• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Cathodic shift of onset potential on TiO2 nanorod arrays with significantly enhanced visible light photoactivity via nitrogen/cobalt co-implantation*

    2021-05-24 02:22:32XianyinSong宋先印HongtaoZhou周洪濤andChangzhongJiang蔣昌忠
    Chinese Physics B 2021年5期

    Xianyin Song(宋先印), Hongtao Zhou(周洪濤), and Changzhong Jiang(蔣昌忠)

    College of Materials Science and Engineering,Hunan University,Changsha 410082,China

    Keywords: ion implantation,TiO2,surface sputtering,photo-electrochemical water splitting

    1. Introduction

    Since Fujishima and Honda reported the photo-oxidation of water on TiO2in 1972,[1]TiO2has been extensively investigated as a photoanode material due to its high water-oxidation activity, excellent photostability, and earth abundance.[2–4]However, the poor visible light photo-activity induced by its wide band gap (Eg=3.0 eV) is the major limitation for its further application as photo-anode.[5]Although anionic doping(e.g., N,S)could effectively increase the visible-light response of TiO2, it also causes a significant anodic shift in current onset potential.[6–8]And this can be ascribed to the introduced impurity states above the valence band maximum(VBM)and large number of surface lattice defects,which decrease the oxidative capability and surface transfer dynamics of photo-generated holes.[9,10]Meanwhile,the onset potential of photo-anodes plays a critical role in building highly efficient and unassisted hetero-type PEC water-splitting cells.[11–13]

    To reduce the onset potential, the most commonly used method is loading various oxygen evolution catalysts on anion-doped TiO2.[8,14]This method could efficiently decrease onset potential;however,the loaded electrocatalyst layers were easy to fall off and even affected the light-harvesting of the underneath semiconductor. Besides,Jang et al.reported another re-growth strategy to reduce structural disorders at the surface of photoanodes and had achieved cathodic shift in turn-on voltage.[11]However,this method is uncontrollable.Therefore,a general approach with high controllability is still desired.

    Ion implantation, a typical surface engineering technology,has been widely used to tailor the electronic properties of semiconductor in industry.[15]It is a general method for introducing different and/or multiple elements of interest into semiconductor for systematic studies.[7]The implanted ions are presented in a highly dispersed state in the TiO2lattice.[10,16]Meanwhile,as a compulsive doping approach,high-energy ion bombardment could not only produce lattice defects,but also induce surface sputtering effect.[17–19]

    Herein, considering the high controllability at impurity distribution and surface sputtering effect of ion implantation technology,[16,20]we used ion-implantation approach to codope nitrogen and cobalt into TiO2nanorods for PEC water oxidation (Fig. 1(a)). Our results demonstrate that the surface lattice disorder of N-TiO2can be effectively removed by surface synergic sputtering of nitrogen/cobalt ions. And the surface synergic sputtering endows a cathodic shift of 350 mV in onset potential and more than 6.5 times increase of visible light photo-activity for N/Co-TiO2samples, relative to only nitrogen doping (N-TiO2). Our results demonstrated ion implantation was a novel and useful strategy for cathodic shift of TiO2photo-anode with improved catalytic activity.

    2. Methods

    2.1. Sample preparation

    The TiO2nanorod array was grown on FTO glass via a well-developed hydrothermal method.[21]The obtained TiO2nanorod arrays were then annealed at temperature 550°C for 3 hours in air. The nitrogen ions and cobalt ions were coimplanted into the TiO2nanorod array using a Kaufman ion source and a metal vapor vacuum arc (MEVVA) ion source implanter, respectively. The as-implanted TiO2were finally annealed at 550°C for 3 hours in high vacuum(approximately 10?4Pa) (Fig. 1(b)). The nitrogen-doped and cobalt-doped TiO2nanorod arrays were also prepared via ion implantation and subsequent high-vacuum annealing procedures.

    Fig.1. (a)Simplified diagram schematic of N/Co ion co-implantation. (b)Schematic diagram of the fabrication process of N/Co-TiO2 by ion implantation method. (c)SRIM calculated concentration profiles of N ions and damage(Ti recoil and O recoil)in TiO2 at the implantation energy of 30 keV to a dose of 3×1015 ions/cm2. (d)SRIM simulated surface sputtering yield by 30-keV N ions and 119-keV Co ions.

    2.2. Photo-electrochemical measurements

    Photo-electrochemical (PEC) measurements were performed in a three-electrode cell under a solar simulator(a 500-W xenon lamp coupled with an AM 1.5 G filter) at an illumination intensity of 100 mW/cm2. The TiO2photo-anodes were used as working electrodes, and a Pt foil was used as a counter electrode. An Ag/AgCl(saturated KCl)electrode was served as reference electrodes and 1.0-M NaOH aqueous solution(pH=13.6)was used as the electrolyte. The illuminated area was fixed at 0.785 cm2(a sealing ring with 1 cm in diameter). The measured potentials were converted to reversible hydrogen electrode (RHE) potential according to the Nernst equation

    2.3. Material characterization

    Scanning electron microscopy(SEM)was performed on a JEOL S-4800 microscope. Transmission electron microscopy(TEM)were carried out on a JEOL JEM2010. X-ray diffraction (XRD) patterns were recorded using a Bruker AXS, D8 Advance x-ray powder diffractometer with Cu-Kα irradiation(wavelength 1.5418 ?A).Raman spectroscopy was collected using a commercial Raman microscope(HR800, Horiba)and a laser emitting at 488 nm was served as the excitation source.X-ray photoelectron spectroscopy (XPS) experiments were done on a Thermo Scientific ESCALAB 250Xi system using Al Kα radiation source of 1486.6 eV,with C 1s(284.8 eV)as calibration reference.

