS–VGS curve of 80-°C and 300-°C deposition 0.1-μm-LG devices at VDS=?8 V.

    Fig.5. DC and pulsed I–V characteristics of(a)80-°C and(b)300-°C deposition diamond MOSFETs. In pulsed I–V case, quiescent bias point is selected at VGSQ=5 V,VDSQ=?8 V,and pulsed period and width are 1 ms and 1μs,respectively.

    Fig.6. Ratio of pulse current to DC current(ID?pulse/ID?DC)characteristics of 80-°C and 300-°C deposition devices at VGS =?2 V and VDS =?6 V,with inset showing applied waveform during pulse I–V measurement.

    3. The interface trap mapping by conductance method

    In general, emission, rather than capture, is the rate limiting process.[28]Thus characterization of the trap emission time constant(τit)in diamond is crucial to the understanding of the interior trap behaviors. The frequency-dependent conductance method,proposed by Nicollian and Goetzberger,[28]is used to determine the interface traps behavior. The inset of Fig. 7 shows (a) the equivalent circuit of the measured MOS structure,where Cmand Gmdenote the measured capacitance and conductance, respectively; (b) the equivalent circuit of the MOS structure used for the conductance method,where Cit=qDitis the interface trap capacitance when Ditis given in eV?1·cm?2,Ritrepresents the energy loss caused by the capture-emission of carriers by interface trap, τit=RitCitis the interface trap time constant; (c) the simplified circuit with equivalent parallel conductance(Gp). In particular,series resistance (Rs) is introduced into the equivalent circuit considering high contact and access resistance of C–H diamond devices.[29]

    Fig.7. Experimental data(circles)and fitting curves(lines)of Gp/ω ~ω.Plotted Gp/ω ~ω results of the 80-°C(left)and 300-°C deposition(right)devices are selected in their subthreshold bias regions. Inset shows(a)measured and[(b),(c)]equivalent circuits of MOS structure,correcting for series resistance(Rs)of contact resistance and access resistance of diamond FETs.

    The Gp/ω ~ω characteristics at the selected voltages can be determined from Cmand Gm,[28]which can be expressed as

    where Coxof 0.78 μF/cm2and 0.60 μF/cm2were extracted from the C–VGcharacteristics of the 80-°C and 300-°C deposition devices,respectively,

    with ω =2π f being the radial frequency, Rsis the series resistance and determined from

    Here,Gmaand Cmaare the measured conductance and capacitance in the accumulation mode. By assuming continuous interface trap levels,Gp/ω can be given by

    where q is the elemental charge,and Ditdenotes the trap density. Mapping of Ditand τitcan be achieved by fitting the experimental Gp/ω ~ω data through using Eq.(5)as shown in Fig.7. For Eq.(5),the peak point(Gp/ω)maxis located at ωτit=2, and Ditcorrelated with (Gp/ω)maxequals (2.5/q)(Gp/ω)max. It can be seen that the measured conductance peaks of the 80-°C deposition device are broader than those predicted by Eq. (1), which was also observed in the nonannealed MOSFETs.[30]From Fig. 7, it can be seen that the 300-°C ALD process on the C–H diamond surface results in the suppression of the oxide charge non-uniformities and a higher interface quality. According to the Shockley–Read–Hall (SRH) statistic model,[28]the trap energy levels above diamond valence band(Eit–EV)can be deduced from the trap time constant(τit),which is written as

