• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    PVC Formulation of Anastrepha suspensa Pheromones Suitable for Field Studies

    2021-04-24 03:17:08DnielKuzmichZchryKwgoeSpencerWlse
    Engineering 2021年11期

    Dniel Kuzmich, Zchry A. Kwgoe, Spencer S. Wlse,,*

    a San Joaquin Valley Agricultural Sciences Center, Agricultural Research Service, United States Department of Agriculture, Parlier, CA 93648, USA

    b Agricultural and Environmental Chemistry Graduate Group, University of California, Davis, CA 95616, USA

    Keywords:Anastrepha Anastrephin Epianastrephin PVC lure Controlled release

    ABSTRACT Tephritid flies threaten the production of fruits around the world. In the Americas, populations of the genus Anastrepha are monitored with trapping networks as part of pest management programs. Here,we report the formulation of male Anastrepha suspensa (Loew) pheromones, (±)-anastrephin and (±)-epianastrephin, into a poly(vinyl chloride) (PVC) polymer-based lure ready for trap deployment. The PVC polymer disks(100 mg)contain 10%by weight of(±)-epianastrephin and(±)-anastrephin in a naturally occurring 7:3 diastereomeric ratio,respectively.Emission of the pheromones from the disks into an airstream was evaluated as a function of the abiotic environmental parameters, absolute humidity and temperature. Kinetic data supports a diffusion-controlled mechanism of release from the matrix with first-order rate constants that decreased about ten-fold as the temperature was lowered from 30 to 15 °C. As such, the emission of volatile pheromones from the disks is suitable to last for several weeks in the field. This kinetic approach, which can be easily extended to the diffusion-controlled release of other attractants from polymeric matrices,yields laboratory predictions of the potential for environmental loss prior to conducting field bioassays.

    1. Introduction

    Across the Americas, pest management efforts are required to minimize the potential for fruit to host Anastrepha sp. (Diptera:Tephritidae).Within the United States alone,host fruits are valued at more than 7 billion USD annually [1,2]. Anastrepha populations in commercial production areas are monitored using trapping networks, which ultimately guide a variety of control efforts:integrated pest management (IPM) strategies, insecticidal sprays,quarantine regulations, and the sterile insect technique (SIT).Within Florida and the Greater Antilles, the Caribbean fruit fly,Anastrepha suspensa (A. suspensa), is a species of concern and the male pheromones are of IPM interest due to their role in the natural aggregation strategy [3-5].

    Male A. suspensa produce the volatile pheromones (R,S,S)-(-)-and (S,R,R)-(+)-anastrephin and (S,S,S)-(-)- and (R,R,R)-(+)-epianastrephin, which are attractive to males and females in short-range bioassays [5-14]. Yet, a lure for A. suspensa involving these pheromones remains elusive due, at least in part, to insufficient availability of test material.Although several elegant syntheses have been reported[4,15-25],most do not yeild sufficient mass to conduct formulation studies,let alone replicated field trials[26].A recent synthesis provides relatively convenient access to gramscale quantities of (±)-anastrephin (1) and (±)-epianastrephin (2)[27].In an attempt to design a trapping system that exploits these pheromones, effort was initiated to formulate a conventional poly(vinyl chloride) (PVC) polymer-based lure [28-30]. The present study reports the kinetics associated with the release of 1 and 2 from the PVC matrix as a function of temperature and absolute humidity—a critical first step toward field deployment and trapping efficiency studies.

    2. Methods and materials

    2.1. Chemicals

    PVC (low-molecular weight, 524 980), dibutyl phthalate (DBP),dioctyl phthalate (DOP), anhydrous tetrahydrofuran (THF;inhibitor-free), and 10% palladium (Pd) on carbon (C) were purchased from Aldrich Chemical Co., Inc. (USA). Analytical grade methyl tert-butyl ether (MTBE) was purchased from Fisher Scientific (USA). Polymer disks were formed in porcelain wells (CoorsTMmulti-well plate;Sigma-Aldrich,USA).Synthetic 1 and 2 were prepared in-house (United States Department of Agriculture (USDA))with greater than 99% purity, as verified by gas chromatography(GC) and electron impact mass spectrometry (GC-EIMS). Catalytic hydrogenation (101 kPa) of 1 using 10% Pd/C in ethyl acetate yielded 3, as an internal standard (IS) for quantitative analysis(Fig. 1) [3,27].

    2.2. Formulation

    PVC-pheromone disks were formulated to afford 10%by weight of total pheromone, 2 and 1 (7:3 ratio). In a conical vial, PVC(251.5 mg), DBP (125.6 mg), DOP (127.5 mg), 2 (38.5 mg), and 1(16.5 mg) were dissolved in THF (1.665 g). The mixture was blended with a spatula,and then the vial was capped and warmed at 40°C.After 20 min,the mixture was blended again as described above,and then about 400 mg was pipetted into respective porcelain wells. The THF was allowed to evaporate by warming the porcelain plate at 40°C for 15 min and then leaving it at room temperature overnight, affording three PVC-pheromone disks with a mass of(110.4±0.8)mg(mean±standard deviation,ˉx ± s).Note that THF evaporation above 40 °C caused bubbles to form in the polymer resin, while evaporation at room temperature resulted in cloudy disks, presumably due to evaporative cooling.