    3. Results and discussion

    3.1. SRIM simulation

    An implanted high-energy ion will lose its energy through a series of cascade collisions with the target atomic nucleus and extranuclear electrons, and its distribution law in the target material is clearly recognized and well determined. We can accurately design the depth distribution of dopant ions in TiO2through adjusting the ion implantation energy.

    Besides,the atomic collision can transfer enough energy to target atoms to produce irradiation damage and surface sputtering. Figure 1(c)shows the calculated concentration profiles for implanted N ions,as well as damages(Ti recoil and O recoil)in TiO2according to SRIM simulation. The simulations show the maximum defect damage is much closer to the surface than the maximum N ion location. Meanwhile, the simulated surface sputtering yield of TiO2is shown in Fig. 1(d).Clearly, the sputtering yield induced by 119-keV Co ion is much higher than that of 30-keV N ion. In addition,the sputtering yield of lattice oxygens is more than twice than that of Ti atoms,showing preferential sputtering to oxygen atoms. This is consistent with previous experiment reports.[18,20]

    3.2. Structure characterization

    Figures 2(a)–2(h) show the SEM images of the original TiO2, N-TiO2, Co-TiO2, and N/Co-TiO2. The pristine TiO2nanorod presents a smooth side face and rectangular cross section with some bumps at the top. And the morphology of N-TiO2and Co-TiO2do not exhibit obvious changes compared to the pristine TiO2. However, the rough cross-section at the top of nanorods becomes smoother for N/Co-TiO2samples (Figs. 2(g)–2(h)). Meanwhile, the N, Co co-implanted TiO2samples without subsequent annealing treatment (asimplanted N/Co-TiO2)have already presented smoother crosssection at the top, as shown in Fig. S1 in Supporting information. It means TiO2nanorod tip can be effectively etched by the synergic sputtering of high-energy nitrogen ions and cobalt ions. It is worth noting that the irradiation damages at the top of TiO2nanorod have been effectively removed at the same time, confirmed by the HRTEM results as shown in Fig. S2. Besides, figures S3(a)–S3(b) also show that the surface etching become more evident as increasing the cobalt ion dose. The surface sputtering yield and ion irradiation induced surface patterns are affected by multiple factors, such as ion species, ion energy, crystal orientation, temperature of substrate materials,etc.[17,19,21]While,it needs to be emphasized that the surface synergic sputtering of N/Co ions is not the simple dose superimposed effect,as these surface etching is obviously different from our previous C/N ion co-implantation and high-dose Cr ion implantation.[10,16]Even though,the inherent mechanism of synergic sputtering by N/Co ions here needs to be further studied.

    Fig. 2. SEM images of [(a) and (b)] the pristine TiO2, [(c) and (d)] nitrogen-doped TiO2 with a nitrogen dose of 3×1015 ions/cm2 (N-TiO2), [(e)and (f)] cobalt-doped TiO2 with a cobalt dose of 3×1015 ions/cm2 (Co-TiO2), [(g) and (h)] nitrogen/cobalt co-doped TiO2 with a nitrogen dose of 3×1015 ions/cm2 and a cobalt dose of 3×1015 ions/cm2 (N/Co-TiO2). (i)XRD patterns of FTO,pristine TiO2,N-TiO2,Co-TiO2,and N/Co-TiO2. (j)Raman spectra of pristine TiO2,N-TiO2,Co-TiO2,and N/Co-TiO2.

    Figure 2(i) displays the XRD patterns of FTO substrate, pristine TiO2, N-TiO2, Co-TiO2, and N/Co-TiO2. It is indicated that all the samples were rutile phase TiO2[22]and no additional phase was detected after ion implantation and annealing, even for high-dose ion implantation samples(Fig.S3(c)).It further demonstrates that the implanted ions are presented in a highly dispersed state in the TiO2lattice via ionimplantation method. Raman spectroscopy studies also confirmed the conclusion of XRD analysis. There are four typical Raman-active modes with frequencies at 610, 447, 235, and 141 cm?1(Fig.2(j)and Fig.S3(d)),corresponding to the A1g,Eg, multi-photon and B1g modes of the rutile space group(P42/mnm), respectively.[23]However, it is also noteworthy that some new modes emerge at the range from 700 cm?1to 900 cm?1for nitrogen-doped TiO2, suggesting structural changes occurred after doping.[2]