    where vthis the thermal velocity,σpis the hole capture cross section, and NVis the effective density of states in diamond valence band. By assigning T =300 K, vth=1×107cm/s,σp=4×10?13cm?2,and NV=2.7×1019cm?3,figure 8(a)shows the mapping results of the trap density distributions and the corresponding energy levels, indicating that shallow traps(Eit?EV≈0.46 eV–0.56 eV)exist in diamond devices.Specifically,Ditin the 80-°C deposition device is in a range of 7.8×1013eV?1·cm?2–8.5×1013eV?1·cm?2for an energy level span of 0.46 eV–0.52 eV above the valence band of diamond. The higher trap density in the 80-°C deposition device is consistent with the results obtained from the above pulse I–V analysis. The devices with high interface traps may suffer the weak Fermi-level pinning (WFLP) effect, which will make the majority of charges in the MOS capacitor accommodated by interface traps, and cannot be found to operate as a classic MOS capacitor.[31]Notably,besides the depletion and accumulation performances in the C–V curves(Fig.3(a)),the typical current–voltage on/off characteristics (Fig. 4) can be observed for both devices. That is to say, the potential influence of the WFLP effect on our devices is generally acceptable. For the 300-°C deposition device, Ditis in a range of 2.2×1013eV?1·cm?2–5.1×1013eV?1·cm?2, with the energy level span of 0.53 eV–0.56 eV above the valence band of diamond. In fact, diamond material is expected to have deep energy level interface traps with long τit.[12]According to the SRH model,relation between the detectable trap energy range in the band gap of diamond (5.5 eV) and the correlated τitis shown in Fig.8(b). Notably,by using the conductance method at RT, only a small part of the trap states in diamond can be detected, and the calculated τitis around 1 year for the nearmidgap trap states even at 300°C(the grey line).

    Fig.8. (a)Energy distributions of interface state density of Al2O3/C–H diamond structure,and(b)energy level Eit versus trap emission time constant τit in diamond band gap at RT(orange line)and 300 °C(grey line).

    Figure 9 shows the schematic of energy band of the capturing process and emission process of the interface traps with different trap energy levels above the valence band of diamond (at the same gate voltage), and the red line and blue line demonstrate the energy band of the 80-°C and 300-°C deposition devices,respectively. Higher band up-bending of the 80-°C deposition suggests higher carrier concentration in the 2DHG channel, and it contains shallower energy level interface traps(ΔET)while the trap density is higher. As shown in Fig. 9(a), the interface traps capture the carriers when reducing VG. Figure 9(b)indicates that the filled interface traps with lower ΔETfirst emit the holes to the channel when increasing VG,while those interface traps with higher ΔETare more difficult to emit the holes. The gate leakage current characteristics of both Fat-FETs are shown in Fig.10,it can be noted that the IGSof the 80-°C deposition device begins to increase at the forward bias, while the 300-°C deposition device maintains low IGSin the total VGSrange. This can be attributed to the emission of the trapped holes into the gate electrode as suggested by the Frenkel–Poole (FP) emission effect,[14]since the detected interface trap of the 80-°C deposition device is higher than that of the 300-°C deposition device.

    Fig.9. Schematic diagram of band diagrams of the capturing and emission processes of Al2O3/C–H diamond interface traps,where red and blue lines demonstrate the energy band of the 80-°C and 300-°C deposition devices,respectively. (a) Trap capturing with VG decreasing (hole accumulation),and(b)trap emission with VG increasing(hole depletion).

    Fig.10. Gate leakage current of 50μm-LG diamond MOSFETs.

    4. Conclusions and perspectives

    In this paper,the comparative studies by using C–VGand pulse/DC I–V measurements are presented to characterize the traps-induced current degradation in the C–H diamond MOSFETs at different Al2O3deposition temperatures. The results show that while a wide range of ALD deposition temperatures can be used to fabricate diamond FETs with low gate leakage current and high drain current density, different trapped charges can exist in the Al2O3dielectric layer. Experimental results show that 300-°C ALD grown Al2O3can be a suitable gate dielectric and passivation layer solution for the prospective diamond power devices.

