• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Total versus quantum correlations in a twomode Gaussian state

    2021-05-13 07:05:36JamalElQars
    Communications in Theoretical Physics 2021年5期

    Jamal El Qars

    1 Department of Physics,Faculty of Applied Sciences,Ait-Melloul,Ibn Zohr University,Agadir,Morocco

    2 EPTHE,Department of Physics,Faculty of Sciences,Ibn Zohr University,Agadir,Morocco

    3 LPHE-MS,Department of Physics,Faculty of Sciences,Mohammed V University,Rabat,Morocco

    Abstract In Li and Luo (2007 Phys.Rev.A 76 032327),the inequalitywas identified as a fundamental postulate for a consistent theory of quantum versus classical correlations for arbitrary measures of totalT and quantumQ correlations in bipartite quantum states.Besides,Hayden et al(2006 Commun.Math.Phys.265 95) have conjectured that,in some conditions within systems endowed with infinite-dimensional Hilbert spaces,quantum correlations may dominate not only half of total correlations but total correlations itself.Here,in a two-mode Gaussian state,quantifyingT andQ respectively by the quantum mutual information IG and the entanglement of formation(EoF)we verify thatis always less thanwhen IG and are defnied via the Rényi-2 entropy.While via the von Neumann entropy,may even dominate itself,which partly consolidates the Hayden conjecture,and partly,provides strong evidence hinting that the origin of this counterintuitive behavior should intrinsically be related to the von Neumann entropy by which the EoFis defined,rather than related to the conceptual definition of the EoFEF.The obtained results show that-in the special case of mixed two-mode Gaussian statesquantum entanglement can be faithfully quantified by the Gaussian Rényi-2 EoF

    Keywords: entanglement,von Neumann and Rényi-2 entropies,quantum mutual information,Gaussian states,spontaneous emission laser

    1.Introduction

    In a quantum bipartite statetotal correlationsT can be divided into two parts: classicalC and quantumQ,then T = Q +C [1].Besides,adopting the Henderson-Vedral conjecture [1],that is,classical correlations should not be less than quantum ones,i.e.C ≥ Q,it follows thatwhich was identified as a fundamental postulate for a consistent theory of quantum versus classical correlations in bipartite states for arbitrary measures of quantum Q and totalT correlations[2].

    On the one hand,it is generally accepted that the quantum mutual information-denoted I-is the information-theoretic measure of total correlationsT in quantum bipartite states[3-5].Before being introduced in [6],the concept of quantum mutual information has been implicitly used some years ago to study information transfer in quantum measurements [7] and subsequently rediscovered in[8].From an operational point of view,the quantum mutual information was first interpreted as the amount of randomness noise needed to erase completely the correlations in a quantum stateby turning it into a product state,i.e.[3].Later,it was rigorously associated with the maximum amount of information that can be securely transmitted between a sender X and a receiverY,who share a correlated state[4].

    On the other hand,quantum correlations of mixed states,can arise in diverse incarnations,i.e.Bell nonlocality [9],steering [10],entanglement [11],and discord [5,12],where all can be exploited for enhancing information processing tasks over any classical approach [13].In particular,entanglement-usually used as synonymous of quantum correlations-was systematically defined as a kind of nonseparable quantum correlations that cannot be prepared only by means of local operations and classical communication [14].Nowadays,it becomes evident that entanglement,as a fundamental physical resource for quantum protocols,can play a crucial role in quantum information science [15].

    One of the central tasks of quantum information theory is to quantify the amount of entanglement that a quantum state possesses [16].In pure bipartite states,there is a universal bona fide quantifier of entanglement,i.e.the entropy of entanglement [17].However,in mixed states-where a more complex scenario emerges-the entropy of entanglement no longer deserves to be a measure of entanglement.Therefore,miscellaneous entanglement measures,which can be distinguished due to their operational meaning or mathematical structures,have been introduced [16].

    From a conceptual point of view,Gaussian entanglement measures can exhaustively be classified into two categories.The first one encompasses the negativities[18-20],while,the second is provided by the so-called convex-roof extended measures [21].Except for the entanglement of formation(EoF) [22]-which physically interpreted as the minimal entanglement needed for preparing an entangled state by mixing pure entangled states,and mathematically computed for two-qubit states [23] as well as for arbitrary two-mode Gaussian states (TMGSs) [24,25]-no such measure is currently known [26].

    Defining the quantum mutual information I and the entanglementE by means of the von Neumann entropy,it has been shown in [2],within discrete-variable systems,that the inequalityis well satisfied when substitutingE by either the distillable entanglementED[22]or the squashed entanglementEsq[27].While,it may be violated with respect to the EoFEFor the entanglement costEC[22],where the former may exceed not only half of total correlations,but total correlations itself [2].In a similar context,it has been shown for a two-qubit system,that quantum correlations quantified by means of the von Neumann EoFEFmay exceed classical ones [28],which violates the Henderson-Vedral conjecture[1].Consequently-as main conclusion pointed out in [2]-the EoFEFis too big to be regarded as a genuine measure of entanglement,in the sense that it may exceed total correlations.Attempting to explain the origin of the peculiar behaviors exhibited by the EoFEFin[2,28],some doubts around the validity of the Henderson-Vedral conjecture as well as the validity of the pure-state decompositions in the general definition of the EoFEFhave seriously been raised in [2,28].