    3.3. Photo-electrochemical measurement

    PEC performances were investigated under a simulated solar irradiation of 100 mW/cm2with or without through a visible-light cutoff filter of 420 nm. Figure 3(a) shows the linear sweep voltammogram collected for pristine TiO2, NTiO2, and N/Co-TiO2under dark and AM 1.5 G irradiation.Compared to the pristine TiO2, the N-TiO2sample exhibits an enhanced photocurrent density under high-bias voltages(>1.6 V versus RHE), but nearly 0.6-V anodic shift in current onset potential is observed,which directly leads to a much lower photocurrent density(0.17 mA/cm2)at the typical voltage of 1.23 V versus RHE.However,as the Co ions was subsequently implanted into N doped TiO2,the photocurrent density of N/Co-TiO2sample reaches 0.73 mA/cm2at 1.23 V versus RHE under simulated solar irradiation, which is more than twice higher than that of the pristine TiO2(0.33 mA/cm2)obtained at the same potential. Most importantly, relative to the negligible visible-light response of pristine TiO2as expected, the N/Co-TiO2sample showed a significant cathodic shift of 350 mV in onset potential and more than 6.5 times increase of visible-light catalytic activity than that of N-TiO2(0.46 mA/cm2versus 0.07 mA/cm2at 1.23 V versus RHE)(Fig. 3(b)). In addition, the visible-light PEC activity of Co-TiO2was also studied. Figure S4 in Supporting information shows the increase of visible-light catalytic activity for Co-TiO2is slight and negligible.

    The dosage effects of N/Co ions on PEC performance were also studied (Fig. 3(c)). The optimized PEC performance for N/Co co-implanted TiO2was obtained with an implantation ion fluence of 3×1015ions/cm2nitrogen and 3×1015ions/cm2cobalt. Further increase of cobalt implantation dose can induce a decrease in photo-activity. The excessive Co ion implantation could produce other irreparable surface lattice damages that also can act as the recombination centers to degrade the overall photo-activity,despite high-dose Co doped TiO2(Co+-TiO2)shows enhanced visible-light catalytic activity(see Fig.S5).

    Fig.3. (a)Linear sweep voltammetry of TiO2,N-TiO2,and N/Co-TiO2 under AM 1.5 G irradiation. (b)Linear sweep voltammetry of TiO2,N-TiO2,and N/Co-TiO2 under visible light irradiation. (c) The histograms of AM 1.5 G and visible-light photocurrent density for N/Co co-doped TiO2 with different cobalt doses to the same nitrogen dose of 3×1015 ions/cm2.

    3.4. Chemical state analysis

    XPS measurements were carried out to further investigate the chemical states of N and Co atoms in TiO2, particularly for N-TiO2and N/Co-TiO2samples. The survey spectrum of N/Co-TiO2sample shows the presence of weak N and Co signals (Fig. S6(a)), and the carbon signals were used for calibration of the binding energy(Fig.S6(b)). Figure 4(a)shows N 1s spectra of N-TiO2and N/Co-TiO2samples. There are several broad peaks from 394 eV to 404 eV,which can be deconvolved into three peaks located at around 402, 400, and 396 eV corresponding to the chemical bonding of N–N,N–O,and N-Ti bonds, respectively.[7,8]Between them, the substitution N-Ti states are mainly responsible for the visible light absorption according to previous theoretical and experimental evidences.[8,24,25]A negative shift (~0.26 eV) of N-Ti peak can be observed in N/Co-TiO2samples, suggesting the increasing electron density around N atoms. However,this shift cannot be ascribed to the N–Co interaction,because the binding energy of N–Co is stronger than N-Ti bonding.[8,26]

    Figure 4(b) shows the XPS Co 2p spectra of Co-TiO2and N/Co-TiO2. Two peaks centered at 781 eV and 796.5 eV are observed, which can be assigned to Co 2p3/2and Co 2p1/2of Co2+in TiO2, respectively.[27,28]And it can be seen that two satellite peaks located at approximately 786.6 eV and 802.8 eV appeared, which also can be ascribed to Co2+species,[27]consistent with the literature values of Co-doped TiO2.[29,30]Impressively, the Co 2p spectrum of N/Co-TiO2also exhibits a negative shift in binding energy. Meanwhile,similar shift to lower energy region for N/Co-TiO2samples is also observed in XPS Ti 2p and O 1s spectra, compared to N-TiO2as shown in Figs. 4(c)–4(d). The negative shift in XPS spectra of N/Co-TiO2can be ascribed to the excess electrons from oxygen vacancies transferring to other atoms. And the more oxygen vacancies incorporated into N/Co-TiO2can arise from the preferential sputtering of lattice oxygen in TiO2by high-energy N/Co ions,which has confirmed in Figs.1(d)and 2(g)–2(h).

    Fig.4. (a)XPS N 1s spectra of N-TiO2 and N/Co-TiO2,(b)XPS Co 2p spectra of Co-TiO2 and N/Co-TiO2,(c)XPS Ti 2p spectra,and(d)O 1s spectra of N-TiO2 and N/Co-TiO2.