    猜你喜歡
    建軍
    慶祝建軍95周年
    Ergodic stationary distribution of a stochastic rumor propagation model with general incidence function
    GENERALIZED CES`ARO OPERATORS ON DIRICHLET-TYPE SPACES*
    Spatio-temporal evolution characteristics and pattern formation of a gas–liquid interfacial AC current argon discharge plasma with a deionized water electrode
    古建軍
    無(wú)論等多久
    建軍90周年有感
    中華魂(2017年8期)2017-11-22 12:21:09
    建軍90周年
    Experimental investigation of velocity fluctuations in a radial diffuser pump*
    Totally laparoscopic Billroth Ⅱ gastrectomy without intracorporeal hand-sewn sutures
    国产成人aa在线观看| e午夜精品久久久久久久| 国产精品综合久久久久久久免费| 国产 一区 欧美 日韩| 日韩av在线大香蕉| 后天国语完整版免费观看| 亚洲国产欧美网| 亚洲18禁久久av| 成人18禁在线播放| 免费人成视频x8x8入口观看| 亚洲第一电影网av| 美女免费视频网站| 一卡2卡三卡四卡精品乱码亚洲| 国产不卡一卡二| 最近最新中文字幕大全电影3| 日本精品一区二区三区蜜桃| 一级毛片女人18水好多| 欧美一区二区国产精品久久精品| 国产午夜精品论理片| a级毛片在线看网站| 又粗又爽又猛毛片免费看| 国产毛片a区久久久久| 淫妇啪啪啪对白视频| 国产单亲对白刺激| 精品欧美国产一区二区三| 日日干狠狠操夜夜爽| 黄片小视频在线播放| 日韩欧美精品v在线| 女同久久另类99精品国产91| 国产亚洲精品综合一区在线观看| 伦理电影免费视频| 日本黄色片子视频| 亚洲精品久久国产高清桃花| 免费看美女性在线毛片视频| 九九久久精品国产亚洲av麻豆 | 久久国产精品人妻蜜桃| 成人性生交大片免费视频hd| 久久久久久大精品| 国产精品av视频在线免费观看| 日本黄色视频三级网站网址| 日本在线视频免费播放| 色播亚洲综合网| 亚洲av美国av| 国产三级在线视频| 欧美不卡视频在线免费观看| 久久午夜综合久久蜜桃| 亚洲五月婷婷丁香| 变态另类丝袜制服| 好看av亚洲va欧美ⅴa在| e午夜精品久久久久久久| 99精品在免费线老司机午夜| 国内精品久久久久久久电影| 亚洲五月天丁香| 久久精品综合一区二区三区| 在线观看一区二区三区| 成人av一区二区三区在线看| 亚洲一区二区三区不卡视频| 欧洲精品卡2卡3卡4卡5卡区| 最近在线观看免费完整版| 综合色av麻豆| 香蕉av资源在线| 日韩欧美 国产精品| 国产午夜精品论理片| 国产高清三级在线| 桃色一区二区三区在线观看| 国模一区二区三区四区视频 | 亚洲精品乱码久久久v下载方式 | 91av网站免费观看| 男女视频在线观看网站免费| 一二三四社区在线视频社区8| 国产野战对白在线观看| 国产视频一区二区在线看| 国产精品影院久久| av天堂在线播放| 国产黄片美女视频| 亚洲aⅴ乱码一区二区在线播放| 亚洲,欧美精品.