• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Enhanced dye-sensitized up-conversion luminescence of neodymium-sensitized multi-shell nanostructures

    2021-04-20 06:06:00WANGDanXUEBinTULangpingZHANGYoulinSONGJunQUJunleKONGXianggui
    中國(guó)光學(xué) 2021年2期
    關(guān)鍵詞:三氟敏化染料

    WANG Dan,XUE Bin,TU Lang-ping,ZHANG You-lin,SONG Jun,QU Jun-le,KONG Xiang-gui

    (1.Key Laboratory of Optoelectronic Devices and Systems of the Ministry of Education/Guangdong Province,College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China;2.College of Information Engineering, Shenzhen University, Shenzhen 518060, China;3.State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China)

    Abstract:Lanthanide-ion-doped upconversion luminescence is limited by the small absorption cross-section and narrow absorption band of lanthanide ions,which results in weak luminescence.Recently,a dye-sensitized method has proven to be an effective strategy of increasing upconversion luminescence.However,simply attaching dye molecules to nanoparticles with classic Yb-doped nanostructures cannot effectively activate the sensitizing ability of the dye molecules.In response to this problem,we designed Nd-sensitized core/shell/shell(NaYF4:Yb/Er(20/2%)@NaYF4:Yb(10%)@NaYF4:Nd(80%))nanostructures,compared with the classic IR-806 sensitized NaYF4:Yb/Er nanostructure,their upconversion luminescence(500 to 700 nm)was approximately enhanced by a factor of 38.Through analysis of the nanostructure’s emission and luminescence lifetime data,the enhancement was confirmed by the effective overlap of Nd absorption with the emission of near-infrared dye molecules and the protective effects of the shell structure on the luminescent center(the lifetime of Er(4S3/2→4I15/2)was increased by 1.7 times).In addition,we found that the doping Yb3+in the outermost layer will decrease the dye-sensitized luminescence intensity.Furthermore,this Ndsensitized core/shell/shell structure also achieved enhancement in the sensitized upconversion luminescence of the luminescence centers of Ho and Tm,which establishes a foundation for enhanced dye-sensitized upconversion luminescence.

    Key words:upconversion luminescence;dye-sensitized;lanthanide ion;nanoparticles

    1 Introduction

    Due to the unique electron transitions in 4f electron configuration and between 4f and 5d,rare earth ions can generate the photon radiation of various wavelengths from ultraviolet,visible light to infrared light[1-2].The Up-Conversion NanoParticles(UCNPs)doped with rare earth ions have the characteristic of converting two or more low-energy near-infrared photons into a high-energy photon.In particular,the photon emission generated by UCNPs has the advantages such as narrow spectral band,resistance to bleaching,and low background noise[3].This up-conversion luminescence induced by nearinfrared light has been applied in many fields,such as super-resolution imaging,fluorescent labeling,photodynamic therapy,and optical anti-counterfeiting[4-8].

    In spite of the above wide applications,the further practical application of the up-conversion luminescence generated by the doped rare earth ions has been limited by its low luminous intensity.How to enhance the up-conversion luminescence has always been an urgent problem to be solved in upconversion luminescence research.In recent years,the techniques such as core-shell nanostructure[9],plasma field-enhanced luminescence[10]and dyesensitized luminescence[11]have realized the enhancement of up-conversion luminescence intensity.In particular,the study of dye-sensitized luminescence has not only enhanced the intensity of up-conversion luminescence,but also broadened the excitation range of up-conversion luminescence.Instead of the rare earth ions with weak absorption(absorption coefficient:0.1~10 M?1cm?1),near-infrared dyes(absorption coefficient:1 000~10 000 M?1cm?1)have been used to absorb near-infrared light so as to realize the up-conversion luminescence enhanced by sensitization.However,the iterated integral of most of the near-infrared dye emission(800~900 nm)and the Yb absorption in the classical Yb-sensitized doping system(950~1,000 nm)is small,thus limiting the enhancement of dye-sensitized up-conversion luminescence.Furthermore,Nd/Er-ion sensitization system has been designed as the recipient of dye sensitization[12-13]to achieve more effective enhancement of dye-sensitized up-conversion luminescence.It is in recent years that Nd3+-sensitized upconversion luminescence system has been developed.Especially,its partitioned doping strategy can realize efficient up-conversion luminescence[14-16].However,the dye-sensitized Nd-ion doping system usually adopts the optimum structural design of Ndsensitized up-conversion luminescence.Considering that the dye will interact with rare earth luminescence system in the dye sensitization process to weaken the luminescence[17],the design and optimization of dye-sensitized Nd-doped up-conversion luminescence system will be more effectively applied in biochemical analysis,tumor diagnosis and treatment,luminescence display and other fields[18-22].

    In this paper,Nd-sensitized core/shell/shell structure was designed as the recipient of enhanced dye-sensitized up-conversion luminescence.The Nd-sensitized core/shell/shell structure was successfully prepared by high-temperature thermal decomposition,and then was coupled with the dye IR-806 molecules to enhance the intensity of dye-sensitized up-conversion luminescence.The related structural characterization confirmed the successful preparation of this nanostructure.The enhancement mechanism behind it was further studied through the analysis of emission spectrum and fluorescence lifetime spectrum.Meanwhile,by optimizing the doping concentration of Yb ions in the outermost shell,the intensity of the dye-sensitized up-conversion luminescence without Yb doping proved to be the strongest.

    2 Experiment

    2.1 Experimental materials

    The experimental materials include ytterbium chloride(YbCl3·6H2O,99.99%),yttrium chloride(YCl3·6H2O),erbium chloride(ErCl3·6H2O),sodium hydroxide(NaOH,98%),ammonium fluoride(NHF4,99.99%),IR-780 iodide(99%),4-mercaptobenzoic acid(99%),1-octadecene(ODE),oleylamine(90%)(OM)and oleic acid(90%)(OA),all of which were purchased from Sigma-Aldrich.According to the reference[14],Nd(CF3COO)3was obtained through the reaction between Nd2O3powder and excessive trifluoroacetic acid and then removing the remaining trifluoroacetic acid by evaporation.Ytterbium trifluoroacetate(Yb(CF3COO)3),yttrium trifluoroacetate(Y(CF3COO)3)and sodium trifluoroacetate(CF3COONa)were purchased from GFS Chemicals.Dichloromethane,trichloromethane and dimethyl formamide(DMF)were purchased from Beijing Chemical Works.All the chemical reagents were of analysis purity.

    2.2 Synthesis of up-conversion nanoparticles

    The core-shell-shell up-conversion nanostructure is fabricated based on the published chemical process[14-15].Firstly,synthesize the core structure.Dissolve YbCl3·6H2O(0.1 mmol),YCl3·6H2O(0.39 mmol)and ErCl3·6H2O(0.01 mmol)in a three-mouth flask containing 3 mL OA and 7.5 mL ODE.Heat the mixture to 150℃for 30 minutes,and then cool it to room temperature under the protection of argon.Then,dissolve NH4F(2 mmol)and NaOH(1.25 mmol)into 5 mL methanol,add the mixture to the above three-mouth flask with rare earth salts,and heat it to 70℃to remove methanol and then heat to 300℃for 1h.Then,add 0.25 mmol NaYF4:Yb(10%)active shell to ODE(synthesized by trifluoroacetate process)and then add to the above mixture for 10 min curing.Then,add 0.5 mmol NaYF4:Nd(20%)active shell(synthesized by trifluoroacetate process)and cure it for 10 min.Finally,cool the solution to room temperature,centrifuge it with ethanol,and dissolve it into 6 mL trichloromethane.The core-shell-shell up-conversion nanostructures doped with different rare earth elements were all synthesized in the similar way.

    2.3 Synthesis of IR-780 molecules

    Similarly,dissolve organic IR-780 molecules(250 mg),4-mercaptobenzoic acid(115.5 mg)and DMF(10 mL)in a 50-mL three-mouth flask under nitrogen protection according to the Ref.[11].Then keep the mixture under nitrogen protection for 17 h.Filter the product solution with 0.45μm PTFE and remove DMF through reduced-pressure distillation.Then dissolve the residue into 5 mL dichloromethane,filter the mixture again with 0.45μm PTFE and precipitate it with ice ethyl ether.Finally,filter and dry the reactant under vacuum,and keep it in dark place.