    3.5. Electrochemical characterization

    To further clarify the intrinsic electronic properties of N-TiO2and N/Co-TiO2, we have performed electrochemical impedance investigations. The Mott–Schottky plots was used to calculate the carrier densities and flat band potential at the electrode/electrolyte interface according to the equations given below:

    where ε is the dielectric constant of rutile TiO2(ε =170),[5]ε0is the permittivity of vacuum, e0is the electron charge,V is the applied potential, C is the capacitance between TiO2and electrolyte(in units of F·cm?2), Ndis the carrier density,VFBis the flat band potential, K is the Boltzmann constant,and T is the absolute temperature (in unit K). In Fig. 5(a)and Fig. S7, the positive slope of Mott–Schottky plots indicates the n-type semiconductor characteristics. Obviously,the N/Co-TiO2exhibits a smaller slope than TiO2and NTiO2, indicating a much higher donor density. The carrier densities of TiO2, N-TiO2, and N/Co-TiO2calculated from Eq. (1) are 1.88×1017, 1.21×1021, and 2.43×1021cm?3, respectively. The increased donor concentration of N/Co-TiO2is mainly attributed to the incorporated oxygen vacancies by high-vacuum annealing and preferential sputtering of lattice oxygen. And these oxygen vacancies could serve as electron donors in TiO2[5,7]and enhance the charge separation efficiency from bulk to surface.[7,8]

    However, large numbers of surface and bulk defects are also introduced during the ion implantation. Although partial of lattice defects have been repaired after subsequent heat treatments, many defects still survived at the surface of Ndoped TiO2(Fig. S2(b)), especially under high-dose ion implantation. These surface lattice disorders act as deep energy level, which can result in Fermi level pinning and a significant anodic shift of the flat band potential (VFB).[11,20,31]Fortunately, these surface defects have been effectively removed through the surface synergic sputtering induced by high-energy N/Co ions (Fig. S2). Therefore, the N/Co-TiO2sample displays a huge cathodic shift of VFBand onset potential,relative to the N-TiO2(Figs.5(a)and 3(a)).

    Fig. 5. (a) Mott–Schottky curves for N-TiO2 and N/Co-TiO2 samples collected at the frequency of 1 kHz in dark. (b) Nyquist plots obtained at a potential of 1.23 V(versus RHE)under AM 1.5G irradiation.

    Finally, we will further investigate the charge transfer properties at the TiO2/electrolyte interfaces for N-TiO2and N/Co-TiO2through the electrochemical impedance spectroscopy(EIS).Figures 5(b)and S8 show the Nyquist plots of N-TiO2and N/Co-TiO2acquired from EIS measurements. All the Nyquist plots exhibited semi-circles and the data were well fitted by a typical Randles circuit model (insets, Fig. 5(b)),which consisted of the total series resistance (RS), constant phase angle element (CPECT), and charge-transfer resistance(RCT)at the TiO2/electrolyte interfaces.[7,32]The fitted charge transfer resistance (RCT) for N/Co-TiO2was less than half than that of N-TiO2(detailed values, see Table S1), indicating superior charge transfer kinetics of photo-generated carriers at the electrode/electrolyte interface for N/Co co-implanted TiO2. As a consequence, the N/Co-TiO2samples show obviously increased PEC performances, compared to the N-TiO2(Fig.3).

    4. Conclusion

    In summary, we have successfully achieved a huge cathodic shift in onset potential for TiO2photo-anode with significantly enhanced visible light photo-electrochemical performances through N/Co co-implantation. Due to the synergic sputtering of implanted N/Co ions,the surface lattice disorder induced by ion bombardment has been effectively removed.As a consequence,the N/Co co-implanted TiO2exhibits a cathodic shift of 350 mV in onset potential and more than 6.5 times increase of visible-light photocurrent density at 1.23 V versus RHE relative to only N-implanted TiO2. Our work demonstrates that ion implantation technology is a powerful method to modulate the band structure of photo-electrodes,and thus improve their PEC performances. We believe ion implantation is a general strategy which can be extended to introduce different dopants into different semiconductor materials for PEC water splitting and possibly other applications such as solar cells and photodetectors.