| 欧美+亚洲+日韩+国产| 又黄又爽又免费观看的视频| 一级毛片精品| aaaaa片日本免费| 久久中文字幕一级| 男女下面进入的视频免费午夜| av天堂在线播放| 国产毛片a区久久久久| 亚洲在线观看片| 女人被狂操c到高潮| 欧美在线一区亚洲| 欧美黑人欧美精品刺激| 大型黄色视频在线免费观看| 欧美不卡视频在线免费观看| 国产伦精品一区二区三区四那| 亚洲欧美精品综合久久99| 国产真实乱freesex| 在线观看美女被高潮喷水网站 | 99精品欧美一区二区三区四区| 色在线成人网| 午夜两性在线视频| 国产1区2区3区精品| 久久久久九九精品影院| 看片在线看免费视频| 天天躁狠狠躁夜夜躁狠狠躁| 国产成人福利小说| 99国产精品99久久久久| 免费看日本二区| 国产成人一区二区三区免费视频网站| 免费观看的影片在线观看| 亚洲精品国产精品久久久不卡| 色老头精品视频在线观看| 国产日本99.免费观看| 国产精品免费一区二区三区在线| 免费看光身美女| 操出白浆在线播放| 精品乱码久久久久久99久播| 99国产精品一区二区三区| 99精品久久久久人妻精品| 国产精品av视频在线免费观看| 岛国在线观看网站| 久久九九热精品免费| 五月伊人婷婷丁香| 欧美乱码精品一区二区三区| 日韩有码中文字幕| 免费高清视频大片| 美女黄网站色视频| 亚洲av成人精品一区久久| 色av中文字幕| 久久草成人影院| 成年免费大片在线观看| 美女 人体艺术 gogo| 一级作爱视频免费观看| 男人和女人高潮做爰伦理| 后天国语完整版免费观看| 久久午夜亚洲精品久久| 亚洲色图 男人天堂 中文字幕| 中国美女看黄片| 91av网站免费观看| 亚洲欧美日韩卡通动漫| 九色成人免费人妻av| 黄色女人牲交| 日韩 欧美 亚洲 中文字幕| 久久久成人免费电影| 国产伦精品一区二区三区视频9 | 天堂av国产一区二区熟女人妻| 久久热在线av| 国产在线精品亚洲第一网站| 欧美另类亚洲清纯唯美| 欧美日韩亚洲国产一区二区在线观看| 色视频www国产| 一卡2卡三卡四卡精品乱码亚洲| 成人18禁在线播放| 日韩欧美在线二视频| 国产精品 欧美亚洲| 亚洲avbb在线观看| 久久久久国产一级毛片高清牌| 久久这里只有精品19| 欧美色欧美亚洲另类二区| 一个人看视频在线观看www免费 | 香蕉av资源在线| 亚洲中文字幕日韩| 国产高清三级在线| 久久久色成人| 97超视频在线观看视频| 午夜两性在线视频| 亚洲av成人精品一区久久| 一本一本综合久久| 久久精品影院6| 亚洲成人久久性| 国产激情欧美一区二区| 禁无遮挡网站| 国产成人福利小说| 欧美+亚洲+日韩+国产| 亚洲国产欧美网| 性欧美人与动物交配| 91在线精品国自产拍蜜月 | 久久久水蜜桃国产精品网| 亚洲国产欧洲综合997久久,| 欧美黑人欧美精品刺激| 国产精品一区二区三区四区久久| 亚洲av美国av| 99在线人妻在线中文字幕| 亚洲av成人av| 久久久久久久久久黄片| 亚洲国产欧洲综合997久久,| 亚洲精品国产精品久久久不卡| 中文字幕熟女人妻在线| 一个人免费在线观看的高清视频| 黄色视频,在线免费观看| 一个人免费在线观看电影 | 亚洲 欧美一区二区三区| 亚洲人成网站高清观看| 99国产精品99久久久久| 好看av亚洲va欧美ⅴa在| 亚洲欧美日韩东京热| 久久久久国产精品人妻aⅴ院| 一二三四在线观看免费中文在| 在线观看66精品国产| 亚洲精品在线美女| 国产精品一区二区三区四区久久| 18禁国产床啪视频网站| 久久中文看片网| 老汉色av国产亚洲站长工具| 床上黄色一级片| 精品国产乱码久久久久久男人| 香蕉丝袜av| 90打野战视频偷拍视频| 午夜福利免费观看在线| 久久精品综合一区二区三区| 视频区欧美日本亚洲| 国产亚洲欧美在线一区二区| 一个人免费在线观看的高清视频| 天堂av国产一区二区熟女人妻| 男女那种视频在线观看| 黑人欧美特级aaaaaa片| 国产av麻豆久久久久久久| 国产又黄又爽又无遮挡在线| 午夜精品一区二区三区免费看| 日本黄大片高清| 老熟妇仑乱视频hdxx| 嫩草影视91久久| 精华霜和精华液先用哪个| 