    2.4 Synthesis of IR-806 molecules

    In the similar way as Refs.[8],[17],dissolve 1 mL IR-806(xmg/mL,x=0~20 mg/mL)into trichloromethane,and mix it with 1 mLβ-NaYF4:Yb/Er(20/2%)@NaYF4:Yb(10%)@NaYF4:Nd(20%)nanoparticles(Er3+:~1.67 mmol).Stir the entire reaction mixture for 24 h at room temperature,centrifuge it,and redisperse it into 1 mL trichloromethane.Test the up-conversion spectrum of IR 806-sensitized UCNPs under the Er3+concentration of about 16μmol.

    2.5 Experimental characterization testing

    Transmission Electron Microscope(TEM)was tested at 200 kV by use of Tecnai G2 F20 S-Twin electron microscopy.X-ray diffraction(XRD)test was performed on Rigaku D/Max-2000 by using Cu Kαradiation(λ=0.154 1 nm)as diffraction radius.Absorption spectrum was tested on a Maya 2000 spectrometer(Ocean Optics).The up-conversion spectrum was recorded by an externally coupled 808 nm laser on an ocean optical spectrometer(Maya2000).Energy Dispersive Spectrum(EDS)analysis was characterized by Hitachi S-4800.In the fluorescence lifetime test of up-conversion luminescence,500 MHz TDS 3052 was used as the excitation light source,and the fluorescence lifetime data was obtained through an OPO(Sunlite 8000)and an oscilloscope.

    3 Experimental results and discussion

    3.1 Morphology and characterization of nanoparticles

    The highly uniform Nd3+-sensitized core-shellshell(NaYF4:Yb/Er(20/2%)@NaYF4:Yb(10%)@NaYF4:Nd(80%))UCNP structure was successfully prepared through high-temperature thermal decomposition.The TEM photo showed that the UCNPs were in uniform size.As shown in Fig.1,the average sizes of core(NaYF4:Yb/Er(20/2%),denoted as“C”),core/shell(NaYF4:Yb/Er(20/2%)@NaYF4:Yb(10%),denoted as“CS”)and core/shell/shell(NaYF4:Yb/Er(20/2%)@NaYF4:Yb(10%)@NaYF4:Nd(80%)),denoted as“ CSS”)were 23.5 nm,26.3 nm and 33.6 nm,respectively.This increasing size confirmed that an Yb transition layer of about 1.4 nm and a 3.7 nm Nd-sensitized nanoshell layer were gradually growing on the NaYF4:Yb/Er nano-core.The Fig.2(a)shows that the UCNPs have a classical hexagonal phase structure(JCPDS-16-0334).The EDS confirmed that Nd,Y,Yb and other rare earth elements were effectively doped into the nanoparticles(Fig.2(b)).Furthermore,we synthesized the IR-806 molecule according to the reference method(Fig.2(c)).As seen from the absorption diagram(Fig.2(d)),its absorption peak shifted from 780 nm to 806 nm,which confirmed the successful synthesis of IR-806 molecule.Furthermore,the IR-806 molecules was modified to the surface of UCNPs according to the above method.As shown in Fig.2(d),after an IR-806 molecule was modified to UCNPs,the absorption peak of the UCNPs was masked by the absorption spectrum of IR-806,thus confirming the successful modification of dye molecule to UCNPs.

    Fig.1 TEM images of core(a),core/shell(b)and core/shell/shell(c)of up-conversion nanoparticles and their size distributions(d)圖1 上轉(zhuǎn)換納米粒子的核(a),核/殼(b),核/殼/殼(c)電鏡表征圖及尺寸分布(d)

    Fig.2 (a)XRD data of C,CS and CSS of UCNPs and theβ-NaYF4(JCPDS-16-0334,bottom);(b)EDS data of CSS;(c)IR-806 synthesis process;(d)absorptions of IR-780 and IR-806 before and after synthesis;(e)absorption of UCNPs and dye conjugated UCNPs after IR-806 connection圖2 (a)上轉(zhuǎn)換納米粒子的核、核/殼、核/殼/殼XRD 及標(biāo)準(zhǔn)卡片β-NaYF4(JCPDS-16-0334,底部)結(jié)果,(b)上轉(zhuǎn)換CSS 的EDS 數(shù)據(jù),(c)IR-806合成過(guò)程圖,(d)合成前后IR-780和IR-806 的吸收,(e)連接IR-806 之后UCNPs 吸收和UCNPs 本身的吸收

    3.2 Confirmation and discussion of dye-sensitized enhancement mechanism

    As shown in Fig.3(a),the up-conversion luminescence intensity of the dye-sensitized CSS structure proposed in this paper is about 38 times stronger than that of the classical IR-806-sensitized NaYF4:Yb/Er(20/2%)nanoparticle reported at the earliest[11].This proves that the dye-sensitized structure has achieved the enhancement of up-conversion luminescence intensity.In addition,under the excitation of 808 nm near-infrared light,the intensities of both the up-conversion red and green light emissions of dye-sensitized CSS structure were nonlinearly dependent on excitation light power(Fig.3(b)).The corresponding multiphoton indexes were 1.67(540 nm green light emission:4S13/2→4I15/2)and 2.0(655 nm red light emission:4F9/2→4I15/2).Therefore,the luminescence of this structure proves to be nonlinear up-conversion luminescence.

    Fig.3 (a)Up-conversion luminescence(UCL)spectra of IR-806-sensitized CSS structure and IR-806-sensitized core structure under 808 nm excitation wavelength;(b)log-log plots of the UCL intensity versus laser power for the IR-806 dye-sensitized CSS under 808 nm excitation圖3 (a)IR-806 敏化CSS 結(jié)構(gòu)的上轉(zhuǎn)換光譜及IR-806 敏化核結(jié)構(gòu)的上轉(zhuǎn)換光譜,激發(fā)波長(zhǎng)為808 nm,(b)808 nm 激發(fā)下的IR-806 敏化的CSS 結(jié)構(gòu)的上轉(zhuǎn)換發(fā)光強(qiáng)度隨功率變化的log-log 關(guān)系

    According to our analysis,the outermost layer of CSS nanostructure is Nd3+-doped shell,where Nd can be sensitized by IR-806 molecules efficiently due to the serious overlap between the Nd absorption and the emission of IR-806 dye molecules,as shown in Fig.4(a)(Color online).On the other hand,the nanoshell in CSS structure can effectively protect the luminescence center.As seen from Fig.4(b)(Color online),the luminescence lifetime of Er(253μs)in the dye-sensitized CSS structure was significantly longer than that of Er in the dyesensitized core nanoparticle(146μs)or core nanoparticle(169μs).In other words,the luminescence lifetime of Er has increased by 1.73 times and 1.50 times,respectively.Thus,it is proved that the nanoshell can insulate the luminescence center from the external interference environment so as to guarantee a long life of the luminescence center.It is worth noting that although the designed dye-sensitized Nd3+-doped nanostructure has a better excitation wavelength near 800 nm,but NaYF4:Yb/Er(20/2%)nanoparticles can only be excited by 980 nm wavelength.As shown in Fig.4(b),the exicitation wavelength was 980 nm,not the conventional 808 nm wavelengh.Furthermore,the Fig.4(c)shows that the luminescence life of CSS nanostructure remains unchanged whether dye molecules are connected or not.This further proves that the nanoshell can effectively prevent the interaction between the luminescence center and the external environment,thus enhancing the up-conversion luminescence

    The difference of Nd3+sensitization system lies in the fact that its outermost nanoshell is doped with only Nd3+ions,rather than the previously reported Nd-Yb ions[16].This structural design is based on the results of our experiments.As shown in Fig.5,with the increase of Yb3+-doping concentration in the outermost layer,the up-conversion luminescence intensity of dye-sensitized CSS structure will gradually decrease.According to our previous research of dye-sensitized rare earth up-conversion nanosystem,the excitation energy absorbed by dye needs to be gradually transferred to the internal luminescence center[17].In this process,the energy loss in the migration of excitation energy to the surface is very heavy.The doped Yb3+ions are likely to transfer the excitation energy to the surface[9,23-24],thus reducing the excitation energy transferred to the interior and weakening the up-conversion luminescence.Therefore,the strongest dye-sensitized up-conversion luminescence is produced in the outermost nanoshell without doped Yb3+ions,as shown in Fig.5.