    Figure 1.A nondegenerate three-level laser in a cascade configuration [32].The transition |a〉→|b〉(|b〉→|c〉) of frequency ω1(ω2)and spontaneous emission decay rate γab(γbc) is assumed to be dipole-allowed,while,|a〉→|c〉 is dipole forbidden [29].

    In the past decades,a correlated spontaneous emission laser-in which nondegenerate three-level atoms in a cascade configuration are injected into a cavity in a coherent superposition-has attracted a special attention in connection with its potential as a source of a highly correlated two-mode Gaussian light [29,30].The quantum correlations between the emitted photons can be induced by preparing the atoms,initially,in a coherent superposition of the upper and lower levels [31-33] or by coupling these two levels by a strong coherent external driving [34] or also by using the two processes simultaneously [35].Essentially,a correlated spontaneous emission laser is believed to be a source of strong quantum correlations [29,30],which therefore can be employed for testing quantum nonlocality[36-39].Here,this system is chosen as a viable and reliable scheme for investigating the Hayden conjecture [40] and the constraintin a TMGS.

    Hence,in a mixed Gaussian stateinvolving two cavity modes of a nondegenerate three-level laser[29,41-43],and motivated by the fact that the inequalityis proven to hold for general mixed TMGSs [44,45],where I andEFare defined via the Rényi-2 entropy[46],we give strong evidence hinting that the origin of the counterintuitive behaviors exhibited by the EoFEFin[2,28],should intrinsically be related to the von Neumann entropy by which the EoFEF,Vis defined,rather than related to the conceptual definition of the EoFEFor the Henderson-Vedral conjecture.For this,we first verify the holding of the inequalitynext,via the von Neumann entropy,we show that evenmay happen,which largely violatesand further supports the Hayden conjecture [40].

    The remainder of this paper is organized as follows.In section 2,we introduce the system at hand,and we derive the master equation for the stateNext,we obtain the dynamics of the first and second moments of the two cavity modes variables,and further we evaluate the stationary covariance matrix of the stateIn section 3,we quantify the EoF as well as the quantum mutual information in the bipartite stateusing two different entropic measures,i.e.the von Neumann and the Rényi-2 entropies.Also,we present our results.Finally,in section 4,we draw our conclusions.

    2.Model and master equation

    In a cavity coupled to a vacuum reservoir,we consider an ensemble of nondegenerate three-level atoms resonantly interacting with two cavity modes of the quantized cavity field.The jth cavity mode is specified by its annihilation operatorfrequency ωjand a decay rate κj(we take for simplicity κ1,2=κ).The atoms are assumed to be injected into the cavity at a rate raand removed within a time τ [31].As shown in figure 1,the upper,intermediate and lower energy levels of a single atom are denoted respectively by|a〉,|b〉 and |c〉.

    In the rotating wave approximation,the interaction between the two cavity modes and a single three-level atom,can be described in the interaction picture by the Hamiltonian[30]

    with χab(χbc) being the coupling constant for the transition|a〉→|b〉(|b〉→|c〉)[31].Also,we assume that the atoms are initially prepared in an arbitrary coherent superposition of the upper |a〉 and the lower |c〉 energy levels with the probabilities |α|2and |β|2[33].The initial state of a single atom writes |Ψatom(0)〉=α|a〉+β|c〉,thus,its associated density operator is given by

    The master equation for the reduced density operatorof the two cavity modes,writes [47,48]

    We need to carry out our study in the stationary regime,then,the non-zero steady-state solutions of equations ((5)-(9)) can be expressed as

    Notice that the equations ((10)-(12)) are physically meaningful only if η ≥0,so that 0 ≤η ≤1,which corresponds to the regime of lasing without population inversion [30].

    where the block-matrix σj=?jj1l2represents the jth cavity mode for j=1,2,while σ3=?12diag(1,-1) describes the correlations between them,withand

    3.EoF versus total correlations in a two-mode Gaussian state

    3.1.Gaussian EoF

    Before defining the Gaussian EoF,we briefly recall what is intended by entanglement.A bipartite pure state∣ψXY〉is said to be entangled,if cannot be factorised as∣ψXY〉=∣φX〉 ?∣φY〉.While,a mixed stateis entangled if cannot be factorised as a convex combinations of product states,i.e.where piare probabilities with ∑ipi=1 [11].

    In pure bipartite states,the entropy of entanglement is a simple and unique measure of entanglement[17].However,for mixed states,such a measure no longer deserves for quantifying entanglement[11],and therefore various measures,including the Rényi-α Gaussian EoF,were introduced [24,25,44].

    For a bipartite quantum statethe Ré nyi-α EoFEF,αis defined as the convex-roof of the Rényi-α entropylnon pure states [44,50],i.e.

    where the minimisation is over all the decompositions ofinto set of pure states {|ψi〉} with pi≥0 and ∑ipi=1.

    Here,let us pause to briefly recall that-in quantum information theory-the degree of information possessed by a bipartite quantum stateis conventionally quantified by the von Neumann entropy defined asthat is the direct counterpart to the Shannon entropy in classical information theory [51].More precisely,such entropy-used under the name of entanglement entropy-quantifies the degree of quantum information contained in an ensemble of a large number of independent and identically distributed copies of the state [52].In addition,it was widely employed to study entanglement in miscellaneous fields of physics,e.g.ground states of quantum many body systems and lattice systems [53,54],relativistic quantum field theory[55],and the holographic theory of black holes [56].