亚洲片人在线观看| 国产精品一及| 久久久水蜜桃国产精品网| 久久久精品欧美日韩精品| 欧美成人性av电影在线观看| 岛国在线免费视频观看| 亚洲欧美一区二区三区黑人| 国模一区二区三区四区视频 | 国产成人精品久久二区二区免费| 老司机深夜福利视频在线观看| 亚洲天堂国产精品一区在线| 成人一区二区视频在线观看| 欧美日韩瑟瑟在线播放| 成年女人看的毛片在线观看| 神马国产精品三级电影在线观看| 九九久久精品国产亚洲av麻豆 | 欧美一区二区国产精品久久精品| 搡老妇女老女人老熟妇| 一边摸一边抽搐一进一小说| 热99re8久久精品国产| 黄色丝袜av网址大全| 国产av麻豆久久久久久久| 亚洲午夜精品一区,二区,三区| 成人av一区二区三区在线看| 国产成人系列免费观看| 亚洲激情在线av| 亚洲性夜色夜夜综合| 99久久无色码亚洲精品果冻| 国产美女午夜福利| 熟女少妇亚洲综合色aaa.| 免费在线观看日本一区| 波多野结衣高清无吗| 亚洲真实伦在线观看| 99久久精品热视频| 国产亚洲欧美在线一区二区| 一个人观看的视频www高清免费观看 | av天堂在线播放| 久久这里只有精品中国| x7x7x7水蜜桃| 99久久综合精品五月天人人| 久久国产精品人妻蜜桃| 亚洲国产日韩欧美精品在线观看 | 99久久精品一区二区三区| 亚洲精品一卡2卡三卡4卡5卡| 国产高清视频在线播放一区| 女人高潮潮喷娇喘18禁视频| 国产精品久久久人人做人人爽| 嫩草影院精品99| 男女视频在线观看网站免费| 亚洲成av人片免费观看| 久久这里只有精品19| 一本精品99久久精品77| 小蜜桃在线观看免费完整版高清| 手机成人av网站| 国产三级中文精品| 美女黄网站色视频| 在线观看美女被高潮喷水网站 | 99久久成人亚洲精品观看| 搡老熟女国产l中国老女人| 欧美日韩黄片免| 色在线成人网| 久久精品综合一区二区三区| 久久精品91无色码中文字幕| 在线看三级毛片| 国产在线精品亚洲第一网站| 婷婷亚洲欧美| 日韩精品青青久久久久久| 国产成人欧美在线观看| 中文字幕高清在线视频| 国语自产精品视频在线第100页| 一进一出抽搐gif免费好疼| 91av网一区二区| 成人特级av手机在线观看| 高清毛片免费观看视频网站| 亚洲第一欧美日韩一区二区三区| 99精品在免费线老司机午夜| 亚洲熟女毛片儿| 成人精品一区二区免费| 在线观看免费视频日本深夜| 在线观看66精品国产| 亚洲自拍偷在线| 99在线人妻在线中文字幕| 日韩高清综合在线| 亚洲欧美激情综合另类| 欧美色欧美亚洲另类二区| 别揉我奶头~嗯~啊~动态视频| 色播亚洲综合网| a级毛片a级免费在线| 国产午夜精品久久久久久| 99精品欧美一区二区三区四区| 噜噜噜噜噜久久久久久91| 欧美在线一区亚洲| 桃色一区二区三区在线观看| 成人一区二区视频在线观看| 久久精品91蜜桃| 久久精品国产亚洲av香蕉五月| 午夜亚洲福利在线播放| 午夜福利高清视频| 欧美黄色片欧美黄色片| 一边摸一边抽搐一进一小说| 色综合欧美亚洲国产小说| 成人永久免费在线观看视频| 嫩草影视91久久| 久久精品综合一区二区三区| 99在线视频只有这里精品首页| 久久国产精品人妻蜜桃| 婷婷精品国产亚洲av| 少妇丰满av| 狠狠狠狠99中文字幕| 亚洲第一欧美日韩一区二区三区| 91九色精品人成在线观看| 男女午夜视频在线观看| 精品国产乱码久久久久久男人| 黄色片一级片一级黄色片| 脱女人内裤的视频| 欧美日韩黄片免| 亚洲,欧美精品.