    Fig.4 (a)Overlap between the emission spectrum of IR-806 molecules and the absorption spectrum of Nd3+;(b)the lifetimes of Er3+(4S3/2→4I15/2)in core nanoparticles(black,NaYF4:Yb/Er(20/2%),dye-sensitized core nanoparticles(red)and dye-sensitized CSS nanostructure(blue)under 980 nm excitation;(c)the lifetimes of Er3+(4S3/2→4I15/2)in CSS nanostructure and dye-sensitized CSS nanostructure under 808 nm excitation圖4 (a)IR-806 分子的發(fā)射光譜與Nd3+的吸收交疊圖;(b)980 nm 激發(fā)下,測(cè)試得到的核納米粒子(黑色,NaYF4:Yb/Er(20/2%)),染料敏化核納米粒子(紅色)及染料敏化的CSS 納米結(jié)構(gòu)(藍(lán)色)的Er3+(4S3/2→4I15/2)的壽命測(cè)試結(jié)果;(c)808 nm 激發(fā)下CSS 納米結(jié)構(gòu)及染料敏化的CSS 納米結(jié)構(gòu)的Er3+(4S3/2→4I15/2)的壽命測(cè)試結(jié)果

    Fig.5 Upconversion spectra of dye-sensitized NaYF4:Yb/Er(20/2%)@NaYF4:Yb(10%)@NaYF4:Nd/Yb(80/x%)(x=0,5,10,20)nanoparticles under 808 nm excitation圖5 染料敏化的NaYF4:Yb/Er(20/2%)@NaYF4:Yb(10%)@NaYF4:Nd/Yb(80/x%)(x=0,5,10,20)的上轉(zhuǎn)換光譜(808 nm 激發(fā))

    3.3 Enhancement of dye-sensitized luminescence by using Ho or Tm as luminescence center

    Furthermore,the replacement of luminescence center in the core of CSS structure by Ho(NaYF4:Yb/Ho(20/1%))@NaYF4:Yb(10%)@NaYF4:Nd(80%))or Tm(NaYF4:Yb/Tm(20/1%)@NaYF4:Yb(10%)@NaYF4:Nd(80%))also realized the enhancement of dye-sensitized up-conversion luminescence(Fig.6(a)and 6(b),Color online).When the luminescence center was Ho or Tm,the typical nonlinear dependence of luminescence intensity on excitation light power was also shown(Fig.6(c)and 6(d),Color online).When the luminescence center was Ho,the multi-photon indexes were 1.57(540 nm emission,4S13/2→4I15/2)and 1.88(645 nm emission,4F9/2→4I15/2)respectively.When the luminescence center was Tm,the multi-photon indexes were 2.82(450 nm emission,1D2→3F4),1.74(470 nm emission,1G4→3H6),1.80(645 nm emission,1G4→3F4)and 1.34(695 nm emission,3F2→3H6)respectively.It should be noted that,for Tm ions,the dye-sensitized up-conversion luminescence had hardly been seen in the NaYF4:Yb/Tm(20/1%)nano-core structure.This is because the 800 nm emission level(3H4→3H6)of Tm heavily overlapped with the absorption of IR-806 molecules,thus quenching the Tm luminescence.However,the outer shell of CSS structure successfully blocked the transfer of Tm to IR-806,thus realizing the dye-sensitized up-conversion luminescence.

    Fig.6 (a)The UCL of the IR-806 sensitized Ho core nanostructure and IR-806 sensitized Ho-CSS nanostructure,(b)the UCL of the IR-806 sensitized Tm core nanostructure and IR-806 sensitized Tm-CSS nanostructure,(c)log-log plots of the UCL intensity over laser power for the green and red emissions of the dye-sensitized Ho-CSS under 808 nm excitation,(d)log-log plots of the UCL intensity versus laser power for the green and red emissions of the dye-sensitized Tm-CSS under 808 nm excitation圖6 (a)IR-806 敏化Ho 核結(jié)構(gòu)及IR-806 敏化Ho-CSS 結(jié)構(gòu)的上轉(zhuǎn)換光譜,(b)IR-806 敏化Tm 核結(jié)構(gòu)及IR-806 敏化Tm-CSS 結(jié)構(gòu)的上轉(zhuǎn)換光譜,(c)808 nm 激發(fā)下的IR-806 敏化的Ho-CSS 結(jié)構(gòu)的上轉(zhuǎn)換發(fā)光強(qiáng)度隨功率變化的loglog 關(guān)系,(d)808 nm 激發(fā)下的IR-806 敏化的Tm-CSS 結(jié)構(gòu)的上轉(zhuǎn)換發(fā)光強(qiáng)度隨功率變化的log-log 關(guān)系

    4 Conclusion

    Highly uniform NaYF4:Yb/Er(20/2%)@NaYF4:Yb(10%)@NaYF4:Nd(80%)up-conversion nanoparticles were successfully prepared.Their up-conversion luminescence intensity was about 38 times stronger than that of dye-sensitized NaYF4:Yb/Er(20/2%)core nanostructure.Further studies showed that there were two reasons for this enhancement.On the one hand,the heavy overlap between the Nd absorption in the outmost layer and the emission of dye IR-806 molecules led to the effective absorption of the excitation energy of dye.On the other hand,due to the protective effect of nanoshell layer on the luminescence center,the luminescence life of this structure was 1.73 times longer than that of dye-sensitized core nanostructure.By changing the doping concentration of Yb3+ions in the outermost layer,we demonstrated that the dye-sensitized up-conversion luminescence would be weakened by the doping of Yb3+ions,and could become the strongest without the doping of Yb3+ions.Furthermore,this dye-sensitized CSS structure has realized the enhancement of dye-sensitized up-conversion luminescence intensity when the luminescence center is Ho or Tm.

    ——中文對(duì)照版——

    1 引言

    稀土離子由于其具有4f 電子組態(tài)內(nèi)及4f 到5d 之間的電子躍遷的特異性,導(dǎo)致其可產(chǎn)生從紫外、可見(jiàn)光區(qū)到紅外光區(qū)的多種波長(zhǎng)的光子輻射[1-2]。尤其是,稀土離子摻雜的上轉(zhuǎn)換納米粒子(UCNPs)具備將兩個(gè)及兩個(gè)以上的低能量近紅外光子轉(zhuǎn)換為一個(gè)高能量光子的特性,其產(chǎn)生的光子發(fā)射具有譜帶窄、抗漂白、背景噪聲低等優(yōu)點(diǎn)[3]。這種近紅外光激發(fā)的上轉(zhuǎn)換發(fā)光特性將產(chǎn)生諸多應(yīng)用,如超分辨成像、熒光標(biāo)記、光動(dòng)力治療、光學(xué)防偽等[4-8]。