    Besides,the α-Rényi entropies defined as(1 -α)-1lnwith α ∈(0,1)∪(1,+∞) [46],were introduced as a generalization of the von Neumann entropy[56,57].Their interpretation is essentially related to derivatives of the free energy with respect to temperature [58],and which have found applications,particularly,in the study of channel capacities [59],work value of information [60],and entanglement spectra in many-body systems [61].

    Notice that the class of α-Rényi entropies are continuous,non-negatives,invariants under the action of the unitary operations,additive on tensor-product states,and converge to the von Neumann entropy in the limit α →1 [62].

    Given an arbitrary TMGS with covariance matrixσXY,an upper bound of the Rényi-α EoFEF,αcan be obtained by limiting the decomposition in equation(14)only over pure Gaussian states,therefore,we obtain the Rényi-α Gaussian EoF [44,50]

    where the minimisation is taken over a pure TMGS with covariance matrix ΞXYsmaller thanσXY,and the sub-matrix ΞXis the marginal covariance matrix of the first mode obtained from ΞXYby partial tracing over the second mode.

    ChoosingαS to be the conventional von Neumann entropy defined,in the limit α →1,as[50],then equation (15) defines the usual Gaussian EoF[23-25].Finding analytical solution of the optimization problem in equation(15)for generic states is-in general-a nontrivial task,nevertheless,for α →1,closed formulas were determined for two-qubit states[23],isotropic and Werner states [63,64],as well as for arbitrary TMGSs [24,25].

    Within the Gaussian framework,it has been demonstrated that the Rényi-2 entropyis operationally linked to the Shannon entropy of Gaussian Wigner distributions sampling by homodyne detections in phase space[50],in addition,it fulfills the strong subadditivity inequality,i.e.[50],a key requirement for quantum information theory,therefore,it can be used for defining bona fide measures of correlations,such as the Rényi-2 Gaussian EoF [44,50] and the Rényi-2 Gaussian quantum mutual information [45,50].

    In equation (15),replacingαS with the Rényi-2 entropy S2,we thus obtain the Rényi-2 Gaussian entanglement[50],which recently dubbed more fittingly as the Rényi-2 Gaussian EoF≡[44].

    For two-mode squeezed thermal state with the covariance matrix σ12(13),the Gaussian EoFreads [24,25]

    where s±=(?11±?22)/2 andg=

    Notice that the asymptotic regularization of the EoFEF(i.e.coincides with the entanglement cost[22,66],an entanglement measure which was interpreted as the minimum amount of singlets (i.e.maximally entangled antisymmetric two-qubit states) needed for generating an entangled bipartite stateby means of local operations and classical communication [65,66].In fact,obtaining analytical expression of the entanglement costECfor an arbitrary state,is a difficult task [66].However,since the additivity of the EoFfor TMGSs is proven to be true[25],it consequently follows that[67].

    Finally,we recall some of interesting properties of the Rényi-2 Gaussian EoF[45,50]: (i) it does not increase under all Gaussian local operations and classical communication,thus it is a proper measure of Gaussian entanglement; (ii) it is additive on tensor product states; and (iii) it satisfies both the Coffman-Kundu-Wootters-type monogamy inequality [68] and the Koashi-Winter monogamy relation [69].

    3.2.Gaussian quantum mutual information

    Based on the Landauer’s erasure principle [70],Groisman et al [3] have defined the quantum mutual information as the amount of noise required to erase completely the correlations contained in a joint density operatorby turning it into a product state,i.e.Essentially,a strong argument in favor for accepting the quantum mutual information as a measure of total correlations in bipartite states is given in [4],i.e.if two parties X andY share a quantum correlated statethe maximum amount of information that X(Y) can securely send toY(X) is exactly equal to the quantum mutual information of the shared state

    From an operational point of view,the von Neumann quantum mutual information given by equation (18) quantifies the amount of the information extracted onby looking at the system in its entirety,minus the information that can be obtained from separate observations of the subsystems with the marginal statesandIt is always positive and vanishes only if[3-5].

    where f(x) is defined above,Ik= detσkandare respectively the symplectic invariants and the symplectic eigenvalues of the covariance matrix σ12(13) with Δ=I1+I2+2I3.Whereas,by means of the Gaussian Rényi-2 entropythe Rényi-2 quantum mutual informationreads [50]

    which shown to coincide exactly with the Shannon continuous mutual information of the Wigner function of the TMGS[50].Operationally,the Rényi-2 Gaussian quantum mutual informationcan be interpreted as the amount of extra discrete information that needs to be transmitted through a continuous variable channel for reconstructing the complete joint Wigner function of the TMGSrather than just the two marginal Wigner functions of the subsystems [50,71].In other words,quantifies the total quadrature correlations of the state[50].Finally,we notice that the Rényi-2 quantum mutual informationis always non-negative for Gaussian states,and vanishes only ifhowever,it can be negative for more general states (e.g.non-Gaussian ones),then,it does not admit an operational interpretation beyond the Gaussian framework.

    In what follows,we show that-under various circumstances-the constraintis well satisfied via the Rényi-2 entropy,while,it can largely be violated via the von Neumann entropy.

    In figure 2,we plot(panel (a)) and(panel (b)) against the population inversion η for various values of the linear gain coefficient A,with a cavity decay rate κ=1.Remarkably,figure 2(a) shows that for a density values of η and A,is always positive meaning that the inequalityis well satisfied when the quantum mutual informationand the EoFare defined via the Rényi-2 entropy.Whereas,in spite of the fact that the entanglement degree is generally accounts as a portion of total correlations,figure 2(b) shows thatmay be negative,thenmay exceedwhich constitutes a large violation of the constraintSuch counterintuitive behavior (i.e.supporting the Hayden conjecture [40],clearly evidences that the von Neumann EoFmay not be the best choice for estimating entanglement in mixed TMGSs,which is quite consistent with the conclusion pointed out in [20].