    2.3. Collections of volatile pheromone

    The volatile collection system reported by Walse et al. [5] was modified; 1/4 inch (1 inch = 25.4 mm) diameter Teflon tubing was used for all plumbing, and all connections were made using standard Swagelok fittings, unless otherwise noted. A compressor pushed air (413 kPa) into a 15.2 m3environmental chamber with programmable temperature and through an activated carbon filter(Westates Vocarb 48C;Siemens Industry,Inc.,USA)connected serially to a metering valve. Airflow was then directed into a 226.2 L chamber,pressurized to about 14 kPa,which housed a tunable terrarium humidifier (Zoo Med?, USA) set to maintain an absolute humidity, Ca-H2O, of (0.5846 ± 0.0096) mmol·L-1in the air exiting the chamber at all temperatures studied (vide infra). Air exiting the chamber was directed into a manifold (Model VCS-ADS-6AFM6C; Analytical Research Systems?(ARS), USA), which metered the flow of four parallel airstreams to 100 mL·min-1.Three ‘‘sampling” volatile collection chambers (VCCs; 10 inch × 2 inch diameter), and a fourth VCC containing only a HOBO?logger(model #UX100-003; USA) to record temperature and humidity at 5 min intervals, were connected to the respective airstreams.A formulated disk(about 19 mm in diameter and 0.15 mm in thickness)was fixed to the internal glass surface of a Petri dish(30 mm in diameter and 5 mm in depth) with one face exposed. A diskcontaining dish was then introduced into each of the three ‘‘sampling” VCCs. Pheromones released from the disk were captured on an ARS glass-tube (11.5 cm long and 4 mm internal diameter(id) volatile collector trap (VCT) containing 50 mg Super-Q adsorbent(AlltechTMAssociates,USA),which was inserted into the outlet terminal of the VCC.

    Fig. 1. Pheromone structures and GC-EIMS total ion chromatogram showing the relative retention of 1 and 2 to IS 3.

    The pheromone emitted from the PVC disks was quantified using GC-EIMS over temporal intervals at the temperatures explored in this study—that is, the temperatures pertinent to the endemic range of A. suspensa, the Greater Antilles and Florida:(33.2 ± 0.1), (26.7 ± 0.3), (20.7 ± 0.3), and (15.1 ± 0.4) °C. To prepare a sample for GC-EIMS analysis, a VCT was removed (and replaced if necessary), flushed with MTBE (8 mL) into a 10 mL volumetric glass vial (slow-blow Kuderna-Danish) containing 1 mL of IS 3 in MTBE (16.1 ng·μL-1). The eluant was reduced to 1 mL via passive concentration in a fume hood, and transferred with a pipette to a 2 mL glass GC vial. Vials were clamp-sealed with 9 mm diameter Teflon-lined caps in preparation for GC-EIMS analysis. The collection efficiencies of 1 and 2 were greater than 98% over the range 5000-0.5 ng, as reported in Walse et al. [5]. In general, the concentration of emitted pheromone was quantified initially, [1 and/or 2]t=0or [1 and/or 2]0,and at approximately daily intervals thereafter, [1 and/or 2],where t is time, t = 1 d, 2 d, 3 d, etc.

    2.4. Gas chromatography-electron impact mass spectrometry

    In general, 1, 2, and IS 3 were identified based on chromatographic, spectrometric, and spectroscopic agreement with the published literature. GC retention time (tR) and/or mass spectrometry were used for chemical verification, and the IS 3-normalized integral of peak area, referenced relative to linear least-squares analysis of a six-point plot of calibrant versus detector response, was used to determine concentration in the volatile collection studies. Detector response and retention indices were determined each day in calibration studies involving serial dilutions of 1 in known volumes of MTBE (i.e., calibration standards).

    A 7890A gas chromatograph and a 5973 N quadrupole mass spectrometer (Agilent Technologies, USA) was operated with electron impact ionization (70 eV). Cool on-column injections (1 μL)were conducted at 143 °C with helium (He) carrier gas(1.0 mL·min-1). The oven program was isothermal at 140 °C for 1 min, heated at 4 °C·min-1to 150 °C, isothermal for 70 min,heated at 30 °C·min-1to 230 °C, and then isothermal for 2 min.GlasSeal connectors (Supelco?, USA) were used to fuse four columns in series: a deactivated column (long (L) = 8 cm,id=0.53 mm;Agilent Technologies,USA)onto which the injection was deposited; a deactivated retention-gap column (L = 2 m,id = 0.25 mm; Agilent Technologies, USA); a DB-1701 analytical column (L = 60 m, id = 0.25 mm, film thickness (df) = 0.25 μm;J&W Santa Clara, USA); and, finally, a deactivated column(L = 1.5 m, id = 0.25 mm; Agilent Technologies, USA) that was directed into the detector. Transfer-line, source, and quadrapole temperatures were respectively 280, 230, and 150 °C. Analyte tR(n = 10) were as follows: 1: (60.26 ± 0.02) min; 2: (62.98 ± 0.01)min; and IS 3: (71.06 ± 0.03) min (Fig. 1).