    盡管稀土離子摻雜產(chǎn)生的上轉(zhuǎn)換發(fā)光有諸多應(yīng)用,但其相對(duì)較低的發(fā)光強(qiáng)度限制了其進(jìn)一步實(shí)際應(yīng)用。如何增強(qiáng)上轉(zhuǎn)換發(fā)光一直是上轉(zhuǎn)換發(fā)光研究中亟待解決的問(wèn)題。近年來(lái),如核殼納米結(jié)構(gòu)[9]、等離子體場(chǎng)增強(qiáng)發(fā)光[10]、染料敏化發(fā)光[11],實(shí)現(xiàn)了上轉(zhuǎn)換發(fā)光強(qiáng)度的增強(qiáng)。特別是,染料敏化發(fā)光的研究不僅增強(qiáng)了上轉(zhuǎn)換發(fā)光的強(qiáng)度,也拓寬了上轉(zhuǎn)換發(fā)光的激發(fā)范圍。相對(duì)于吸收弱的稀土離子(吸收系數(shù)為0.1~10 M?1cm?1),改用近紅外染料(吸收系數(shù)為1 000~10 000 M?1cm?1)來(lái)吸收近紅外光可實(shí)現(xiàn)敏化增強(qiáng)上轉(zhuǎn)換發(fā)光。然而,大部分近紅外染料發(fā)射波長(zhǎng)(800~900 nm)和經(jīng)典的Yb 敏化摻雜體系的Yb 的吸收波長(zhǎng)(950~1 000 nm)的交疊積分較小,從而限制了染料敏化上轉(zhuǎn)換發(fā)光的增強(qiáng)。進(jìn)一步,設(shè)計(jì)采用Nd 和Er離子敏化體系作為染料敏化的受主[12-13],實(shí)現(xiàn)更有效的染料敏化上轉(zhuǎn)換發(fā)光的增強(qiáng)。Nd3+敏化上轉(zhuǎn)換發(fā)光是近些年發(fā)展的上轉(zhuǎn)換發(fā)光體系,尤其是其分區(qū)摻雜策略可以實(shí)現(xiàn)高效的上轉(zhuǎn)換發(fā)光[14-16]。目前為止,染料敏化的Nd 離子摻雜體系通常采用的是Nd 敏化上轉(zhuǎn)換發(fā)光的最佳結(jié)構(gòu)設(shè)計(jì)??紤]到染料敏化過(guò)程中染料會(huì)與稀土發(fā)光體系相互作用從而減弱發(fā)光[17],因此,設(shè)計(jì)優(yōu)化染料敏化增強(qiáng)的Nd 摻雜的上轉(zhuǎn)換發(fā)光體系,將能更有效地應(yīng)用于生化分析、腫瘤診療、發(fā)光顯示等領(lǐng)域[18-22]。

    本文設(shè)計(jì)采用Nd 敏化的核/殼/殼結(jié)構(gòu)作為增強(qiáng)染料敏化上轉(zhuǎn)換發(fā)光的受主,通過(guò)采用高溫?zé)岱纸夥椒ǔ晒χ苽銷d 敏化的核/殼/殼結(jié)構(gòu),并與染料IR-806 分子耦連實(shí)現(xiàn)染料敏化上轉(zhuǎn)換發(fā)光強(qiáng)度的增強(qiáng)。相關(guān)的結(jié)構(gòu)表征證實(shí)納米結(jié)構(gòu)的有效性。進(jìn)一步通過(guò)發(fā)射光譜,熒光壽命光譜分析等研究了其背后的增強(qiáng)機(jī)制。通過(guò)優(yōu)化最外層殼中Yb 離子的摻雜濃度,證實(shí)無(wú)Yb 摻雜情況下染料敏化上轉(zhuǎn)換發(fā)光最強(qiáng)。

    2 實(shí) 驗(yàn)

    2.1 實(shí)驗(yàn)原料

    氯化鐿(YbCl3·6H2O(99.99%)、氯化釔(YCl3·6H2O)、氯化鉺(ErCl3·6H2O)、氫氧化鈉(NaOH,98%)、氟化銨(NHF4,99.99%)、IR-780 iodide(99%)、4-巰基苯甲酸(99%)、1-十八烯(ODE)、油胺(90%)(OM)和油酸(90%)(OA),購(gòu)于Sigma-Aldrich 公司。根據(jù)參考文獻(xiàn)[14],Nd(CF3COO)3通過(guò)將Nd2O3粉末與過(guò)量的三氟醋酸反應(yīng),然后蒸發(fā)除去過(guò)量的三氟醋酸獲得。三氟醋酸鐿(Yb(CF3COO)3)、三氟醋酸釔(Y(CF3COO)3)、三氟醋酸鈉(CF3COONa)購(gòu)于GFS Chemicals。二氯甲烷及三氯甲烷、二甲基甲酰胺(DMF)購(gòu)買于北京化工廠。所有的化學(xué)試劑都是分析純度。

    2.2 合成上轉(zhuǎn)換納米粒子

    該核殼殼層上轉(zhuǎn)換納米結(jié)構(gòu)基于已發(fā)表的化學(xué)方法制備[14-15]。首先,合成核結(jié)構(gòu),將YbCl3·6H2O(0.1 mmol),YCl3·6H2O(0.39 mmol)和ErCl3·6H2O(0.01 mmol)溶解在3 mL OA,7.5 mL ODE 的三口瓶中,并加熱到150℃,保持30 min,之后在氬氣保護(hù)下冷卻至室溫。然后,配置NH4F(2 mmol),NaOH(1.25 mmol),使其溶解在5 mL 甲醇中,并加入到以上稀土鹽的三口瓶中,加到70℃去除甲醇,再加熱到300℃并保持1 h。然后,加入0.25 mmol NaYF4:Yb(10%)活性殼在ODE 中(通過(guò)三氟醋酸鹽法合成),加熱并熟化10 min。然后加入0.5 mmol NaYF4:Nd(20%)活性殼(通過(guò)三氟醋酸鹽法合成),并熟化10 min。最后,使溶液冷卻到室溫,并使用乙醇離心,將上述混合物溶解在6 mL 三氯甲烷中。不同稀土元素?fù)诫s的核殼殼層上轉(zhuǎn)換納米結(jié)構(gòu)均采用類似方法合成。

    2.3 合成IR-780 分子

    根據(jù)文獻(xiàn)[11]方法,類似地,在氮?dú)獗Wo(hù)下,將有機(jī)IR-780 分 子(250 mg),4-巰基苯甲酸(115.5 mg),和DMF(10 mL)溶解在50 mL 三口瓶中,使混合溶液在氮?dú)猸h(huán)境下維持17 h。產(chǎn)物溶液用0.45μm PTFE過(guò)濾后,減壓蒸餾去除DMF。然后,將殘余物溶解在5 mL 二氯甲烷中,再次通過(guò)0.45μm PTFE過(guò)濾,并用冰乙醚實(shí)施沉淀。最后,將反應(yīng)物在真空下過(guò)濾、干燥并避光保存。

    2.4 合成IR-806 分子

    采用類似于文獻(xiàn)[8,17]的方法,將1 mL IR-806(xmg/mL,x為0~20 mg/mL)溶解在三氯甲烷中,并與1 mLβ-NaYF4:Yb/Er(20/2%)@NaYF4:Yb(10%)@NaYF4:Nd(20%)納米粒子混合,其中(Er3+~1.67 mM)。將得到的反應(yīng)混合物攪拌24 h在室溫下離心,重新分散在1 mL 三氯甲烷中。對(duì)IR-806敏化的UCNPs 進(jìn)行上轉(zhuǎn)換光譜測(cè)試時(shí),在稀土納米粒子中的Er3+離子濃度約為16μM的條件下進(jìn)行。

    2.5 實(shí)驗(yàn)表征測(cè)試

    透射電鏡(TEM)測(cè)試:采用Tecnai G2 F20 S-Twin電子顯微鏡在200 kV 電壓下測(cè)試。X-ray衍射(XRD)測(cè)試通過(guò)Rigaku D/max-2000 完成,衍射半徑采用Cu Kαradiation(λ=0.154 1 nm)。吸收光譜利用Maya 2000光譜儀完成測(cè)試(Ocean optics)。利用外在耦合的808 nm激光在海洋光學(xué)光譜儀(Maya2000)記錄上轉(zhuǎn)換光譜。通過(guò)Hitachi,S-4800 表征能譜(EDS)。上轉(zhuǎn)換發(fā)光的熒光壽命測(cè)試采用500 MHz TDS 3052作為激發(fā)光源,通過(guò)OPO(Sunlite 8000)及示波器獲得熒光壽命數(shù)據(jù)。