    Next,in figure 3,we plot(panel(a))and(panel (b)) against the parameters κ and A for η=0.2.Similarly to the results illustrated in figure 2,figure 3(a) shows within a density values of κ and A that the constraintis well satisfied with respect to the Rényi-2 entropy.While,another violation ofvia the von Neumann entropy is shown in figure 3(b),where evenmay happen,which undermines the interpretation of the von Neumann EoFEF,Vas just a fraction of the total correlations.

    Figure 2.(a):and (b):versus the parameters A and η for κ=1.(a) shows that the constraint (1 2) is satisfied via the Rényi-2 entropy(i.e.α=2),in contrast,it is largely violated-in(b)-via the von Neumann entropy(i.e.α=1),where even may happen,which consolidates the Hayden conjecture[40],in addition,undermines the interpretation of the von Neumann EoF EF ,Vas just a fraction of the total correlations.

    Here,it is interesting to emphasize that the holding of the constraintfor a wide range of the parameters κ,A and η in figures 2(a)-3(a),is not a curious coincidence since,the inequalityis proven to be true as long as α ≥2 for general mixed TMGSs[44,45].Howeveras can be seen from figures 2(b)-3(b)-it may be largely violated with respect to the von Neumann entropy (α=1),where evenmay happen,which therefore provides strong evidence hinting that the origin of this counterintuitive behavior should be related to the von Neumann entropy by which the EoFEF,Vis defined,rather than related to the conceptual definition of the EoFEFor the Henderson-Vedral conjecture.

    In quantum information theory,the additivity is a very desirable property that can largely reduce the evaluation of entanglement [20].Indeed,since quantum mechanics is statistical,often physical meaning of entanglement measures is acquired only in the asymptotic regime of many copies of a given state,which can be reduced to a single copy for additive measures [72],such as the conditional entanglement of mutual information [72],the logarithmic negativity [19],the squashed entanglement [27],the EoFEF,Vof arbitrary TMGSs [25],and the entanglement cost [66].

    Therefore,since the additivity of the von Neumann EoFis proven to be true,i.e.where ρ andρ′ are two entangled TMGSs [25],it follows that the entanglement costcoincides with the EoF[66,67],and consequently,both of them cannot be regarded as genuine measures of entanglement,in the sense that they may exceed total correlations[40].By contrast,th e Rényi-2 EoFseems more appropriate for estimating entanglement in mixed TMGSs,in the sense that,it satisfies the constraintin addition,it is additive and monogamous,which are two strong points for considering it as an entanglement measure [45,50].

    Finally,we notice that the constrainthas also been violated in systems endowed with finite-dimensional Hilbert spaces [2,28],where the quantum mutual information I and the EoFEFare defined only via the conventional von Neumann entropy.Attempting to explain the origin of such a violation,some doubts around the validity of the pure-state decompositions in the general definition of the EoFEFand the validity of the Henderson-Vedral conjecture have seriously been raised in [2,28].However,the comparative study accomplished here,provides strong evidence suggesting that the origin of the counterintuitive behavior exhibited by the EoFEFin figures 2(b)-3(b) as well as in[2,28] should intrinsically be related to the von Neumann entropy by which the EoFEF,Vis defined,rather than related to the conceptual definition of the EoFEFor the Henderson-Vedral conjecture.More generally,the results obtained here evidence that the Gaussian EoFdefined via the von Neumann entropy may not be the best choice for estimating entanglement in mixed TMGSs,which is quite consistent with [20].

    4.Conclusion

    In a TMGS,we studied the inequalitythat was considered as a fundamental postulate for a consistent theory of quantum versus classical correlations for arbitrary measures of totalT and quantumQ correlations [2].Using the Gaussian EoFand the Gaussian quantum mutual informationrespectively as measures of quantumQ and total correlationsT for α=1,2,we verified thatis well satisfied whenandare defined via the Rényi-2 entropy (i.e.α=2).In contrast,via the von Neumann entropy (i.e.α=1),evenmay happen,which consolidates the Hayden conjecture [40],in addition,clearly evidences that the von Neumann EoFEF,Vmay not be the best choice for estimating entanglement in mixed TMGSs.Moreover,since the additivity of the Gaussian EoFis proven to be true [25],which implies that the entanglement costand the EoFare identical[67],it follows that bothandcan not be regarded as genuine measures of entanglement in mixed TMGSs,in the sense that,they may dominate total correlations.

    The comparative study accomplished here,provides strong evidence hinting that the origin of the peculiar behavior exhibited by the EoFEF,Vin figures 2(b)-3(b)as well as in[2,28],should intrinsically be related to the von Neumann entropy by which the EoFEF,Vis defined,rather than related to the conceptual definition of the EoFEFor the Henderson-Vedral conjecture[2,28].Moreover,it shows that the Rényi-2 EoFis more faithful-than the von Neumann EoF-for quantifying entanglement in mixed TMGSs,in the sense that,it satisfies the constraintfurthermore,it is additive and monogamous,which are two strong points for considering it as an entanglement measure [45,50].