    Full scan spectra from 50 to 600 mass-to-charge ratio (m/z)with±0.3 m/z resolution were acquired at 0.34 s per scan for qualitative verification, data are shown as m/z (% relative intensity):1: 194 (3), 179 (33), 151 (14), 135 (33), 108 (61), 81 (100); 2:194 (2), 179 (23), 151 (11), 135 (24), 108 (54), 81 (100); and 3:196 (0.8), 181 (72), 153 (71), 137 (12), 110 (61), 83 (100). Ions noted in italics were extracted from the total ion chromatogram(TIC) for quantification.

    3. Results

    3.1. Rate of pheromone release

    At each temporal interval of time (t), gaseous (g) pheromone loss from a solid (s) disk was quantified as described above using GC-EIMS. Pheromone loss over the experimental time course was expressed by the differential rate equation:

    Experimental data support the kinetic model, a first-order kinetic approximation of pheromone loss; least-squares analyses of ln([1 and/or 2]t/[1 and/or 2]0) for triplicate trials plotted versus time yielded a linear composite regression with a slope of -kv. At(33.2 ± 0.1), (26.7 ± 0.3), (20.7 ± 0.3), and (15.1 ± 0.4) °C, kvhad respective values of 9.51 × 10-3, 4.14 × 10-3, 1.57 × 10-3, and 1.34 × 10-3d-1(Fig. 2). Half-lives (t1/2), calculated respectively from ln(2)/kv, were approximately 73, 167, 352, and 519 d.

    Release rate increased with temperature (T), empirically approximated by the Arrhenius equation:

    where Q is the cumulative loss of chemical(as a fractional percentage of the total (%)) at time t (d), and kHis the Higuchi constant(d-1). Providing further evidence to support a diffusion-controlled mechanism of release from the PVC-pheromone disks, leastsquares analyses of the cumulative loss of 1 and/or 2 for triplicate trials plotted versus t1/2yielded a composite linear regression with a slope of kHand a correlation coefficient of r2≥0.95;respectively,0.95, 0.98, 0.98, and 0.97 for (33.2 ± 0.1), (26.7 ± 0.3), (20.7 ± 0.3),and(15.1±0.4)°C(Fig.4).To our knowledge,this is the first application of Higuchi modeling to pheromone release from a‘‘thin-film”polymer matrix.

    Fig. 2. Results support a first-order loss of 1 and/or 2 from the PVC-pheromone disks, as a least-squares analyses of the data yielded a line with a slope of -kv, the observable rate constant of volatilization from the PVC disks,which increased with temperature (95% confidence intervals (CI) shown).

    It is critical to note that the relative loss of 2 to 1 from the PVC disks remained constant at approximately 2.3 to 1, the naturally occurring diastereomeric ratio, across all temperatures (Fig. 5). A single-factor analysis of variance (ANOVA) was not significant(F3,76= 0.72, P = 0.74), indicating that the overall mean ratio of 2 to 1, 2.39 ± 0.18, could be used to describe the ratio observed for a respective temperature at the 95% confidence interval (CI) [33].This finding provides additional evidence to support the kinetic and mechanistic models described above.

    4. Discussion

    At present,trapping systems for key pests from the genus Anastrepha, including A. suspensa, rely on food-based lures that exhibit poor selectivity and are costly from an operational perspective[1,2,34]. In an attempt to design a trapping system that exploits known volatile pheromones of A. suspensa, a PVC polymer-based lure was formulated in a disk containing 10% by mass of 1 and 2 in a 3:7 diastereomeric ratio. The release rate of pheromone increased with temperature, with no change in the formulated ratio of 1 to 2. The results indicate that across the temperature range over a period of several weeks, <10 ng of 1 and 2 will be released from each disk per hour—a finding that is consistent with the emission rates of1and2from a‘‘calling”male A.suspensa[5,6].

    Fig.3. The relationship between the observable rate constant of volatilization,-kv,and temperature was empirically estimated.

    Fig. 4. This Higuchi plot across temperatures showing linearity from least-squares analysis (95% CI shown), as evidenced by respective correlation coefficients (all r2 ≥0.95), provides further evidence to support a Fickian diffusion-controlled mechanism of volatile release from the PVC-pheromone disks.

    Fig. 5. Box-and-whiskers plot showing the median (- - -) release of 2 to 1 from PVC-pheromone disks as a function of temperature, relative to the 1st through 3rd quartiles (gray rectangles), outliers (·), and the ratio of formulation, about 2.3 to 1(-), which matches the naturally occurring diastereomeric ratio of the volatile pheromones [5,6].