    大话2 男鬼变身卡| 狠狠精品人妻久久久久久综合| 国产一区二区在线观看av| 91久久精品电影网| 久久亚洲国产成人精品v| 丝袜在线中文字幕| 性色avwww在线观看| 免费看不卡的av| 老司机影院成人| 超色免费av| 成人毛片60女人毛片免费| 人人妻人人爽人人添夜夜欢视频| 亚洲第一av免费看| 麻豆精品久久久久久蜜桃| 国产老妇伦熟女老妇高清| 丰满少妇做爰视频| 国产精品人妻久久久影院| 日本黄大片高清| 精品久久久噜噜| 一区二区三区乱码不卡18| 美女内射精品一级片tv| 亚洲精品自拍成人| 欧美变态另类bdsm刘玥| 亚洲欧美日韩另类电影网站| 2018国产大陆天天弄谢| 欧美bdsm另类| 亚洲激情五月婷婷啪啪| 大香蕉久久成人网| 精品熟女少妇av免费看| 最近中文字幕2019免费版| 久久人妻熟女aⅴ| 大陆偷拍与自拍| 久久久久久久亚洲中文字幕| 欧美日韩视频高清一区二区三区二| 22中文网久久字幕| 免费黄网站久久成人精品| 亚洲av福利一区| 在线观看一区二区三区激情| 一本—道久久a久久精品蜜桃钙片| 一个人看视频在线观看www免费| 国产精品熟女久久久久浪| 亚洲av男天堂| 成年人免费黄色播放视频| 久久99热6这里只有精品| 五月玫瑰六月丁香| 日本黄大片高清| 两个人免费观看高清视频| 久久久久精品性色| 色婷婷av一区二区三区视频| 日韩熟女老妇一区二区性免费视频| 亚洲国产成人一精品久久久| 精品卡一卡二卡四卡免费| 日本vs欧美在线观看视频| 不卡视频在线观看欧美| 如何舔出高潮| 丰满少妇做爰视频| 观看av在线不卡| 国产白丝娇喘喷水9色精品| 国产欧美日韩一区二区三区在线 | 国产日韩欧美视频二区| av一本久久久久| 高清av免费在线| 国产黄色免费在线视频| 免费av不卡在线播放| 超碰97精品在线观看| 久久久久视频综合| 男女免费视频国产| 日韩视频在线欧美| 日本欧美国产在线视频| 99热国产这里只有精品6| 啦啦啦啦在线视频资源| 777米奇影视久久| av网站免费在线观看视频| 亚洲人成网站在线观看播放| 日韩视频在线欧美| 亚洲四区av| 国产成人a∨麻豆精品| 国产精品一国产av| 久久国产精品大桥未久av| 欧美激情 高清一区二区三区| av国产久精品久网站免费入址| 免费播放大片免费观看视频在线观看| 日日摸夜夜添夜夜添av毛片| 男人添女人高潮全过程视频| 精品一区二区三区视频在线| 一二三四中文在线观看免费高清| 2018国产大陆天天弄谢| 在线观看免费日韩欧美大片 | 婷婷色麻豆天堂久久| 91精品一卡2卡3卡4卡| 亚洲国产精品国产精品| 51国产日韩欧美| xxxhd国产人妻xxx| 午夜久久久在线观看| 人人妻人人澡人人看| 日本午夜av视频| 国产免费现黄频在线看| 乱码一卡2卡4卡精品| 最近的中文字幕免费完整| 久久精品久久精品一区二区三区| 国产精品一区二区在线不卡| 精品国产露脸久久av麻豆| 秋霞伦理黄片| 午夜激情福利司机影院| 精品一区在线观看国产| 亚州av有码| 亚洲美女黄色视频免费看| 亚洲中文av在线| av在线老鸭窝| 久久国内精品自在自线图片| 一级毛片 在线播放| 午夜福利网站1000一区二区三区| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 在线免费观看不下载黄p国产| 啦啦啦在线观看免费高清www| 高清午夜精品一区二区三区| 久久精品国产亚洲av天美| 高清毛片免费看| 国产午夜精品一二区理论片| 国产成人精品在线电影| videosex国产| 九草在线视频观看| 国产精品久久久久久久电影| 亚洲经典国产精华液单| 人妻制服诱惑在线中文字幕| 亚洲成色77777| 国产av精品麻豆| 最新的欧美精品一区二区| 久久久久久久久大av| 色视频在线一区二区三区| 51国产日韩欧美| 久久国内精品自在自线图片| 日韩亚洲欧美综合| 精品一区二区三区视频在线| 2021少妇久久久久久久久久久| 欧美 亚洲 国产 日韩一| 春色校园在线视频观看| 高清欧美精品videossex| 精品国产国语对白av| av国产久精品久网站免费入址| 最近中文字幕高清免费大全6| 一级片'在线观看视频| 少妇人妻久久综合中文| 亚洲av.av天堂| 亚洲伊人久久精品综合| 亚洲国产精品专区欧美| 亚洲怡红院男人天堂| 一区在线观看完整版| 22中文网久久字幕| 亚洲av欧美aⅴ国产| 日韩人妻高清精品专区| 亚洲精品乱码久久久久久按摩| 