    3 實(shí)驗(yàn)結(jié)果與討論

    3.1 納米粒子形貌及表征

    采用高溫?zé)岱纸夥ㄖ苽涓叨染鶆虻腘d3+敏化核/殼/殼上轉(zhuǎn)換NaYF4:Yb/Er(20/2%)@NaYF4:Yb(10%)@NaYF4:Nd(80%)納米核結(jié)構(gòu)。透射電鏡照片顯示上轉(zhuǎn)換納米粒子的尺寸均勻。圖1 為上轉(zhuǎn)換納米粒子的核、核/殼、核/殼/殼電鏡表征圖及尺寸分布圖。由平均粒徑大小統(tǒng)計(jì)結(jié)果可知,核(NaYF4:Yb/Er(20/2%),記 為C),核/殼(NaYF4:Yb/Er(20/2%)@NaYF4:Yb(10%),記 為CS),核/殼/殼(NaYF4:Yb/Er(20/2%)@NaYF4:Yb(10%)@NaYF4:Nd(80%)),記為CSS)的平均尺寸分別為23.5、26.3、33.6 nm。這證實(shí)結(jié)構(gòu)存在約1.4 nm 的Yb 過(guò)渡層,3.7 nm 的Nd 敏化納米殼層逐步生長(zhǎng)在NaYF4:Yb/Er 納米核上面。圖2(a)為上轉(zhuǎn)換納米粒子的核、核/殼、核/殼/殼XRD圖,顯示合成的UCNPs 為經(jīng)典的六角相結(jié)構(gòu)(JCPDS-16-0334),EDS 證實(shí)Nd、Y、Yb 等稀土元素有效地?fù)诫s進(jìn)納米粒子內(nèi)(圖2(b))。進(jìn)一步,根據(jù)文獻(xiàn)的方法(圖2(c)),合成了IR-806 分子,由吸收?qǐng)D(圖2(d))可見(jiàn),其吸收峰位從780 nm移動(dòng)到806 nm,結(jié)果證實(shí)成功合成了IR-806 分子。進(jìn)一步,根據(jù)前面的方法將IR-806 分子修飾到上轉(zhuǎn)換納米粒子表面。由圖2(d)可知,當(dāng)IR-806 分子修飾到UCNPs 上之后,其吸收峰位被IR-806 的吸收所掩蓋,從而證實(shí)染料分子成功修飾到UCNPs 上。

    3.2 染料敏化增強(qiáng)機(jī)制證實(shí)與討論

    相對(duì)于最早報(bào)道的經(jīng)典的IR-806 敏化NaYF4:Yb/Er(20/2%)納米粒子[11],本文設(shè)計(jì)的染料敏化CSS 結(jié)構(gòu)的上轉(zhuǎn)換發(fā)光強(qiáng)度(圖3(a))增強(qiáng)了約38 倍。證實(shí)本文設(shè)計(jì)的染料敏化結(jié)構(gòu)實(shí)現(xiàn)了上轉(zhuǎn)換發(fā)光強(qiáng)度的增強(qiáng)。另外,在近紅外(808 nm)光激發(fā)下,染料敏化CSS 結(jié)構(gòu)的上轉(zhuǎn)換紅光發(fā)射與綠光發(fā)射均表現(xiàn)出發(fā)光強(qiáng)度隨激發(fā)光功率的非線性依賴特性(圖3(b)),其多光子指數(shù)分別為1.67(綠 光540 nm發(fā) 射4S13/2→4I15/2),2.0(紅光655 nm 發(fā)射4F9/2→4I15/2),證實(shí)其發(fā)光特性為非線性的上轉(zhuǎn)換發(fā)光。

    本文設(shè)計(jì)的染料敏化CSS 結(jié)構(gòu)的上轉(zhuǎn)換發(fā)光強(qiáng)度相對(duì)于染料敏化的核納米粒子增強(qiáng)約38 倍。對(duì)于這種增強(qiáng),分析認(rèn)為:一方面,在CSS 納米結(jié)構(gòu)中最外層為Nd3+離子摻雜殼層,而由圖4(a)(彩圖見(jiàn)期刊電子版)可知,Nd 的吸收與IR-806 染料分子的發(fā)射有大量交疊,因而,能夠被IR-806 分子高效敏化;另一方面,CSS 結(jié)構(gòu)中的納米殼層可以有效保護(hù)發(fā)光中心。由圖4(b)(彩圖見(jiàn)期刊電子版)可見(jiàn),經(jīng)染料敏化的具有CSS 結(jié)構(gòu)的Er 的發(fā)光壽命(253μs)明顯長(zhǎng)于染料敏化核納米粒子(146μs)及核納米粒子(169μs)Er 的壽命,發(fā)光壽命值分別延長(zhǎng)了1.73 倍及1.50倍。證實(shí)了納米殼層隔絕了發(fā)光中心與外部環(huán)境干擾,使得發(fā)光中心產(chǎn)生長(zhǎng)的發(fā)光壽命。值得注意的是,盡管所設(shè)計(jì)的染料敏化Nd3+離子摻雜納米結(jié)構(gòu)較佳的激發(fā)波長(zhǎng)在800 nm 附近,但是在研究發(fā)光壽命時(shí),NaYF4:Yb/Er(20/2%)納米粒子只能在980 nm 波長(zhǎng)處激發(fā)。

    傳統(tǒng)(20/2%)核納米粒子只能被980 nm 光激發(fā)產(chǎn)生上轉(zhuǎn)換發(fā)光,因此,圖4(b)的測(cè)試激發(fā)波長(zhǎng)選擇為980 nm 而非通常采用的808 nm。由圖4(c)可知,對(duì)于CSS 納米結(jié)構(gòu),無(wú)論是否連接染料分子,其發(fā)光壽命均保持不變。進(jìn)一步證實(shí)納米殼層有效地阻隔了發(fā)光中心與外界環(huán)境的相互作用,從而增強(qiáng)了上轉(zhuǎn)換發(fā)光。

    本文Nd3+敏化體系的不同之處在于,其最外層的納米殼層中僅摻雜了Nd3+,而沒(méi)有像以往文獻(xiàn)報(bào)道的將Nd-Yb 共摻雜到納米殼層中[16]。這種結(jié)構(gòu)設(shè)計(jì)是根據(jù)實(shí)驗(yàn)結(jié)果所得。本文所設(shè)計(jì)的釹敏化多層殼納米結(jié)構(gòu)的上轉(zhuǎn)換光譜如圖5 所示??梢?jiàn),隨著最外層Yb3+摻雜濃度的增加,染料敏化CSS 結(jié)構(gòu)的上轉(zhuǎn)換發(fā)光強(qiáng)度反而逐漸減弱。根據(jù)前面的研究可知,染料敏化稀土上轉(zhuǎn)換納米體系中,染料吸收的激發(fā)能需要逐步傳遞到內(nèi)部的發(fā)光中心[17],而激發(fā)能傳遞過(guò)程中,能量損耗非常大,摻雜Yb3+離子極易將激發(fā)能傳遞到表面[9,23-24],從而使傳遞到內(nèi)部的激發(fā)能降低,最終導(dǎo)致上轉(zhuǎn)換發(fā)光降低。由此可知,最外層的納米殼層在不摻雜Yb3+離子的情況下,產(chǎn)生的染料敏化上轉(zhuǎn)換發(fā)光最強(qiáng)。

    3.3 發(fā)光中心為Ho 及Tm 時(shí)染料敏化發(fā)光增強(qiáng)

    進(jìn)一步,對(duì)于CSS 結(jié)構(gòu),將核內(nèi)的發(fā)光中心換 為 Ho(NaYF4:Yb/Ho(20/1%))@NaYF4:Yb(10%)@NaYF4:Nd(80%))或Tm(NaYF4:Yb/Tm(20/1%)@NaYF4:Yb(10%)@NaYF4:Nd(80%)),同樣實(shí)現(xiàn)了染料敏化上轉(zhuǎn)換發(fā)光的增強(qiáng)(圖6(a)和6(b),彩圖見(jiàn)期刊電子版)。對(duì)于發(fā)光中心為Ho 及Tm,發(fā)光強(qiáng)度同樣隨激發(fā)光功率呈非線性的依賴關(guān)系(圖6(c)和6(d),彩圖見(jiàn)期刊電子版)。對(duì)于發(fā)光中心為Ho 的情況,其多光子指數(shù)分別為1.57(540 nm發(fā) 射4S13/2→4I15/2),1.88(645 nm 發(fā)射4F9/2→4I15/2)。對(duì)于發(fā)光中心為Tm的情況,其多光子指數(shù)分別為2.82(450 nm 發(fā)射1D2→3F4)、1.74(470 nm 發(fā)射1G4→3H6)、1.80(645 nm發(fā)射1G4→3F4)、1.34(695 nm發(fā)射3F2→3H6)。值得注意的是,對(duì)于Tm 離子,NaYF4:Yb/Tm(20/1%)納米核結(jié)構(gòu),幾乎沒(méi)有染料敏化的上轉(zhuǎn)換發(fā)光出現(xiàn)。這是由于Tm 的800 nm 發(fā)射能級(jí)(3H4→3H6)與IR-806 分子的吸收交疊嚴(yán)重,從而猝滅了Tm的發(fā)光。而CSS 結(jié)構(gòu)使得外面的殼層成功地阻隔了Tm 向IR-806 傳遞,從而實(shí)現(xiàn)了染料敏化上轉(zhuǎn)換發(fā)光。