    The relationship between molecular diffusivity, viscosity (μ),and temperature (T) can be generalized by the Stokes-Einstein equation:

    where DES/ASis the translational diffusion coefficient (cm2·s-1) of1and2, kBis the Boltzmann constant (1.38 × 10-23kg·m2·s-2·K-1),and r is the hydrodynamic radius of ‘‘spherical”1and2(about 0.45 nm) [35]. Preliminary studies indicated that a change in relative humidity did not change the mass of the polymeric disk or, in turn, μ. This finding contrasts with the use of humectant-based matrices to emit1and2at rates that are directly proportional to humidity levels [5]. Accordingly, when considering polymeric matrices—or, at least, the PVC used in this study—the diffusioncontrolled release will directly vary with T.The influence of geometry on rates of diffusion is well-established [36], so the kinetic models used above to describe polymeric disks can be extended to other geometries, such as cylindrical ‘‘plugs” and spheres, with a longer history of use in trapping systems.

    Future work will report on integrating the PVC-pheromone disk(and/or plugs) into potential Anastrepha trapping systems for field deployment, as well as capture efficiency studies associated with such efforts. From a broader perspective, this work provides a kinetic framework for predicting Fickian diffusional release of insect attractants from polymeric matrices as a function of environmental conditions,and particularly temperature,making it possible to initiate field bioassays with a chemical understanding and/or expectation of lure longevity.

    Acknowledgments

    This research was funded by the USDA-Agricultural Research Service and the Cooperative Research and Development Agreement(#58-3K95-4-1665) with Betterworld Manufacturing (Fresno,USA).

    Compliance with ethics guidelines

    Daniel Kuzmich, Zachary A. Kawagoe, and Spencer S. Walse declare that they have no conflict of interest or financial conflicts to disclose.

    Chemical Characterization

    1: IR (neat) 2942, 2871, 1780, 1016 cm-1;1H NMR (300 MHz,Chloroform-d) δ: 5.68 (dd, J = 17.6, 10.6 Hz, 1H), 5.00 (d,J = 1.5 Hz, 1H), 4.95 (dd, J = 4.7, 0.8 Hz, 1H), 2.38 (dd, J = 16.4,14.8 Hz, 1H), 2.24 (dd, J = 16.4, 6.4 Hz, 1H), 2.10 (dd, J = 14.8,6.4 Hz, 1H), 2.01 (dd, J = 7.9, 3.0 Hz, 1H), 1.84 (ddd, J = 8.2, 6.2,3.9 Hz, 1H), 1.73-1.59 (m, 2H), 1.59-1.43 (m, 2H), 1.38 (s, 3H),and 1.06 (s, 3H).13C NMR (75 MHz, CDCl3) δ: 176.12, 147.76,111.59, 86.03, 53.43, 38.46, 37.90, 37.02, 29.46, 20.90, 20.43, and 16.37.

    2: IR (neat) 2942, 2868, 1770, 1029 cm-1;1H NMR (300 MHz,CDCl3) δ: 5.89 (ddd, J = 17.4, 11.2, 0.9 Hz, 1H), 5.19-5.03 (m, 2H),2.65-2.30 (m, 3H), 2.16-1.94 (m, 3H), 1.31 (dd, J = 13.1, 5.3, 1H),1.26 (s, 3H), and 1.04 (s, 3H).13C NMR (75 MHz, CDCl3) δ:176.14, 139.98, 112.94, 86.34, 55.51, 38.62, 37.19, 36.07, 30.35,29.01, 20.38, and 20.21.

    3:1H NMR (300 MHz, CDCl3) δ: 2.49 (dd, J = 16.3, 14.9 Hz,1H),2.31(dd,J=16.3,6.5 Hz,1H),2.15-1.90(m,2H),1.85-1.69(m,2H),1.68-1.40 (m, 3H), 1.36 (s, 3H), 1.33-1.24 (m, 1H), 1.19-0.97 (m,1H), 0.91 (s, 3H), and 0.85 (t, J = 7.5 Hz, 3H).13C NMR (75 MHz,CDCl3) δ: 176.62, 86.57, 56.81, 37.68, 36.36, 35.68, 29.40, 27.64,24.44, 21.08, 20.53, and 9.05.