天天操日日干夜夜撸| 永久网站在线| 色网站视频免费| 亚洲精品日韩在线中文字幕| 男的添女的下面高潮视频| 免费观看在线日韩| 一级毛片黄色毛片免费观看视频| 久久久久久久久久久免费av| 久久国产精品大桥未久av| av有码第一页| 看十八女毛片水多多多| 中文字幕人妻丝袜制服| 一级毛片黄色毛片免费观看视频| 国产精品一区二区在线观看99| 色网站视频免费| 一个人看视频在线观看www免费| 亚洲精品美女久久av网站| 国产成人精品在线电影| 九九在线视频观看精品| 一级,二级,三级黄色视频| av在线观看视频网站免费| 26uuu在线亚洲综合色| 亚洲美女视频黄频| 欧美人与善性xxx| 久久av网站| av有码第一页| 久久人妻熟女aⅴ| 这个男人来自地球电影免费观看 | 久久99一区二区三区| 这个男人来自地球电影免费观看 | 少妇高潮的动态图| 色94色欧美一区二区| 欧美日韩一区二区视频在线观看视频在线| 成人毛片60女人毛片免费| 人成视频在线观看免费观看| 日韩av不卡免费在线播放| 如日韩欧美国产精品一区二区三区 | 久久久久网色| 少妇人妻精品综合一区二区| 国产乱来视频区| 在线亚洲精品国产二区图片欧美 | 亚洲国产精品专区欧美| 亚洲欧美色中文字幕在线| 国产精品99久久99久久久不卡 | 一本大道久久a久久精品| 水蜜桃什么品种好| 999精品在线视频| 久久精品国产亚洲av天美| 国产精品国产av在线观看| 99国产综合亚洲精品| 久久久久久久久久久久大奶| 只有这里有精品99| 天天操日日干夜夜撸| 黑丝袜美女国产一区| 色网站视频免费| 久久久久久久久久久久大奶| 蜜臀久久99精品久久宅男| 中文欧美无线码| 九九久久精品国产亚洲av麻豆| 欧美精品国产亚洲| 男男h啪啪无遮挡| 最近2019中文字幕mv第一页| 18禁动态无遮挡网站| 国产日韩欧美在线精品| 两个人免费观看高清视频| 亚洲欧美精品自产自拍| 哪个播放器可以免费观看大片| 我的女老师完整版在线观看| 亚洲内射少妇av| 日本av手机在线免费观看| 国产免费一区二区三区四区乱码| 少妇人妻精品综合一区二区| 999精品在线视频| 精品99又大又爽又粗少妇毛片| 成人综合一区亚洲| 精品少妇黑人巨大在线播放| 高清午夜精品一区二区三区| 国产午夜精品久久久久久一区二区三区| xxx大片免费视频| 成人影院久久| 黄色毛片三级朝国网站| 免费观看的影片在线观看| 婷婷色av中文字幕| 国产亚洲精品第一综合不卡 | 天堂俺去俺来也www色官网| 精品亚洲乱码少妇综合久久| 亚洲国产精品国产精品| 成年女人在线观看亚洲视频| 欧美日本中文国产一区发布| 国产成人精品无人区| av播播在线观看一区| 亚洲av福利一区| 校园人妻丝袜中文字幕| 国产片特级美女逼逼视频| 丝袜在线中文字幕| 亚洲丝袜综合中文字幕| 亚洲,欧美,日韩| 美女大奶头黄色视频| 国产精品国产三级国产av玫瑰| a级毛片免费高清观看在线播放| 亚洲精品久久午夜乱码| 午夜福利影视在线免费观看| 久久精品夜色国产| av在线app专区| 中文字幕人妻熟人妻熟丝袜美| 成人午夜精彩视频在线观看| 日韩熟女老妇一区二区性免费视频| 亚洲精品久久久久久婷婷小说| 免费av中文字幕在线| 欧美日韩国产mv在线观看视频| 亚洲精品中文字幕在线视频| 22中文网久久字幕| 91aial.com中文字幕在线观看| 国产成人aa在线观看| 亚洲成人一二三区av| 日韩一区二区视频免费看| av有码第一页| 街头女战士在线观看网站| 九色成人免费人妻av| 久久国内精品自在自线图片| 18禁动态无遮挡网站| 精品久久久噜噜| 国产在线免费精品| 日本与韩国留学比较| 日韩中文字幕视频在线看片| 免费观看性生交大片5| 亚洲欧美一区二区三区国产| av黄色大香蕉| 亚洲久久久国产精品| 人成视频在线观看免费观看| 又大又黄又爽视频免费| 国产精品一区二区在线不卡| 久久久久网色| 亚洲av在线观看美女高潮| 国产精品不卡视频一区二区| 交换朋友夫妻互换小说| 亚洲伊人久久精品综合| 久久影院123| 丰满饥渴人妻一区二区三| 色5月婷婷丁香| 三级国产精品欧美在线观看| 亚洲精品乱久久久久久| 好男人视频免费观看在线| 国产精品久久久久久精品古装| 久久亚洲国产成人精品v| 午夜福利网站1000一区二区三区| 久久99精品国语久久久| 精品午夜福利在线看| 亚洲婷婷狠狠爱综合网| 亚洲精品中文字幕在线视频| 亚洲人成网站在线观看播放| 色94色欧美一区二区| 