    4 結(jié)論

    本文成功制備了高度均勻的NaYF4:Yb/Er(20/2%)@NaYF4:Yb(10%)@NaYF4:Nd(80%)上轉(zhuǎn)換納米粒子,其染料敏化上轉(zhuǎn)換發(fā)光強(qiáng)度相對(duì)于染料敏化的NaYF4:Yb/Er(20/2%)核納米結(jié)構(gòu)增強(qiáng)了約38 倍。進(jìn)一步研究表明,這種增強(qiáng)一方面源自最外層Nd 吸收與染料IR-806 分子的發(fā)射交疊大,導(dǎo)致其能有效吸收染料的激發(fā)能。另一方面源自納米殼層對(duì)發(fā)光中心的保護(hù)作用,相對(duì)于染料敏化的核納米結(jié)構(gòu),其發(fā)光壽命延長(zhǎng)了1.73 倍。通過(guò)改變最外層Yb3+的摻雜濃度,證實(shí)摻雜Yb3+將導(dǎo)致染料敏化上轉(zhuǎn)換發(fā)光減弱,而無(wú)摻雜Yb3+的條件下上轉(zhuǎn)換發(fā)光最強(qiáng)。最終,采用這種染料敏化的CSS 結(jié)構(gòu)實(shí)現(xiàn)了發(fā)光中心為Ho 及Tm 的染料敏化上轉(zhuǎn)換發(fā)光強(qiáng)度的增強(qiáng)。