    国产在线男女| 性插视频无遮挡在线免费观看| 欧美色视频一区免费| 亚洲国产精品久久男人天堂| 久久久久久久久中文| 每晚都被弄得嗷嗷叫到高潮| 他把我摸到了高潮在线观看| 欧美在线一区亚洲| 蜜桃久久精品国产亚洲av| 好看av亚洲va欧美ⅴa在| 身体一侧抽搐| 亚洲av免费在线观看| 久久天躁狠狠躁夜夜2o2o| 中出人妻视频一区二区| 麻豆成人av在线观看| 国产午夜精品久久久久久一区二区三区 | av在线天堂中文字幕| av女优亚洲男人天堂| 老女人水多毛片| 国产黄片美女视频| 国产91精品成人一区二区三区| 免费搜索国产男女视频| 又爽又黄a免费视频| 亚洲av五月六月丁香网| 九九久久精品国产亚洲av麻豆| 久久6这里有精品| 女人被狂操c到高潮| 韩国av一区二区三区四区| 久久精品人妻少妇| 嫩草影院精品99| 无人区码免费观看不卡| av专区在线播放| 国产精品一区二区性色av| 美女黄网站色视频| 欧美日韩福利视频一区二区| 亚洲午夜理论影院| 91午夜精品亚洲一区二区三区 | 亚洲国产色片| 真人做人爱边吃奶动态| 精品人妻1区二区| 综合色av麻豆| 午夜激情福利司机影院| netflix在线观看网站| 国产精品影院久久| 一夜夜www| 亚洲一区高清亚洲精品| 国产精品99久久久久久久久| 精品国产三级普通话版| 十八禁人妻一区二区| 精品久久久久久久久久久久久| 亚洲经典国产精华液单 | 亚洲av成人精品一区久久| 国产精品亚洲一级av第二区| 一二三四社区在线视频社区8| 桃红色精品国产亚洲av| 丁香六月欧美| 午夜影院日韩av| 18禁在线播放成人免费| 午夜福利成人在线免费观看| 国产白丝娇喘喷水9色精品| 一a级毛片在线观看| 亚洲欧美日韩卡通动漫| 国产aⅴ精品一区二区三区波| 在线a可以看的网站| 亚洲美女视频黄频| 亚洲国产精品成人综合色| 欧美极品一区二区三区四区| 女同久久另类99精品国产91| 床上黄色一级片| 久9热在线精品视频| 99精品在免费线老司机午夜| 2021天堂中文幕一二区在线观| 一个人免费在线观看的高清视频| 99久久精品国产亚洲精品| 韩国av一区二区三区四区| 色在线成人网| 99久久无色码亚洲精品果冻| 精品久久久久久久久久久久久| 国产亚洲精品久久久久久毛片| 亚洲激情在线av| 日本一二三区视频观看| 看黄色毛片网站| 欧美又色又爽又黄视频| 亚洲aⅴ乱码一区二区在线播放| 成人亚洲精品av一区二区| 欧美不卡视频在线免费观看| 国产精品,欧美在线| 日本一二三区视频观看| 免费av观看视频| 国产男靠女视频免费网站| 国内毛片毛片毛片毛片毛片| 国产单亲对白刺激| 中文亚洲av片在线观看爽| 久久久久久久久久黄片| 国内精品久久久久久久电影| 看十八女毛片水多多多| 亚洲内射少妇av| 51国产日韩欧美| 9191精品国产免费久久| 婷婷色综合大香蕉| 欧美成人a在线观看| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 精品免费久久久久久久清纯| 91麻豆av在线| 日本黄色视频三级网站网址| or卡值多少钱| 欧美国产日韩亚洲一区| 亚洲成人免费电影在线观看| or卡值多少钱| 亚洲第一电影网av| 国产三级中文精品| 国产精品女同一区二区软件 | 欧美日韩瑟瑟在线播放| 一区福利在线观看| 午夜精品久久久久久毛片777| 看黄色毛片网站| 成人三级黄色视频| 免费观看的影片在线观看| 怎么达到女性高潮| 色在线成人网| 嫁个100分男人电影在线观看| 高潮久久久久久久久久久不卡| 成人毛片a级毛片在线播放| 国产一区二区激情短视频| x7x7x7水蜜桃| 天天一区二区日本电影三级| 免费电影在线观看免费观看| 精品一区二区三区视频在线| 久久精品国产亚洲av涩爱 | 国产成人a区在线观看| 国产高潮美女av| 一个人免费在线观看的高清视频| 高清在线国产一区| 91字幕亚洲| 免费看美女性在线毛片视频| 又爽又黄a免费视频| 我的老师免费观看完整版| 亚洲av日韩精品久久久久久密| 免费看日本二区| 免费av不卡在线播放| 深夜精品福利| 国产单亲对白刺激| 亚洲 欧美 日韩 在线 免费| 美女xxoo啪啪120秒动态图 | 噜噜噜噜噜久久久久久91| 91麻豆av在线| 黄色女人牲交| 亚洲最大成人手机在线| 国产伦一二天堂av在线观看| 国内精品美女久久久久久| 欧美日韩中文字幕国产精品一区二区三区| 