一区二区三区精品91| 精品久久蜜臀av无| 精品久久久精品久久久| av在线app专区| 人妻一区二区av| 男女免费视频国产| 搡女人真爽免费视频火全软件| 亚州av有码| 亚洲精品av麻豆狂野| 国产精品国产三级国产专区5o| 男人添女人高潮全过程视频| videosex国产| 精品一区二区免费观看| 卡戴珊不雅视频在线播放| 久久精品国产亚洲av天美| 亚洲精品美女久久av网站| 亚洲av中文av极速乱| 欧美少妇被猛烈插入视频| 欧美成人午夜免费资源| 成人二区视频| 一级毛片aaaaaa免费看小| 全区人妻精品视频| 如日韩欧美国产精品一区二区三区 | 亚洲一级一片aⅴ在线观看| 国产精品.久久久| av网站免费在线观看视频| 欧美人与性动交α欧美精品济南到 | 亚洲美女黄色视频免费看| √禁漫天堂资源中文www| av电影中文网址| 久久久久久久久久久丰满| 一个人看视频在线观看www免费| 在线观看免费日韩欧美大片 | 飞空精品影院首页| 高清视频免费观看一区二区| 两个人的视频大全免费| 最近最新中文字幕免费大全7| 欧美性感艳星| 99热这里只有是精品在线观看| 在线精品无人区一区二区三| 男人操女人黄网站| 久久久久久久精品精品| 黑人巨大精品欧美一区二区蜜桃 | 国产不卡av网站在线观看| 男的添女的下面高潮视频| 欧美国产精品一级二级三级| 丝袜脚勾引网站| 久久毛片免费看一区二区三区| 亚洲精品久久久久久婷婷小说| 欧美少妇被猛烈插入视频| 免费观看的影片在线观看| 十八禁高潮呻吟视频| 久久国产精品大桥未久av| 精品久久久久久电影网| 国模一区二区三区四区视频| 亚洲少妇的诱惑av| 黑丝袜美女国产一区| 一级毛片 在线播放| 日本欧美国产在线视频| 一级爰片在线观看| 色网站视频免费| 久久久久久伊人网av| 最后的刺客免费高清国语| 久久久久久久亚洲中文字幕| 男女免费视频国产| 免费大片18禁| 亚洲av综合色区一区| 亚洲久久久国产精品| 老司机影院成人| 国产精品蜜桃在线观看| 一边摸一边做爽爽视频免费| 精品人妻一区二区三区麻豆| 国产精品人妻久久久久久| 欧美精品一区二区大全| 亚洲伊人久久精品综合| 国产免费视频播放在线视频| 亚洲国产成人一精品久久久| 成人午夜精彩视频在线观看| 亚洲精品自拍成人| 一级毛片电影观看| 黄色视频在线播放观看不卡| 少妇猛男粗大的猛烈进出视频| 国产精品久久久久久精品古装| 全区人妻精品视频| 国产精品人妻久久久影院| 啦啦啦中文免费视频观看日本| 精品卡一卡二卡四卡免费| 丁香六月天网| 国产高清不卡午夜福利| 一本—道久久a久久精品蜜桃钙片| 综合色丁香网| 国产成人免费无遮挡视频| 久久精品久久久久久久性| 亚洲无线观看免费| 蜜桃国产av成人99| 久久精品国产亚洲av天美| 91精品一卡2卡3卡4卡| 蜜臀久久99精品久久宅男| 美女xxoo啪啪120秒动态图| 九色亚洲精品在线播放| 免费少妇av软件| 色94色欧美一区二区| 九九久久精品国产亚洲av麻豆| 搡老乐熟女国产| 嘟嘟电影网在线观看| 美女脱内裤让男人舔精品视频| 国产男女内射视频| 香蕉精品网在线| 尾随美女入室| 婷婷色麻豆天堂久久| 久久精品久久精品一区二区三区| 久久人人爽人人片av| 久久亚洲国产成人精品v| kizo精华| 久久久久国产网址| 国产欧美日韩综合在线一区二区| 王馨瑶露胸无遮挡在线观看| 三上悠亚av全集在线观看| 男的添女的下面高潮视频| 亚洲内射少妇av| 少妇熟女欧美另类| 一个人免费看片子| 欧美人与善性xxx| 色婷婷av一区二区三区视频| 久久精品久久久久久久性| 在线播放无遮挡| 大陆偷拍与自拍| 777米奇影视久久| 国产黄色视频一区二区在线观看| 午夜免费男女啪啪视频观看| 精品人妻偷拍中文字幕| 中文精品一卡2卡3卡4更新| av不卡在线播放| 不卡视频在线观看欧美| 精品久久久久久久久亚洲| 国产免费一区二区三区四区乱码| 精品国产一区二区久久| 日韩人妻高清精品专区| 免费久久久久久久精品成人欧美视频 | 国产精品三级大全| 下体分泌物呈黄色| 精品久久久噜噜| 母亲3免费完整高清在线观看 | 国产一区二区三区综合在线观看 | 中文字幕免费在线视频6| 国语对白做爰xxxⅹ性视频网站| 国产精品久久久久成人av| 亚洲精品第二区| 尾随美女入室| 欧美日韩精品成人综合77777| 国产免费视频播放在线视频| 亚洲美女搞黄在线观看| 日本免费在线观看一区| 国产精品国产三级国产av玫瑰| 