    猜你喜歡
    三氟敏化染料
    微波加熱快速合成5-三氟甲基吡啶-2-胺和2-[(5-三氟甲基吡啶-2-基)氧基]乙醇
    山東化工(2024年1期)2024-02-04 09:47:12
    新染料可提高電動(dòng)汽車安全性
    冠心病穴位敏化現(xiàn)象與規(guī)律探討
    近5年敏化態(tài)與非敏化態(tài)關(guān)元穴臨床主治規(guī)律的文獻(xiàn)計(jì)量學(xué)分析
    中國(guó)染料作物栽培史
    染料、油和水
    4-甲胺基-6-三氟甲基-2-甲砜基嘧啶的合成及其晶體結(jié)構(gòu)
    新型含1,2,3-三氮唑的染料木素糖綴合物的合成
    耦聯(lián)劑輔助吸附法制備CuInS2量子點(diǎn)敏化太陽(yáng)電池
    5種天然染料敏化太陽(yáng)電池的性能研究
    国产成人免费无遮挡视频| 91成人精品电影| 黄色视频不卡| 亚洲人成77777在线视频| 国产一区二区激情短视频| 欧美老熟妇乱子伦牲交| 岛国毛片在线播放| 亚洲久久久国产精品| 亚洲国产看品久久| 亚洲精品久久成人aⅴ小说| 色在线成人网| 悠悠久久av| 麻豆成人av在线观看| 色老头精品视频在线观看| 手机成人av网站| 女同久久另类99精品国产91| 亚洲三区欧美一区| 老司机靠b影院| 亚洲精品在线观看二区| 国产在线观看jvid| 美女高潮喷水抽搐中文字幕| 国产精品 国内视频| 日韩一卡2卡3卡4卡2021年| 亚洲色图综合在线观看| 国产成人欧美| 国产午夜精品久久久久久| 久久性视频一级片| 淫妇啪啪啪对白视频| 黄网站色视频无遮挡免费观看| 精品一品国产午夜福利视频| 中亚洲国语对白在线视频| 91麻豆av在线| 两性午夜刺激爽爽歪歪视频在线观看 | 日韩三级视频一区二区三区| 成人手机av| 久久久精品94久久精品| 国产精品98久久久久久宅男小说| 80岁老熟妇乱子伦牲交| 色精品久久人妻99蜜桃| 国产精品欧美亚洲77777| 757午夜福利合集在线观看| 欧美亚洲日本最大视频资源| 午夜福利乱码中文字幕| 电影成人av| 一级片'在线观看视频| 无限看片的www在线观看| 老熟女久久久| 在线天堂中文资源库| 国产色视频综合| 国产aⅴ精品一区二区三区波| 一二三四在线观看免费中文在| 国产精品香港三级国产av潘金莲| 69av精品久久久久久 | kizo精华| 亚洲一区二区三区欧美精品| 中文字幕最新亚洲高清| 亚洲欧美激情在线| 在线永久观看黄色视频| 中文欧美无线码| 最新美女视频免费是黄的| 亚洲欧美日韩另类电影网站| 一本一本久久a久久精品综合妖精| 日韩大码丰满熟妇| 国产精品一区二区在线不卡| 亚洲精品中文字幕在线视频| 精品乱码久久久久久99久播| 精品国产乱码久久久久久小说| 黄色毛片三级朝国网站| 三上悠亚av全集在线观看| 国产一区二区三区综合在线观看| 99精品久久久久人妻精品| 黄色怎么调成土黄色| 12—13女人毛片做爰片一| 亚洲精品美女久久久久99蜜臀| 国产欧美日韩一区二区精品| 丝袜美足系列| 亚洲欧美色中文字幕在线| 男女免费视频国产| www.精华液| 久久国产精品影院| 亚洲成av片中文字幕在线观看| 国产黄频视频在线观看| 高潮久久久久久久久久久不卡| 亚洲精品中文字幕在线视频| 国内毛片毛片毛片毛片毛片| 亚洲精品国产色婷婷电影| 欧美精品啪啪一区二区三区| 99精品欧美一区二区三区四区| 两性夫妻黄色片| 黄色a级毛片大全视频| 不卡一级毛片| 黄色视频,在线免费观看| 两人在一起打扑克的视频| 免费在线观看视频国产中文字幕亚洲| 人妻 亚洲 视频| 久久天躁狠狠躁夜夜2o2o| 国产精品 欧美亚洲| 久热爱精品视频在线9| a级片在线免费高清观看视频| 青草久久国产| 亚洲av片天天在线观看| 久久狼人影院| 亚洲色图 男人天堂 中文字幕| 丁香六月欧美| 极品少妇高潮喷水抽搐| 亚洲欧美一区二区三区黑人| √禁漫天堂资源中文www| 麻豆成人av在线观看| 欧美黑人欧美精品刺激| 久久这里只有精品19| 搡老熟女国产l中国老女人| 国产在线观看jvid| 久久九九热精品免费| 窝窝影院91人妻| 成人国产一区最新在线观看| 中文字幕人妻丝袜制服| 正在播放国产对白刺激| 天天躁夜夜躁狠狠躁躁| av网站免费在线观看视频| 国产精品 欧美亚洲| 国产亚洲一区二区精品| 亚洲av电影在线进入| 99久久精品国产亚洲精品| 国产在视频线精品| 精品一区二区三卡| 99riav亚洲国产免费| 日本av手机在线免费观看| 狠狠精品人妻久久久久久综合| 国产午夜精品久久久久久| 99热网站在线观看| 黄色成人免费大全| 亚洲av美国av| bbb黄色大片| 咕卡用的链子| 他把我摸到了高潮在线观看 | 一个人免费看片子| 超色免费av| 久久国产亚洲av麻豆专区| 不卡一级毛片| 精品一品国产午夜福利视频| 国产免费现黄频在线看| 女警被强在线播放| 国产精品一区二区免费欧美| 亚洲一区中文字幕在线| 亚洲精品在线观看二区| 国产xxxxx性猛交| 日韩视频在线欧美| 男女床上黄色一级片免费看| 精品国产乱码久久久久久男人| 亚洲熟女精品中文字幕| 黑人猛操日本美女一级片| 咕卡用的链子| 伊人久久大香线蕉亚洲五| 99精品欧美一区二区三区四区| 亚洲国产欧美一区二区综合| 精品欧美一区二区三区在线| 9191精品国产免费久久| 一区二区三区激情视频| 美女午夜性视频免费| videosex国产| 欧美日韩一级在线毛片| 咕卡用的链子| 他把我摸到了高潮在线观看 | 男女午夜视频在线观看| 久久免费观看电影| 咕卡用的链子| 宅男免费午夜| av又黄又爽大尺度在线免费看| 黑人巨大精品欧美一区二区mp4| 国产在线视频一区二区| 精品欧美一区二区三区在线| 亚洲三区欧美一区| 日韩欧美免费精品| 天堂8中文在线网| 久久精品国产a三级三级三级| 51午夜福利影视在线观看| 黄色丝袜av网址大全| 亚洲国产欧美日韩在线播放| 乱人伦中国视频| 国产福利在线免费观看视频| 亚洲成人手机| 久久久欧美国产精品| 黄色片一级片一级黄色片| 超碰成人久久| 亚洲久久久国产精品| 久久久久久亚洲精品国产蜜桃av| 不卡一级毛片| a级毛片在线看网站| 日日爽夜夜爽网站| h视频一区二区三区| 亚洲天堂av无毛| 女人爽到高潮嗷嗷叫在线视频| 久久毛片免费看一区二区三区| 视频区图区小说| 黄色视频在线播放观看不卡| 国产男女超爽视频在线观看| 精品国产乱子伦一区二区三区| 男女午夜视频在线观看| 久久性视频一级片| 老熟妇乱子伦视频在线观看| 午夜福利免费观看在线| 制服人妻中文乱码| 丝袜喷水一区| 99精品久久久久人妻精品| 久久久久网色| 极品教师在线免费播放| 国产av国产精品国产| 日本欧美视频一区| 无人区码免费观看不卡 | 欧美日韩一级在线毛片| 亚洲五月色婷婷综合| 日韩视频一区二区在线观看| 久久青草综合色| 日韩视频在线欧美| 操美女的视频在线观看| 动漫黄色视频在线观看| 啪啪无遮挡十八禁网站| 搡老熟女国产l中国老女人| kizo精华| 免费久久久久久久精品成人欧美视频| 国产在线一区二区三区精| 久久精品成人免费网站| 免费在线观看视频国产中文字幕亚洲| 亚洲第一青青草原| 欧美日韩一级在线毛片| 久久国产精品影院| 国产精品一区二区在线观看99| 国产欧美日韩一区二区精品| 久热爱精品视频在线9| 国产精品自产拍在线观看55亚洲 | 妹子高潮喷水视频| 18禁美女被吸乳视频| 精品国内亚洲2022精品成人 | 亚洲久久久国产精品| 91麻豆av在线| videos熟女内射| 久久午夜亚洲精品久久| av免费在线观看网站| 性高湖久久久久久久久免费观看| 中文字幕最新亚洲高清| 精品一品国产午夜福利视频| 亚洲精品乱久久久久久| 亚洲av成人不卡在线观看播放网| 男人操女人黄网站| 麻豆成人av在线观看| 欧美日韩亚洲综合一区二区三区_| 国产在线精品亚洲第一网站| 在线永久观看黄色视频| 欧美日韩亚洲国产一区二区在线观看 | 色老头精品视频在线观看| 美女高潮到喷水免费观看| 亚洲欧洲日产国产| 丝袜喷水一区| 99久久精品国产亚洲精品| 999久久久精品免费观看国产| 亚洲七黄色美女视频| 国产成人免费无遮挡视频| 另类亚洲欧美激情| 成人国语在线视频| 女人高潮潮喷娇喘18禁视频| 欧美日韩一级在线毛片| 国产日韩欧美视频二区| 天堂中文最新版在线下载| xxxhd国产人妻xxx| 欧美变态另类bdsm刘玥| 亚洲第一欧美日韩一区二区三区 | 成人手机av| a级毛片黄视频| 成人亚洲精品一区在线观看| 日日爽夜夜爽网站| 国产欧美日韩精品亚洲av| 欧美日韩亚洲国产一区二区在线观看 | 日韩中文字幕欧美一区二区| cao死你这个sao货| 无限看片的www在线观看| 国产一区二区激情短视频| 国产精品一区二区在线不卡| 日韩欧美一区二区三区在线观看 | 91大片在线观看| 免费少妇av软件| 99久久国产精品久久久| 日韩免费av在线播放| 免费看十八禁软件| 国产精品免费视频内射| 老鸭窝网址在线观看| 无限看片的www在线观看| 国产精品.