日韩欧美在线二视频| 欧美日韩黄片免| 国产精品爽爽va在线观看网站| 婷婷丁香在线五月| 日本黄大片高清| 亚洲最大成人av| 精品午夜福利视频在线观看一区| 麻豆久久精品国产亚洲av| 嫩草影院精品99| 内地一区二区视频在线| 久久精品人妻少妇| 国模一区二区三区四区视频| 人人妻人人看人人澡| 18禁黄网站禁片免费观看直播| 夜夜爽天天搞| 在线国产一区二区在线| 久久久久久久久大av| 亚洲人成电影免费在线| 国产精品98久久久久久宅男小说| 亚洲最大成人av| 日韩欧美在线二视频| 两个人的视频大全免费| 国产精品久久久久久人妻精品电影| av在线老鸭窝| 18禁黄网站禁片免费观看直播| 久久久久九九精品影院| 欧美绝顶高潮抽搐喷水| 十八禁网站免费在线| 国产精品亚洲av一区麻豆| 在线a可以看的网站| 久久久久久久午夜电影| 天堂影院成人在线观看| 日韩成人在线观看一区二区三区| 简卡轻食公司| av福利片在线观看| 男女之事视频高清在线观看| 可以在线观看毛片的网站| 亚洲成人中文字幕在线播放| 一进一出抽搐动态| 国产视频一区二区在线看| 国产精品日韩av在线免费观看| 精品午夜福利视频在线观看一区| 久久久久久九九精品二区国产| 狠狠狠狠99中文字幕| 直男gayav资源| 亚洲精品亚洲一区二区| 嫁个100分男人电影在线观看| 欧美日本视频| 一进一出好大好爽视频| 如何舔出高潮| 国产免费一级a男人的天堂| 搡老妇女老女人老熟妇| 中文字幕av在线有码专区| 少妇被粗大猛烈的视频| 俺也久久电影网| 亚洲欧美日韩高清在线视频| 久久国产精品影院| 精品久久久久久久久久免费视频| a在线观看视频网站| a级一级毛片免费在线观看| 神马国产精品三级电影在线观看| 国产一区二区三区在线臀色熟女| 成年女人毛片免费观看观看9| 精品福利观看| 亚洲精品色激情综合| 1024手机看黄色片| 啦啦啦韩国在线观看视频| 国产高清视频在线播放一区| 国产精品自产拍在线观看55亚洲| 成熟少妇高潮喷水视频| 不卡一级毛片| 偷拍熟女少妇极品色| 精品熟女少妇八av免费久了| 黄色丝袜av网址大全| 成人毛片a级毛片在线播放| 我要看日韩黄色一级片| 一级黄片播放器| 国产成+人综合+亚洲专区| 免费看a级黄色片| 精品免费久久久久久久清纯| 老司机午夜十八禁免费视频| 看黄色毛片网站| 欧美一区二区精品小视频在线| 精品午夜福利在线看| 久久午夜福利片| av黄色大香蕉| 99久久九九国产精品国产免费| 国产精品免费一区二区三区在线| 一级黄片播放器| 免费av不卡在线播放| 亚洲av成人av| 欧美成人一区二区免费高清观看| 欧美日韩亚洲国产一区二区在线观看| 国产午夜精品论理片| 此物有八面人人有两片| 黄色女人牲交| 一区二区三区四区激情视频 | 色综合欧美亚洲国产小说| 老司机深夜福利视频在线观看| 亚洲精品成人久久久久久| 老鸭窝网址在线观看| 久久精品国产亚洲av天美| 久久久久久九九精品二区国产| 天天躁日日操中文字幕| 欧美绝顶高潮抽搐喷水| 我要看日韩黄色一级片| 免费人成在线观看视频色| 男女下面进入的视频免费午夜| 国内精品久久久久久久电影| 日韩免费av在线播放| 亚洲精品影视一区二区三区av| 91九色精品人成在线观看| 亚洲18禁久久av| 免费黄网站久久成人精品 | 亚洲男人的天堂狠狠| 嫩草影视91久久| 18禁裸乳无遮挡免费网站照片| 欧美+日韩+精品| 亚洲国产欧美人成| 天堂网av新在线| 午夜a级毛片| 夜夜夜夜夜久久久久| 每晚都被弄得嗷嗷叫到高潮| 美女cb高潮喷水在线观看| 少妇高潮的动态图| 日日干狠狠操夜夜爽| 欧美高清成人免费视频www| 亚洲18禁久久av| 亚洲精品乱码久久久v下载方式| 亚洲精品一区av在线观看| 真人一进一出gif抽搐免费| 免费av不卡在线播放| 国产伦人伦偷精品视频| 欧美高清成人免费视频www| 亚洲18禁久久av| 日本在线视频免费播放| 男女下面进入的视频免费午夜| 国产视频内射| 国产精品久久久久久亚洲av鲁大| 可以在线观看的亚洲视频| 全区人妻精品视频| 日韩欧美精品免费久久 | 成人午夜高清在线视频| 99国产精品一区二区三区| 精品久久国产蜜桃| 日韩大尺度精品在线看网址| 97超视频在线观看视频| 国产大屁股一区二区在线视频| 91av网一区二区| 久久久久性生活片| 国产三级中文精品| 简卡轻食公司| 久久久久久九九精品二区国产| 