    Finally,it is interesting to mention that apart from total correlation-that can be written as sum of quantum and classical parts in bipartite states-there exist similar equalities in the contexts of coherence and randomness,where the total amount of a property can also be decomposed into classical and quantum parts[73,74].In this respect,we believe that the full understanding of the relationships between quantum and classical quantities contained in bipartite mixed states is of critical importance,which represents a relevant step towards efficient characterization and quantification of quantum entanglement.This therefore would open up the application of the theoretical work on quantum information processing and communication.

    Acknowledgments

    I am particularly indebted to an anonymous referee for constructive critiques and insightful comments.

    午夜激情久久久久久久| 99久久精品国产国产毛片| 国产成人一区二区在线| 欧美精品人与动牲交sv欧美| 久久人人爽人人爽人人片va| 下体分泌物呈黄色| 大又大粗又爽又黄少妇毛片口| av天堂中文字幕网| 99久久精品热视频| 人妻人人澡人人爽人人| 日本91视频免费播放| 国产一区二区三区综合在线观看 | 亚洲第一av免费看| 黑丝袜美女国产一区| 看非洲黑人一级黄片| 欧美日韩视频高清一区二区三区二| 亚洲欧美一区二区三区国产| 久久这里有精品视频免费| 夜夜看夜夜爽夜夜摸| 日本wwww免费看| 少妇裸体淫交视频免费看高清| 在线免费观看不下载黄p国产| av在线老鸭窝| 久久人妻熟女aⅴ| 亚洲怡红院男人天堂| 亚洲欧美日韩卡通动漫| 免费看av在线观看网站| 亚洲性久久影院| 亚洲av国产av综合av卡| 一级毛片久久久久久久久女| 国产精品国产三级国产专区5o| 久久久精品免费免费高清| 男女免费视频国产| 国产亚洲91精品色在线| 精品一区在线观看国产| 噜噜噜噜噜久久久久久91| 一边亲一边摸免费视频| 亚洲一级一片aⅴ在线观看| 极品人妻少妇av视频| 久久精品国产自在天天线| 国产精品秋霞免费鲁丝片| 精品久久久久久久久av| 亚洲欧美日韩卡通动漫| 美女福利国产在线| 99久久精品国产国产毛片| 亚洲av综合色区一区| 中文在线观看免费www的网站| 久久久久久久亚洲中文字幕| 亚洲人成网站在线观看播放| 汤姆久久久久久久影院中文字幕| 国产高清有码在线观看视频| 国产欧美日韩一区二区三区在线 | 日本色播在线视频| 久久精品久久精品一区二区三区| 精品99又大又爽又粗少妇毛片| 看免费成人av毛片| 26uuu在线亚洲综合色| 亚洲欧美日韩卡通动漫| 观看免费一级毛片| 日韩人妻高清精品专区| 国产精品一区二区在线不卡| 女的被弄到高潮叫床怎么办| 大香蕉久久网| 亚洲一级一片aⅴ在线观看| 免费观看的影片在线观看| 精品亚洲成国产av| 国产永久视频网站| 一级毛片久久久久久久久女| 亚洲不卡免费看| 亚洲成色77777| 搡女人真爽免费视频火全软件| 久久国产亚洲av麻豆专区| 91精品国产九色| 亚洲欧美日韩东京热| 日韩伦理黄色片| 久久韩国三级中文字幕| 少妇精品久久久久久久| 亚洲精品自拍成人| 人人妻人人添人人爽欧美一区卜| 亚洲精品国产av蜜桃| 久久鲁丝午夜福利片| 99热国产这里只有精品6| 久久 成人 亚洲| 狠狠精品人妻久久久久久综合| 国产在线免费精品| 国产精品人妻久久久影院| 色婷婷久久久亚洲欧美| 中文资源天堂在线| 深夜a级毛片| 免费观看性生交大片5| 三上悠亚av全集在线观看 | 男人爽女人下面视频在线观看| 欧美97在线视频| 欧美精品一区二区大全| 精品少妇久久久久久888优播| 国产精品蜜桃在线观看| 欧美最新免费一区二区三区| 高清av免费在线| 午夜激情福利司机影院| 