国产片特级美女逼逼视频| 91精品三级在线观看| 成人国产av品久久久| av在线观看视频网站免费| 成人18禁高潮啪啪吃奶动态图 | 人妻系列 视频| 亚洲精品美女久久av网站| av福利片在线| 日韩亚洲欧美综合| 少妇被粗大的猛进出69影院 | 中文字幕亚洲精品专区| 美女脱内裤让男人舔精品视频| 久久午夜综合久久蜜桃| 飞空精品影院首页| 全区人妻精品视频| 国国产精品蜜臀av免费| 国产片特级美女逼逼视频| 日韩成人伦理影院| 日韩伦理黄色片| 欧美日韩av久久| 亚洲,欧美,日韩| 一区二区av电影网| 九色亚洲精品在线播放| 国产精品人妻久久久久久| 久久精品国产自在天天线| 99久久精品国产国产毛片| 伦精品一区二区三区| 天天躁夜夜躁狠狠久久av| 大片电影免费在线观看免费| 国产日韩欧美视频二区| 热99久久久久精品小说推荐| 国产一区二区在线观看日韩| 美女内射精品一级片tv| 成年女人在线观看亚洲视频| 亚洲精品久久久久久婷婷小说| 女性被躁到高潮视频| 欧美变态另类bdsm刘玥| 伊人亚洲综合成人网| 亚洲内射少妇av| 超碰97精品在线观看| 极品少妇高潮喷水抽搐| 久久人妻熟女aⅴ| 国产日韩一区二区三区精品不卡 | 超碰97精品在线观看| 高清午夜精品一区二区三区| √禁漫天堂资源中文www| 如何舔出高潮| 免费观看在线日韩| 成人18禁高潮啪啪吃奶动态图 | 久久精品国产亚洲av天美| 亚洲av日韩在线播放| 国产日韩一区二区三区精品不卡 | 亚洲av综合色区一区| 夫妻性生交免费视频一级片| 国产成人精品婷婷| av黄色大香蕉| 日韩伦理黄色片| 成人无遮挡网站| 高清视频免费观看一区二区| 有码 亚洲区| 精品亚洲成国产av| 视频区图区小说| 香蕉精品网在线| 欧美精品人与动牲交sv欧美| 最后的刺客免费高清国语| 亚洲国产日韩一区二区| 日本猛色少妇xxxxx猛交久久| 久久久精品区二区三区| a级毛片在线看网站| 国语对白做爰xxxⅹ性视频网站| 一个人看视频在线观看www免费| 国产一区亚洲一区在线观看| 久热久热在线精品观看| 成人黄色视频免费在线看| 久久99热6这里只有精品| 交换朋友夫妻互换小说| 成人无遮挡网站| 亚洲中文av在线| 美女福利国产在线| 国产在线视频一区二区| 青春草亚洲视频在线观看| 精品视频人人做人人爽| 欧美精品一区二区免费开放| 丝袜脚勾引网站| 久久久亚洲精品成人影院| 卡戴珊不雅视频在线播放| 亚洲,欧美,日韩| 99九九线精品视频在线观看视频| 精品视频人人做人人爽| 国产成人精品婷婷| 国产精品麻豆人妻色哟哟久久| 成人黄色视频免费在线看| 韩国av在线不卡| 人体艺术视频欧美日本| 一级二级三级毛片免费看| 亚洲精品中文字幕在线视频| 这个男人来自地球电影免费观看 | av网站免费在线观看视频| 国产精品久久久久久av不卡| 少妇高潮的动态图| av卡一久久| 九草在线视频观看| 青春草亚洲视频在线观看| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 久久国内精品自在自线图片| 国产免费福利视频在线观看| 国产在视频线精品| 久久人妻熟女aⅴ| 嫩草影院入口| 成人免费观看视频高清| 精品久久久久久久久亚洲| 午夜激情福利司机影院| 亚洲精品aⅴ在线观看| av国产久精品久网站免费入址| 亚洲成色77777| 在线观看国产h片| 亚洲国产精品一区二区三区在线| 色94色欧美一区二区| 伦理电影免费视频| 天天影视国产精品| 各种免费的搞黄视频| 国产一级毛片在线| 免费大片黄手机在线观看| 九色成人免费人妻av| 欧美97在线视频| 精品国产一区二区久久| 久久精品国产鲁丝片午夜精品| 亚洲综合色惰| 亚洲图色成人| 少妇人妻 视频| 在线亚洲精品国产二区图片欧美 | 国产亚洲欧美精品永久| 极品少妇高潮喷水抽搐| 亚洲综合色惰| 欧美97在线视频| xxx大片免费视频| 欧美精品高潮呻吟av久久| 一级a做视频免费观看| 久久婷婷青草| 18禁在线播放成人免费| 日韩在线高清观看一区二区三区| 色视频在线一区二区三区| 久久久久国产网址| 嫩草影院入口| 美女脱内裤让男人舔精品视频| 男人爽女人下面视频在线观看| 永久免费av网站大全| 一边摸一边做爽爽视频免费| 久久精品国产自在天天线| 亚洲av不卡在线观看| 亚洲美女视频黄频| av线在线观看网站| 亚州av有码| 成人综合一区亚洲| 欧美精品国产亚洲| 精品人妻在线不人妻| 一级二级三级毛片免费看|