嫁个100分男人电影在线观看| 亚洲色图av天堂| 一级毛片久久久久久久久女| 好看av亚洲va欧美ⅴa在| 琪琪午夜伦伦电影理论片6080| 亚洲av成人精品一区久久| 国产免费av片在线观看野外av| 欧美成人免费av一区二区三区| 免费看a级黄色片| 国产美女午夜福利| 久久精品人妻少妇| 无人区码免费观看不卡| 此物有八面人人有两片| 一级黄片播放器| 一进一出抽搐gif免费好疼| www.www免费av| 欧美不卡视频在线免费观看| 国产精品久久久久久人妻精品电影| 亚洲,欧美,日韩| 一个人免费在线观看的高清视频| 小蜜桃在线观看免费完整版高清| 成年女人永久免费观看视频| 日日夜夜操网爽| 日本精品一区二区三区蜜桃| 亚洲在线观看片| 免费av毛片视频| 精品99又大又爽又粗少妇毛片 | 搡老妇女老女人老熟妇| 天天一区二区日本电影三级| 成人午夜高清在线视频| 老熟妇乱子伦视频在线观看| 亚洲七黄色美女视频| 国产亚洲精品综合一区在线观看| or卡值多少钱| 亚洲一区二区三区不卡视频| 欧美日韩乱码在线| 少妇熟女aⅴ在线视频| 黄色视频,在线免费观看| 成人精品一区二区免费| 乱人视频在线观看| 成人永久免费在线观看视频| 午夜亚洲福利在线播放| 欧美日韩瑟瑟在线播放| 夜夜爽天天搞| 精品不卡国产一区二区三区| 高清毛片免费观看视频网站| 日韩中文字幕欧美一区二区| 中国美女看黄片| 亚洲av五月六月丁香网| 欧美成人一区二区免费高清观看| 亚洲人成网站在线播放欧美日韩| 18禁裸乳无遮挡免费网站照片| av天堂中文字幕网| 性色avwww在线观看| 欧美区成人在线视频| 中亚洲国语对白在线视频| 老熟妇乱子伦视频在线观看| 欧美xxxx黑人xx丫x性爽| .国产精品久久| 色播亚洲综合网| 欧美精品啪啪一区二区三区| 毛片一级片免费看久久久久 | av在线蜜桃| 久久性视频一级片| 我的老师免费观看完整版| 日韩亚洲欧美综合| 日韩欧美 国产精品| 在现免费观看毛片| 两个人的视频大全免费| 午夜激情欧美在线| 色在线成人网| 欧美另类亚洲清纯唯美| 婷婷六月久久综合丁香| 级片在线观看| 亚洲国产欧洲综合997久久,| 可以在线观看毛片的网站| 国产一区二区在线av高清观看| 成人欧美大片| 亚洲最大成人av| 韩国av一区二区三区四区| 18禁在线播放成人免费| 黄色配什么色好看| 欧美成人a在线观看| av天堂中文字幕网| 成年人黄色毛片网站| 欧美日韩黄片免| 精品一区二区三区视频在线| 国产三级中文精品| 一级av片app| 五月伊人婷婷丁香| 内地一区二区视频在线| 黄片小视频在线播放| 国产高清三级在线| 亚洲国产欧美人成| 国产伦在线观看视频一区| 一个人免费在线观看电影| 欧美精品啪啪一区二区三区| 一区二区三区免费毛片| 全区人妻精品视频| 能在线免费观看的黄片| 村上凉子中文字幕在线| 如何舔出高潮| 欧美午夜高清在线| 国产色婷婷99| 欧美日韩中文字幕国产精品一区二区三区| 亚洲一区二区三区不卡视频| 免费搜索国产男女视频| 成人特级黄色片久久久久久久| 毛片女人毛片| 国产爱豆传媒在线观看| 欧美丝袜亚洲另类 | 免费看美女性在线毛片视频| 亚洲av五月六月丁香网| 禁无遮挡网站| 嫩草影视91久久| 麻豆av噜噜一区二区三区| 日韩成人在线观看一区二区三区| 亚洲精品乱码久久久v下载方式| 一进一出好大好爽视频| 99热精品在线国产| 国产一区二区三区在线臀色熟女| 欧美日韩瑟瑟在线播放| 俺也久久电影网| 两个人的视频大全免费| 国产亚洲欧美98| 欧美bdsm另类| 久久国产精品人妻蜜桃| 成年女人永久免费观看视频| 熟妇人妻久久中文字幕3abv| 欧美成人a在线观看| 日韩中文字幕欧美一区二区| 一进一出抽搐动态| 搡老岳熟女国产| 蜜桃久久精品国产亚洲av| 我的女老师完整版在线观看| 国产av麻豆久久久久久久| 亚洲最大成人av| 日本熟妇午夜| 成人无遮挡网站| 亚洲电影在线观看av| 午夜精品久久久久久毛片777| 人人妻,人人澡人人爽秒播| 国产精品伦人一区二区| 日韩欧美一区二区三区在线观看| 99精品在免费线老司机午夜| 制服丝袜大香蕉在线| 国产乱人伦免费视频| 一本久久中文字幕| 国产三级中文精品| 欧美日韩亚洲国产一区二区在线观看| 99国产极品粉嫩在线观看| 69av精品久久久久久| 国产精品乱码一区二三区的特点| 床上黄色一级片| 日日摸夜夜添夜夜添小说| 