久久久久久久久久久免费av| 啦啦啦在线观看免费高清www| 曰老女人黄片| 一个人看视频在线观看www免费| 国产一区二区在线观看日韩| 午夜91福利影院| 国产深夜福利视频在线观看| 亚洲精品一二三| 免费高清在线观看视频在线观看| 精品久久国产蜜桃| 中文乱码字字幕精品一区二区三区| 日韩精品免费视频一区二区三区 | 乱码一卡2卡4卡精品| 永久网站在线| 中国国产av一级| 国产无遮挡羞羞视频在线观看| 久久鲁丝午夜福利片| 精品国产一区二区久久| a 毛片基地| 午夜免费男女啪啪视频观看| 亚洲欧洲国产日韩| 在现免费观看毛片| 国产成人freesex在线| 日本wwww免费看| av不卡在线播放| 日韩一区二区视频免费看| 这个男人来自地球电影免费观看 | 久久精品国产亚洲网站| 伦理电影大哥的女人| 一级毛片 在线播放| 简卡轻食公司| 国产欧美亚洲国产| 97超视频在线观看视频| 国产无遮挡羞羞视频在线观看| 女性生殖器流出的白浆| 一本色道久久久久久精品综合| 欧美日韩av久久| 成人午夜精彩视频在线观看| 欧美日韩视频精品一区| av不卡在线播放| 人人妻人人看人人澡| 如日韩欧美国产精品一区二区三区 | 18+在线观看网站| 久久久亚洲精品成人影院| 视频中文字幕在线观看| 丝袜喷水一区| 国产极品天堂在线| av卡一久久| 国产亚洲av片在线观看秒播厂| 天天操日日干夜夜撸| 成人漫画全彩无遮挡| 国产欧美日韩一区二区三区在线 | 精品午夜福利在线看| 国产美女午夜福利| 成年人免费黄色播放视频 | 国产欧美日韩一区二区三区在线 | 久久人人爽人人爽人人片va| 日本黄色片子视频| 亚洲第一区二区三区不卡| 欧美少妇被猛烈插入视频| 99久国产av精品国产电影| 丰满饥渴人妻一区二区三| 中文字幕免费在线视频6| 精品亚洲成国产av| 久久免费观看电影| 久久午夜福利片| 男人添女人高潮全过程视频| 最新中文字幕久久久久| 国产中年淑女户外野战色| 黄色配什么色好看| 男女国产视频网站| 中文在线观看免费www的网站| 久久久久久久久久久久大奶| 好男人视频免费观看在线| 久久精品熟女亚洲av麻豆精品| 只有这里有精品99| 2021少妇久久久久久久久久久| 18+在线观看网站| 国内揄拍国产精品人妻在线| 一本一本综合久久| 国产成人精品福利久久| av一本久久久久| 纯流量卡能插随身wifi吗| 欧美xxⅹ黑人| 高清不卡的av网站| 日韩一区二区视频免费看| 美女主播在线视频| 51国产日韩欧美| 女人久久www免费人成看片| 色吧在线观看| 如何舔出高潮| 男女边摸边吃奶| 91久久精品国产一区二区成人| 久久国产精品男人的天堂亚洲 | 亚洲精品aⅴ在线观看| 成人影院久久| 精品一区二区三卡| 视频区图区小说| 成年人午夜在线观看视频| 国产精品99久久久久久久久| 亚洲精品色激情综合| 秋霞在线观看毛片| 男女免费视频国产| 国产成人免费无遮挡视频| 亚洲丝袜综合中文字幕| 最黄视频免费看| 久久久久精品性色| 久久国产精品大桥未久av | 亚洲av二区三区四区| 九色成人免费人妻av| 欧美成人精品欧美一级黄| 精品熟女少妇av免费看| 日韩成人av中文字幕在线观看| 在线观看人妻少妇| 欧美bdsm另类| 青春草国产在线视频| 国产av精品麻豆| 搡老乐熟女国产| 国产在线一区二区三区精| 午夜日本视频在线| 精品久久久精品久久久| 大香蕉久久网| 欧美国产精品一级二级三级 | 欧美国产精品一级二级三级 | 国产精品三级大全| tube8黄色片| 国产 一区精品| 在现免费观看毛片| 欧美区成人在线视频| 亚洲av电影在线观看一区二区三区| 精品人妻一区二区三区麻豆| 国产熟女午夜一区二区三区 | 99久久精品一区二区三区| 日韩不卡一区二区三区视频在线| 国产视频内射| 22中文网久久字幕| 亚洲四区av| 免费看光身美女| 少妇的逼好多水| 亚洲不卡免费看| 亚洲精品久久久久久婷婷小说| 精品久久久精品久久久| 日韩熟女老妇一区二区性免费视频| 国产男女内射视频| 精品99又大又爽又粗少妇毛片| 亚洲精品亚洲一区二区| 日韩亚洲欧美综合| 夜夜看夜夜爽夜夜摸| 亚洲精品久久午夜乱码| 中国美白少妇内射xxxbb| 国产精品人妻久久久影院| 在线观看av片永久免费下载| 性色avwww在线观看| 日日摸夜夜添夜夜添av毛片| 一本色道久久久久久精品综合| 嘟嘟电影网在线观看| 人妻夜夜爽99麻豆av| 国精品久久久久久国模美| 国产伦精品一区二区三区四那| 精品一区二区免费观看| 天天操日日干夜夜撸| 亚洲国产精品专区欧美| 欧美精品一区二区大全| 精品久久久久久久久av| 免费观看无遮挡的男女| 伊人久久国产一区二区| 国产永久视频网站| 国产高清有码在线观看视频| 在线观看人妻少妇| 欧美精品人与动牲交sv欧美| 国产一区亚洲一区在线观看| 曰老女人黄片| 少妇被粗大的猛进出69影院 | 一级毛片 在线播放| 99久久精品国产国产毛片| 