久久久| 国产精品一区二区在线不卡| 他把我摸到了高潮在线观看 | 中文字幕人妻丝袜一区二区| 两个人看的免费小视频| 久久久欧美国产精品| 777米奇影视久久| 成人国产一区最新在线观看| 国产极品粉嫩免费观看在线| 亚洲国产欧美日韩在线播放| 亚洲天堂av无毛| 一边摸一边做爽爽视频免费| 中亚洲国语对白在线视频| 国产精品熟女久久久久浪| 一个人免费在线观看的高清视频| 午夜福利视频精品| 久久久久精品人妻al黑| 亚洲第一欧美日韩一区二区三区 | 国产亚洲精品第一综合不卡| 人人妻人人澡人人爽人人夜夜| 一级片'在线观看视频| 欧美日韩黄片免| 国内毛片毛片毛片毛片毛片| 亚洲精品国产色婷婷电影| 麻豆成人av在线观看| 午夜福利,免费看| 嫁个100分男人电影在线观看| 黄色怎么调成土黄色| 男人舔女人的私密视频| 免费观看人在逋| 熟女少妇亚洲综合色aaa.| 在线观看www视频免费| 成人亚洲精品一区在线观看| 成年女人毛片免费观看观看9 | 欧美大码av| 亚洲国产欧美日韩在线播放| 亚洲av日韩精品久久久久久密| 成人国语在线视频| 欧美日韩av久久| 国产欧美日韩精品亚洲av| 欧美黄色淫秽网站| 精品亚洲乱码少妇综合久久| 人人妻人人澡人人看| 少妇粗大呻吟视频| 精品国产乱码久久久久久小说| 超碰97精品在线观看| 欧美日韩成人在线一区二区| 亚洲精品在线美女| 午夜免费鲁丝| 80岁老熟妇乱子伦牲交| 亚洲精品国产色婷婷电影| 一区福利在线观看| 成人18禁在线播放| kizo精华| 人人澡人人妻人| a级片在线免费高清观看视频| 夫妻午夜视频| 欧美午夜高清在线| 欧美久久黑人一区二区| 亚洲,欧美精品.| 美女主播在线视频| 欧美亚洲日本最大视频资源| 久久香蕉激情| 午夜精品国产一区二区电影| 一区二区av电影网| 国产日韩欧美亚洲二区| 两人在一起打扑克的视频| 精品亚洲乱码少妇综合久久| 欧美黄色淫秽网站| 巨乳人妻的诱惑在线观看| 狂野欧美激情性xxxx| tube8黄色片| 一本—道久久a久久精品蜜桃钙片| 精品亚洲乱码少妇综合久久| 十分钟在线观看高清视频www| 十八禁高潮呻吟视频| 菩萨蛮人人尽说江南好唐韦庄| 狠狠精品人妻久久久久久综合| 欧美日韩福利视频一区二区| 99久久人妻综合| 亚洲国产av新网站| 亚洲少妇的诱惑av| 日韩大片免费观看网站| 日韩视频在线欧美| 国产精品 欧美亚洲| 日韩欧美一区视频在线观看| av天堂久久9| 亚洲第一青青草原| 久久青草综合色| 黄色视频不卡| 黑人操中国人逼视频| 90打野战视频偷拍视频| 成人永久免费在线观看视频 | 久久国产精品影院| 国产精品成人在线| 中文字幕制服av| 一进一出抽搐动态| 国产日韩欧美亚洲二区| 久久久久国产一级毛片高清牌| 日韩成人在线观看一区二区三区| 精品久久蜜臀av无| 男女无遮挡免费网站观看| 国产激情久久老熟女| 人妻 亚洲 视频| 国产高清videossex| 国产精品免费一区二区三区在线 | 美国免费a级毛片| 中文字幕人妻丝袜制服| 曰老女人黄片| 又大又爽又粗| 黄色 视频免费看| 免费在线观看黄色视频的| 嫩草影视91久久| 亚洲成a人片在线一区二区| 新久久久久国产一级毛片| 日本vs欧美在线观看视频| 91成人精品电影| 精品欧美一区二区三区在线| 少妇被粗大的猛进出69影院| 成人18禁高潮啪啪吃奶动态图| 人人妻人人爽人人添夜夜欢视频| 久久99热这里只频精品6学生| 国产在线免费精品| 国产亚洲精品一区二区www | 免费av中文字幕在线| 成年动漫av网址| 伦理电影免费视频| 老汉色av国产亚洲站长工具| 午夜福利视频精品| 免费观看av网站的网址| 成年版毛片免费区| 国产色视频综合| 午夜视频精品福利| 国产一区二区在线观看av| 精品人妻1区二区| e午夜精品久久久久久久| 无遮挡黄片免费观看| 狂野欧美激情性xxxx| 国产精品香港三级国产av潘金莲| 最新美女视频免费是黄的| 久久久久精品人妻al黑| 丰满少妇做爰视频| 亚洲av欧美aⅴ国产| 9热在线视频观看99| 汤姆久久久久久久影院中文字幕| 亚洲国产欧美日韩在线播放| 日本撒尿小便嘘嘘汇集6| 免费少妇av软件| 欧美国产精品一级二级三级| 亚洲第一青青草原| 99国产精品99久久久久| 久久精品国产亚洲av高清一级| 老司机在亚洲福利影院| 久久性视频一级片| 99久久人妻综合| 欧美一级毛片孕妇| 国产精品免费一区二区三区在线 | 色婷婷久久久亚洲欧美| 久久免费观看电影| 亚洲国产欧美日韩在线播放| 国产97色在线日韩免费| 精品一品国产午夜福利视频| 天堂8中文在线网| 性高湖久久久久久久久免费观看| 两性午夜刺激爽爽歪歪视频在线观看 | 男女无遮挡免费网站观看| 久久久久精品国产欧美久久久| 男女床上黄色一级片免费看| 午夜91福利影院| 国产成人精品久久二区二区91| 国产亚洲av高清不卡| 欧美成狂野欧美在线观看| 精品亚洲成a人片在线观看| 首页视频小说图片口味搜索| 日韩欧美一区二区三区在线观看 | 又黄又粗又硬又大视频| 久久精品成人免费网站| 狠狠精品人妻久久久久久综合| 性少妇av在线| 国产精品香港三级国产av潘金莲| 国产成人av激情在线播放| 日韩熟女老妇一区二区性免费视频| 中文字幕精品免费在线观看视频| 免费看十八禁软件| 亚洲专区中文字幕在线| 老司机福利观看| 另类亚洲欧美激情| 国产免费视频播放在线视频| 18禁美女被吸乳视频| 一级a爱视频在线免费观看| 久久久国产成人免费| 亚洲伊人色综图| 久久久久国产一级毛片高清牌| 国产一卡二卡三卡精品| 国产av国产精品国产| 国产伦人伦偷精品视频| 一二三四在线观看免费中文在| 日本av免费视频播放| 国产欧美日韩一区二区三区在线| 两人在一起打扑克的视频| 成年动漫av网址| 午夜免费鲁丝| 久久人妻熟女aⅴ| 麻豆乱淫一区二区| 日韩一卡2卡3卡4卡2021年| 涩涩av久久男人的天堂| 成人国产av品久久久| 俄罗斯特黄特色一大片| 亚洲av成人一区二区三| 人人妻人人澡人人爽人人夜夜| 亚洲精品久久午夜乱码| 国产一卡二卡三卡精品| 成人影院久久| 亚洲成人国产一区在线观看| www.精华液| 丝袜喷水一区| 成人手机av| 超碰97精品在线观看| 最黄视频免费看| 妹子高潮喷水视频| 超色免费av| 999精品在线视频| 日韩大片免费观看网站| 精品乱码久久久久久99久播| 欧美日韩国产mv在线观看视频| 51午夜福利影视在线观看| 日本黄色视频三级网站网址 | 99久久99久久久精品蜜桃| 电影成人av| 三上悠亚av全集在线观看| 久久久久视频综合| 一进一出好大好爽视频| 热re99久久国产66热| 免费观看a级毛片全部| 国产深夜福利视频在线观看| 国产精品免费大片| 人妻一区二区av| 亚洲午夜理论影院| 亚洲av欧美aⅴ国产| 美女视频免费永久观看网站| 少妇的丰满在线观看| 高清视频免费观看一区二区| 免费在线观看视频国产中文字幕亚洲| 成年人黄色毛片网站| videos熟女内射| 国产片内射在线| 国产一区二区三区在线臀色熟女 | www日本在线高清视频| 亚洲色图 男人天堂 中文字幕| 亚洲国产毛片av蜜桃av| 黄色a级毛片大全视频| 黄频高清免费视频| 国产精品久久久久久精品古装| 少妇的丰满在线观看| 国产高清视频在线播放一区| 自拍欧美九色日韩亚洲蝌蚪91| kizo精华| 国产成+人综合+亚洲专区| 一边摸一边抽搐一进一小说 | 亚洲久久久国产精品| 别揉我奶头~嗯~啊~动态视频| 丝袜美腿诱惑在线| 国产xxxxx性猛交| svipshipincom国产片| 伊人久久大香线蕉亚洲五| 中文欧美无线码| 水蜜桃什么品种好| 一区二区三区精品91| 欧美亚洲日本最大视频资源| av福利片在线| 精品国产一区二区三区四区第35| 搡老乐熟女国产| 国产精品自产拍在线观看55亚洲 | 成人特级黄色片久久久久久久 | 婷婷成人精品国产| 精品国产一区二区久久| 国产高清视频在线播放一区| 两性夫妻黄色片| 午夜91福利影院| 国产精品99久久99久久久不卡| 天天添夜夜摸| 日日摸夜夜添夜夜添小说| 19禁男女啪啪无遮挡网站| 成人精品一区二区免费| 成人免费观看视频高清| 我要看黄色一级片免费的| 久久亚洲真实| 在线观看www视频免费| 嫁个100分男人电影在线观看| 又紧又爽又黄一区二区| 亚洲一区二区三区欧美精品| 黑人巨大精品欧美一区二区mp4| 一区二区三区精品91| 久久人人97超碰香蕉20202| 老司机午夜十八禁免费视频| 国产在线观看jvid| svipshipincom国产片| 91精品三级在线观看| 国产av国产精品国产| 日韩视频一区二区在线观看| av不卡在线播放| 高清黄色对白视频在线免费看| 一级黄色大片毛片| 亚洲人成电影免费在线| 一区二区三区激情视频| 欧美日韩福利视频一区二区| 亚洲专区中文字幕在线| 成人国语在线视频| 国产精品久久久av美女十八| 国产精品久久电影中文字幕 | 亚洲三区欧美一区| 日韩有码中文字幕| 人人妻,人人澡人人爽秒播| 久久久久视频综合| 久久久精品免费免费高清| 国产精品一区二区在线不卡| 天堂动漫精品| 精品国内亚洲2022精品成人 | 亚洲av美国av| 国产免费视频播放在线视频| 视频区欧美日本亚洲| 国产成人免费无遮挡视频| 亚洲精品国产精品久久久不卡| 99国产精品99久久久久| 精品国产一区二区三区久久久樱花| 王馨瑶露胸无遮挡在线观看| 精品国产一区二区三区久久久樱花| 欧美日韩国产mv在线观看视频| 亚洲人成77777在线视频|