| 久久久久国内视频| 人妻久久中文字幕网| 熟妇人妻久久中文字幕3abv| 女人高潮潮喷娇喘18禁视频| 最近视频中文字幕2019在线8| 操出白浆在线播放| 日日夜夜操网爽| 国产99白浆流出| 九色成人免费人妻av| 久9热在线精品视频| 高潮久久久久久久久久久不卡| 中文亚洲av片在线观看爽| 在线永久观看黄色视频| 亚洲aⅴ乱码一区二区在线播放| 欧美中文日本在线观看视频| 亚洲一区二区三区不卡视频| 色尼玛亚洲综合影院| 欧美日韩国产亚洲二区| 神马国产精品三级电影在线观看| 久久久久久久午夜电影| 亚洲人成电影免费在线| 中文字幕久久专区| 悠悠久久av| 免费高清视频大片| 久久久色成人| 一级毛片女人18水好多| 两个人的视频大全免费| 亚洲精品国产精品久久久不卡| 精品熟女少妇八av免费久了| 日日摸夜夜添夜夜添小说| 日本免费一区二区三区高清不卡| 19禁男女啪啪无遮挡网站| 给我免费播放毛片高清在线观看| 亚洲在线自拍视频| 国产精品综合久久久久久久免费| АⅤ资源中文在线天堂| 99久久国产精品久久久| 欧美日本视频| 午夜影院日韩av| 少妇裸体淫交视频免费看高清| 久久精品国产99精品国产亚洲性色| 国产午夜精品论理片| 搡老岳熟女国产| 亚洲五月天丁香| 久久久久国产精品人妻aⅴ院| 国产精品综合久久久久久久免费| 长腿黑丝高跟| 无人区码免费观看不卡| 国产av麻豆久久久久久久| 久久久久久九九精品二区国产| 长腿黑丝高跟| 美女 人体艺术 gogo| 看黄色毛片网站| 亚洲精品一区av在线观看| 91在线精品国自产拍蜜月 | 午夜精品在线福利| 99精品在免费线老司机午夜| 一进一出抽搐gif免费好疼| 久久久久久久午夜电影| 两人在一起打扑克的视频| 看黄色毛片网站| 国产成人系列免费观看| 亚洲av熟女| 高清在线国产一区| 国产99白浆流出| 久久久久久国产a免费观看| 精品一区二区三区四区五区乱码| 亚洲国产欧美网| 久久国产精品影院| 国产精品一及| 成人av在线播放网站| 少妇的逼水好多| 国产三级中文精品| 性色av乱码一区二区三区2| 精品久久蜜臀av无| 在线观看66精品国产| 亚洲av成人av| 成人性生交大片免费视频hd| 两性午夜刺激爽爽歪歪视频在线观看| 日韩欧美精品v在线| 欧美zozozo另类| 日本三级黄在线观看| 欧美日韩综合久久久久久 | 久久久久九九精品影院| 日本在线视频免费播放| 又紧又爽又黄一区二区| 国产精品一及| 欧美日韩一级在线毛片| 久久久久久久久中文| 久久久国产欧美日韩av| 日韩av在线大香蕉| 中文字幕最新亚洲高清| 亚洲电影在线观看av| 亚洲18禁久久av| 精品无人区乱码1区二区| 欧美日本视频| 中文字幕人成人乱码亚洲影| 最近最新中文字幕大全免费视频| 成熟少妇高潮喷水视频| 国产精品一区二区精品视频观看| 91麻豆精品激情在线观看国产| 国产亚洲av嫩草精品影院| 中文字幕久久专区| 久久欧美精品欧美久久欧美| 51午夜福利影视在线观看| 午夜成年电影在线免费观看| 亚洲午夜精品一区,二区,三区| 一级黄色大片毛片| 精品国产三级普通话版| 免费观看的影片在线观看| aaaaa片日本免费| 香蕉久久夜色| 97人妻精品一区二区三区麻豆| 国产欧美日韩精品亚洲av| 亚洲欧美激情综合另类| 亚洲一区二区三区不卡视频| 国产主播在线观看一区二区| 精品欧美国产一区二区三| 欧美日本视频| 国产蜜桃级精品一区二区三区| 麻豆成人午夜福利视频| 91在线观看av| 婷婷六月久久综合丁香| 成人性生交大片免费视频hd| 国产免费男女视频| 国产精品久久久人人做人人爽| 国产成人aa在线观看| 免费在线观看视频国产中文字幕亚洲| 他把我摸到了高潮在线观看| 午夜精品久久久久久毛片777| 又黄又粗又硬又大视频| 91麻豆精品激情在线观看国产| 中文在线观看免费www的网站| 国产极品精品免费视频能看的| 91av网站免费观看| 欧美大码av| 两个人的视频大全免费| 国产高清有码在线观看视频| 最新美女视频免费是黄的| 一进一出抽搐gif免费好疼| 极品教师在线免费播放| 日本三级黄在线观看| 国产精品综合久久久久久久免费| av视频在线观看入口| 精品一区二区三区av网在线观看| 99国产极品粉嫩在线观看| 久久中文字幕人妻熟女| 国产又黄又爽又无遮挡在线| 每晚都被弄得嗷嗷叫到高潮| 视频区欧美日本亚洲| www.