男女无遮挡免费网站观看| 亚洲av欧美aⅴ国产| 高清av免费在线| 久久久久网色| 赤兔流量卡办理| 2022亚洲国产成人精品| 在线观看国产h片| 久久精品国产亚洲av天美| 免费av不卡在线播放| 久久久久久伊人网av| 美女内射精品一级片tv| av线在线观看网站| 三级经典国产精品| 日韩大片免费观看网站| 观看美女的网站| 国产无遮挡羞羞视频在线观看| 成人综合一区亚洲| 寂寞人妻少妇视频99o| 中国三级夫妇交换| 亚洲va在线va天堂va国产| 国产爽快片一区二区三区| 十八禁网站网址无遮挡 | 亚洲综合精品二区| 三上悠亚av全集在线观看 | 多毛熟女@视频| 国语对白做爰xxxⅹ性视频网站| 纯流量卡能插随身wifi吗| 中国美白少妇内射xxxbb| 国产极品粉嫩免费观看在线 | 日产精品乱码卡一卡2卡三| 丰满人妻一区二区三区视频av| 丰满迷人的少妇在线观看| 黄色视频在线播放观看不卡| 亚洲国产精品国产精品| 国产一区二区三区综合在线观看 | 在线观看免费高清a一片| 男人爽女人下面视频在线观看| av在线老鸭窝| 性高湖久久久久久久久免费观看| 交换朋友夫妻互换小说| 中国三级夫妇交换| 久久ye,这里只有精品| 国产亚洲精品久久久com| 国产爽快片一区二区三区| 欧美老熟妇乱子伦牲交| 99精国产麻豆久久婷婷| 日本与韩国留学比较| 亚洲自偷自拍三级| 国产成人a∨麻豆精品| 丰满饥渴人妻一区二区三| 少妇精品久久久久久久| 人人妻人人澡人人爽人人夜夜| 日韩欧美 国产精品| 精品久久久久久久久亚洲| 丰满乱子伦码专区| 成人无遮挡网站| 欧美 日韩 精品 国产| 日韩一区二区视频免费看| 色94色欧美一区二区| 只有这里有精品99| 丰满人妻一区二区三区视频av| 国产免费视频播放在线视频| 狂野欧美白嫩少妇大欣赏| 日韩精品免费视频一区二区三区 | 91aial.com中文字幕在线观看| 97超视频在线观看视频| 在线观看免费高清a一片| 性色av一级| 久久久精品免费免费高清| 天天操日日干夜夜撸| av免费在线看不卡| 日日爽夜夜爽网站| 日本黄色片子视频| 日韩一区二区视频免费看| av.在线天堂| 少妇人妻 视频| av卡一久久| 丝袜喷水一区| 插逼视频在线观看| 欧美bdsm另类| 日本爱情动作片www.在线观看| 欧美丝袜亚洲另类| 亚洲丝袜综合中文字幕| 久久久国产精品麻豆| 日韩精品有码人妻一区| 国产高清国产精品国产三级| 99久久综合免费| 老熟女久久久| 国产欧美亚洲国产| 91aial.com中文字幕在线观看| 免费久久久久久久精品成人欧美视频 | 亚洲国产日韩一区二区| 国产免费福利视频在线观看| 99热网站在线观看| 国模一区二区三区四区视频| 亚洲国产欧美日韩在线播放 | 亚洲自偷自拍三级| 亚洲精品日本国产第一区| 国产精品麻豆人妻色哟哟久久| 天堂中文最新版在线下载| 日本wwww免费看| 日韩成人av中文字幕在线观看| 中文乱码字字幕精品一区二区三区| 新久久久久国产一级毛片| 久久久久国产网址| 看非洲黑人一级黄片| 六月丁香七月| 自线自在国产av| 看十八女毛片水多多多| 日本与韩国留学比较| 成人影院久久| 99热这里只有是精品在线观看| 成人午夜精彩视频在线观看| 边亲边吃奶的免费视频| 亚洲一级一片aⅴ在线观看| 精品卡一卡二卡四卡免费| 精品99又大又爽又粗少妇毛片| av天堂中文字幕网| 最近最新中文字幕免费大全7| 人妻人人澡人人爽人人| 亚洲不卡免费看| 综合色丁香网| 亚洲精品国产av蜜桃| 日韩av在线免费看完整版不卡| av天堂久久9| 男人爽女人下面视频在线观看| 黄色欧美视频在线观看| 两个人的视频大全免费| 亚洲欧洲精品一区二区精品久久久 | 成人黄色视频免费在线看| 桃花免费在线播放| 亚洲国产最新在线播放| 熟妇人妻不卡中文字幕| 欧美人与善性xxx| 日本-黄色视频高清免费观看| 精华霜和精华液先用哪个| 亚洲色图综合在线观看| 狂野欧美激情性bbbbbb| 欧美97在线视频| 五月伊人婷婷丁香| 免费观看的影片在线观看| 国产在线视频一区二区| 亚洲国产精品专区欧美| 黄色视频在线播放观看不卡| 久久av网站| 免费播放大片免费观看视频在线观看| 亚洲va在线va天堂va国产| 99久久精品一区二区三区| av免费观看日本| 国产亚洲精品久久久com| 尾随美女入室| 日日撸夜夜添| 国产 精品1| 欧美人与善性xxx| 18禁裸乳无遮挡动漫免费视频| 在线免费观看不下载黄p国产| 看十八女毛片水多多多| 一级片'在线观看视频| 久热久热在线精品观看| 熟女电影av网| 午夜久久久在线观看| 欧美日韩亚洲高清精品| 国产精品一区二区性色av| 精品久久久久久久久av| 三上悠亚av全集在线观看 | 男男h啪啪无遮挡| 成年女人在线观看亚洲视频| 久久国产乱子免费精品| 99久国产av精品国产电影| 日日摸夜夜添夜夜添av毛片| 极品人妻少妇av视频| 