亚洲一区二区三区不卡视频| www.999成人在线观看| 久久人妻av系列| 99热只有精品国产| 亚洲在线观看片| 亚洲精品日韩av片在线观看| 在线观看午夜福利视频| 国产乱人伦免费视频| 毛片一级片免费看久久久久 | 又爽又黄a免费视频| 久久精品国产清高在天天线| 尤物成人国产欧美一区二区三区| 黄色女人牲交| 色视频www国产| 国产乱人视频| 美女 人体艺术 gogo| 亚洲 国产 在线| 亚洲国产色片| 亚洲成人久久性| 国产色婷婷99| 88av欧美| 亚洲国产精品久久男人天堂| 亚洲一区二区三区色噜噜| а√天堂www在线а√下载| 欧美激情国产日韩精品一区| 最近中文字幕高清免费大全6 | 天堂影院成人在线观看| 亚洲片人在线观看| 校园春色视频在线观看| 日韩成人在线观看一区二区三区| 99久久精品国产亚洲精品| 久久久久亚洲av毛片大全| 欧美xxxx性猛交bbbb| 亚洲专区中文字幕在线| 能在线免费观看的黄片| 日韩免费av在线播放| 麻豆成人午夜福利视频| 两个人的视频大全免费| 久9热在线精品视频| 亚洲成人久久性| 99精品久久久久人妻精品| 三级国产精品欧美在线观看| 1024手机看黄色片| 人妻夜夜爽99麻豆av| 欧美色视频一区免费| 1000部很黄的大片| 成人性生交大片免费视频hd| 亚洲av成人不卡在线观看播放网| 欧美高清性xxxxhd video| 天堂√8在线中文| 亚洲va日本ⅴa欧美va伊人久久| 日本一二三区视频观看| 村上凉子中文字幕在线| 国产色爽女视频免费观看| 噜噜噜噜噜久久久久久91| 亚洲精品一卡2卡三卡4卡5卡| 可以在线观看的亚洲视频| 欧美bdsm另类| 国产欧美日韩精品一区二区| 两个人视频免费观看高清| 永久网站在线| 久久久国产成人精品二区| 国产精品,欧美在线| 国产精品不卡视频一区二区 | ponron亚洲| 如何舔出高潮| 亚洲内射少妇av| 黄色配什么色好看| 欧美日韩福利视频一区二区| 一区福利在线观看| 午夜视频国产福利| 性插视频无遮挡在线免费观看| 国内少妇人妻偷人精品xxx网站| 午夜福利成人在线免费观看| 精品久久久久久久久av| 少妇高潮的动态图| 国产麻豆成人av免费视频| 国产主播在线观看一区二区| 小蜜桃在线观看免费完整版高清| 毛片一级片免费看久久久久 | 亚洲片人在线观看| 赤兔流量卡办理| 色精品久久人妻99蜜桃| 男人舔奶头视频| 黄色丝袜av网址大全| 我要看日韩黄色一级片| 全区人妻精品视频| 一级av片app| 长腿黑丝高跟| 国产精品国产高清国产av| av女优亚洲男人天堂| 男女下面进入的视频免费午夜| 欧美最黄视频在线播放免费| 久久亚洲真实| 久久久久亚洲av毛片大全| 国产综合懂色| 国产伦人伦偷精品视频| 12—13女人毛片做爰片一| 亚洲avbb在线观看| 国产一区二区激情短视频| 婷婷精品国产亚洲av| 国内精品久久久久久久电影| 美女黄网站色视频| 日本熟妇午夜| 国产精品美女特级片免费视频播放器| 亚洲片人在线观看| 亚洲午夜理论影院| 亚洲五月婷婷丁香| 亚洲精品日韩av片在线观看| 成人一区二区视频在线观看| 日本 欧美在线| av中文乱码字幕在线| 精品久久久久久久久久免费视频| 国产高清有码在线观看视频| 人妻夜夜爽99麻豆av| 亚洲男人的天堂狠狠| 亚洲av电影在线进入| 国产精品98久久久久久宅男小说| 久久午夜亚洲精品久久| 神马国产精品三级电影在线观看| 亚洲美女搞黄在线观看 | 国产乱人视频| 亚洲精品乱码久久久v下载方式| 国产一区二区三区在线臀色熟女| 动漫黄色视频在线观看| 亚洲精品456在线播放app | 午夜激情福利司机影院| 黄片小视频在线播放| 亚洲最大成人中文| 无人区码免费观看不卡| 美女黄网站色视频| 国内精品一区二区在线观看| 亚洲人与动物交配视频| 久久中文看片网| 熟妇人妻久久中文字幕3abv| 简卡轻食公司| 高清日韩中文字幕在线| 国产精品乱码一区二三区的特点| 国产美女午夜福利| 亚洲av.av天堂| 特级一级黄色大片| 亚洲成人久久爱视频| 亚洲激情在线av| 日本熟妇午夜| 美女 人体艺术 gogo| 亚洲精品色激情综合| 白带黄色成豆腐渣| 日本撒尿小便嘘嘘汇集6| 亚洲av成人av| 又紧又爽又黄一区二区| 极品教师在线视频| 露出奶头的视频| 永久网站在线| 欧美国产日韩亚洲一区| 天美传媒精品一区二区| 又粗又爽又猛毛片免费看|