精华液| 99国产极品粉嫩在线观看| 中亚洲国语对白在线视频| 淫妇啪啪啪对白视频| 国产三级在线视频| 亚洲黑人精品在线| 成人欧美大片| 国产一区二区在线观看日韩 | 欧美一区二区精品小视频在线| 搡老妇女老女人老熟妇| 国产高清三级在线| 午夜福利欧美成人| 成人av在线播放网站| 亚洲va日本ⅴa欧美va伊人久久| 亚洲精品美女久久久久99蜜臀| 国产69精品久久久久777片 | 黄色视频,在线免费观看| 中文在线观看免费www的网站| ponron亚洲| 日日干狠狠操夜夜爽| 免费一级毛片在线播放高清视频| 精品国产三级普通话版| 别揉我奶头~嗯~啊~动态视频| www日本在线高清视频| 成人特级av手机在线观看| 久久国产精品人妻蜜桃| 亚洲欧美日韩无卡精品| 国产精品美女特级片免费视频播放器 | 日本成人三级电影网站| 国产精品女同一区二区软件 | 最新美女视频免费是黄的| 亚洲自拍偷在线| 国产精品美女特级片免费视频播放器 | 精品熟女少妇八av免费久了| 曰老女人黄片| 99国产综合亚洲精品| 成人欧美大片| 国产免费av片在线观看野外av| 久久久久性生活片| 亚洲中文字幕一区二区三区有码在线看 | 青草久久国产| 757午夜福利合集在线观看| 久久香蕉国产精品| 久久久久久久久免费视频了| 国产真人三级小视频在线观看| 久久这里只有精品19| 国产v大片淫在线免费观看| 国语自产精品视频在线第100页| 亚洲国产欧美人成| 99久久成人亚洲精品观看| 18禁黄网站禁片免费观看直播| 午夜激情福利司机影院| 亚洲电影在线观看av| 亚洲黑人精品在线| 欧美乱色亚洲激情| 久久香蕉国产精品| 免费观看精品视频网站| 免费av毛片视频| 成人亚洲精品av一区二区| 久久久国产欧美日韩av| bbb黄色大片| 亚洲电影在线观看av| 在线观看午夜福利视频| 亚洲午夜精品一区,二区,三区| 免费观看人在逋| 国产伦精品一区二区三区四那| 丰满人妻一区二区三区视频av | 综合色av麻豆| 91老司机精品| 97超视频在线观看视频| 法律面前人人平等表现在哪些方面| 午夜免费成人在线视频| 男人和女人高潮做爰伦理| 激情在线观看视频在线高清| 噜噜噜噜噜久久久久久91| 午夜久久久久精精品| 热99在线观看视频| 国产69精品久久久久777片 | 丝袜人妻中文字幕| 精品福利观看| 69av精品久久久久久| 少妇熟女aⅴ在线视频| 在线观看美女被高潮喷水网站 | 国产日本99.免费观看| 99视频精品全部免费 在线 | 熟妇人妻久久中文字幕3abv| 九九热线精品视视频播放| 高潮久久久久久久久久久不卡| 精品乱码久久久久久99久播| 成人亚洲精品av一区二区| 99re在线观看精品视频| 欧美一级毛片孕妇| 91av网一区二区| 亚洲欧美精品综合久久99| 亚洲国产精品999在线| 成人鲁丝片一二三区免费| 亚洲av成人不卡在线观看播放网| 一级作爱视频免费观看| 亚洲中文字幕一区二区三区有码在线看 | 亚洲国产精品成人综合色| 国产熟女xx| 国内毛片毛片毛片毛片毛片| 少妇的逼水好多| 久久精品综合一区二区三区| 99热这里只有是精品50| 最新中文字幕久久久久 | 又爽又黄无遮挡网站| 午夜福利高清视频| 国产成人影院久久av| 国产毛片a区久久久久| 一个人免费在线观看电影 | 日韩免费av在线播放| 亚洲精品久久国产高清桃花| 一个人看视频在线观看www免费 | 岛国视频午夜一区免费看| 男女那种视频在线观看| 日韩欧美三级三区| 久久人妻av系列| 香蕉av资源在线| 国产aⅴ精品一区二区三区波| 99热只有精品国产| 国产在线精品亚洲第一网站| 88av欧美| 国产精品野战在线观看| 亚洲中文av在线| 真人做人爱边吃奶动态| 淫秽高清视频在线观看| 黑人操中国人逼视频|