精品人妻熟女av久视频| 日韩,欧美,国产一区二区三区| 大码成人一级视频| 国产精品一区二区性色av| 亚洲美女黄色视频免费看| 最后的刺客免费高清国语| 18+在线观看网站| 99久久精品热视频| 亚洲欧美日韩另类电影网站| 岛国毛片在线播放| 欧美精品国产亚洲| 欧美成人精品欧美一级黄| 亚洲国产精品一区二区三区在线| 久久综合国产亚洲精品| 国产高清三级在线| av在线观看视频网站免费| 精品久久久精品久久久| 国产毛片在线视频| 七月丁香在线播放| 在线观看www视频免费| 免费观看av网站的网址| 在线观看美女被高潮喷水网站| 丝袜喷水一区| 欧美日韩视频精品一区| 日本欧美国产在线视频| 在线精品无人区一区二区三| 日韩大片免费观看网站| 国产无遮挡羞羞视频在线观看| 欧美三级亚洲精品| 纵有疾风起免费观看全集完整版| 成人特级av手机在线观看| 99热这里只有精品一区| 在线观看av片永久免费下载| 男男h啪啪无遮挡| 欧美高清成人免费视频www| 日韩大片免费观看网站| 国产精品伦人一区二区| 久久久久久久久久久久大奶| 一区二区三区免费毛片| 国产精品不卡视频一区二区| 亚洲国产欧美在线一区| 最近的中文字幕免费完整| 黑丝袜美女国产一区| 少妇裸体淫交视频免费看高清| 在线观看一区二区三区激情| 久久精品国产自在天天线| 99热6这里只有精品| 午夜福利在线观看免费完整高清在| 国精品久久久久久国模美| 欧美高清成人免费视频www| 国产精品国产三级国产av玫瑰| 亚洲av不卡在线观看| 亚洲av中文av极速乱| 亚洲四区av| 黑丝袜美女国产一区| 国产高清有码在线观看视频| 国产午夜精品一二区理论片| 一本色道久久久久久精品综合| 熟妇人妻不卡中文字幕| 亚洲美女黄色视频免费看| 人妻少妇偷人精品九色| 精品国产一区二区三区久久久樱花| 午夜免费鲁丝| 亚洲丝袜综合中文字幕| 免费不卡的大黄色大毛片视频在线观看| 特大巨黑吊av在线直播| 国产极品天堂在线| 下体分泌物呈黄色| 在线天堂最新版资源| 亚洲色图综合在线观看| 欧美高清成人免费视频www| 日韩大片免费观看网站| 精品99又大又爽又粗少妇毛片| 在线观看免费日韩欧美大片 | 国产成人aa在线观看| 永久网站在线| 最近中文字幕高清免费大全6| 久久毛片免费看一区二区三区| 亚洲av福利一区| 九九爱精品视频在线观看| 亚洲天堂av无毛| 国产69精品久久久久777片| 天天躁夜夜躁狠狠久久av| 在现免费观看毛片| 夜夜看夜夜爽夜夜摸| 国模一区二区三区四区视频| 亚洲国产日韩一区二区| 精品一区在线观看国产| 久久国产精品男人的天堂亚洲 | 丝瓜视频免费看黄片| 国产真实伦视频高清在线观看| 一级黄片播放器| 欧美精品一区二区大全| 国内精品宾馆在线| 国产熟女欧美一区二区| 99久国产av精品国产电影| 在线天堂最新版资源| 大片免费播放器 马上看| 九草在线视频观看| 综合色丁香网| 亚洲无线观看免费| 久久久精品94久久精品| 日韩视频在线欧美| 亚洲精品乱久久久久久| 极品少妇高潮喷水抽搐| 草草在线视频免费看| 中文字幕免费在线视频6| 国产精品无大码| 日本黄色片子视频| a级毛片在线看网站| 国产老妇伦熟女老妇高清| 精品熟女少妇av免费看| av国产久精品久网站免费入址| 色94色欧美一区二区| 少妇猛男粗大的猛烈进出视频| 色5月婷婷丁香| 久久人人爽av亚洲精品天堂| 亚洲精华国产精华液的使用体验| 有码 亚洲区| 日韩电影二区| 高清av免费在线| 精品一区二区三卡| 自拍欧美九色日韩亚洲蝌蚪91 | 自拍偷自拍亚洲精品老妇| 97精品久久久久久久久久精品| 国产永久视频网站| 水蜜桃什么品种好| 国产免费福利视频在线观看| 我要看黄色一级片免费的| 夜夜看夜夜爽夜夜摸| 美女cb高潮喷水在线观看| 国产有黄有色有爽视频| 午夜91福利影院| 久久久久久久久久人人人人人人| 嫩草影院入口| 国产男女超爽视频在线观看| 精品少妇内射三级| 黄色日韩在线| 嫩草影院入口| 国产精品一区二区三区四区免费观看| 久久综合国产亚洲精品| 内射极品少妇av片p| 嫩草影院新地址| 国产成人freesex在线| 久久青草综合色| 欧美最新免费一区二区三区| 能在线免费看毛片的网站| 欧美区成人在线视频| 我要看黄色一级片免费的| 久久99一区二区三区| 国产精品久久久久久精品电影小说| 日韩人妻高清精品专区| 曰老女人黄片| 日韩av在线免费看完整版不卡| 免费黄色在线免费观看| 汤姆久久久久久久影院中文字幕| 国产乱来视频区| 哪个播放器可以免费观看大片| 纯流量卡能插随身wifi吗| 久久精品国产自在天天线| 亚洲精品一区蜜桃| 十分钟在线观看高清视频www | 久久久国产精品麻豆| 国语对白做爰xxxⅹ性视频网站| 免费观看在线日韩| 黄色视频在线播放观看不卡| freevideosex欧美| 超碰97精品在线观看| 视频区图区小说| 国产高清三级在线|