• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Periodic Variation Solutions and Tori like Solutions for Stochastic Hamiltonian Systems

    2021-04-16 08:20:50ZHUJun朱俊LIZe黎澤
    應(yīng)用數(shù)學(xué) 2021年2期

    ZHU Jun(朱俊),LI Ze(黎澤)

    (School of Mathematics and Statistics,Ningbo University,Ningbo 315211,China)

    Abstract: In this paper,we study recurrence phenomenon for Hamiltonian systems perturbed by noises,especially path-wise random periodic variation solution (RPVS)and invariant tori like solution.Concretely speaking,for linear Schr?dinger equations,we completely clarify when RPVS exists,and for nearly integrable Hamiltonian systems perturbed by noises we prove that the existence of invariant tori like solutions is related to the involution property of multi component driven Hamiltonian functions.

    Key words: Random system;Hamiltonian system;Recurrence phenomenon;Invariant tori

    1.Introduction

    We first consider finite dimensional random dynamical systems.LetMbe a 2ddimensional symplectic manifold with symplectic form m.Given a Hamiltonian functionHonM,the associated Hamiltonian vector field is denoted byXH.Given a filtered probability space(?,F,P),letZtbe an Rl-valued driving semi-martingale,Y0∈F0be anM-valued random variable,and{Hα}lα=0be Hamiltonian functions onM.We will study the following type stochastic differential equations which may be seen as the analogies of Hamiltonian systems of the deterministic case:

    where?refers to the Stratonovich integral and(1.1)is understood in the sense of the integral equation with initial dataY0.Moreover,for simplicity we write dt=dZ0tin (1.1)and in the following.

    Let’s first consider the caseM=T?Td,where Td=Rd/2πZddenotes thed-dimensional torus.In the perturbation theory,one considers the Hamiltonian functions defined inT?Td,which can be viewed as Td×Rd,of the following form

    where (p,q)∈Rd×Tdis the action and angle variables respectively.IfH1= 0,the Hamiltonian system associated with (1.2)is integrable.IfH1(p,q)is a small perturbation in some sense,the Hamiltonian system corresponding to (1.2)is called nearly integrable.The classic celebrated KAM theorem[2]states that the invariant tori persists under the perturbation with suitable non-degenerate conditions.The KAM theory in the deterministic case is a fundamental result of Hamiltonian systems,and it has many significant and wide applications to various problems,for instance celestial mechanics,symplectic algorithms[3,7],Anderson localization etc.In the stochastic case,few results are known.Let (?,F,P,{θt}t∈R)denote the canonical metric dynamical system describing R1-valued Brownian motion{Bt}t∈R.Let us begin with the toy model problem:

    whereN0,N1only depend onp,?Nidenotes the gradient field generated byNi,andJdenotes the standard complex structure in R2d.The solution of (1.3)can be written as

    This can be seen as the stochastic version of integrable systems.Now,assume that for someZd,?piN0(p?)=2πki/Tfor alli=1,··· ,d,then it is easy to see

    with (ξ,ζ)=(0,··· ,0,?p1N1(p?)BT(ω),··· ,?pdN1(p?)BT(ω))for all (t,ω)∈R×?,and as a random dynamical system[1]there holds

    whereφ(t,ω)(p,q)denotes the solution of (1.3)with initial data (p,q).

    Inspired by(1.5),(1.6),we introduce the notion of periodic variation solutions as follows:

    Definition 1.1LetMbe a finite or infinite dimensional linear space or a smooth manifold embedded into Euclidean spaces.Letφ:Λ×?×M →Mbe the mapping which defines a measurable random dynamical system on the measurable space(M,B)over a metric random dynamical system (?,F,P,(θt)t∈Λ).We sayY(t,ω)is a random periodic variation solution (RPVS)withF0measurable initial dataY(0,ω)if there exists someT >0 and anM-valued (whenMis a linear space)or RN-valued (whenMis a manifold)random functionξ:ω ∈? →Morξ:ω ∈? →RNsuch that for allt ∈Λ,ω ∈?,there holds

    where (i)in (1.7)holds in the Euclidean space RNifMis a manifold embedded into RN.

    If the random dynamical system is a two parameter stochastic flowφ:I×I×?×M →M,(1.7)is replaced by

    for anyt,s ∈I,ω ∈?.

    If we requireξ=0 in(i)of(1.7),then solutions satisfying(1.7)are called random periodic solutions (RPS),i.e.,

    See the works of ZHAO,et al.[13]and FENG,et al.[6]for existence of RPS of contraction systems and dissipative systems.

    The other widely used notion of periodic solutions is the periodic Markov process solution:We say the solution of a stochastic equation is a periodic homogeneous Markov process solution if it is an Rmvalued homogeneous Markov process and the joint distribution P(ut1∈A1,··· ,utn ∈An)satisfies

    for someT >0 and all 0≤t1<···

    We summarize the existence/non-existence of RPS and RPVS for (1.3)in the following lemma.It is somewhat casual,and the precise statement can be found in Section 3.

    Proposition 1.1(1.3)has no random periodic solutions except for some trivial cases(See Proposition 3.1).ForF0measurable initial data (p(0),q(0))= (ξ,η),the solution of(1.3)is a random periodic variation solution iff{?Ni(ξ)}i=0,1are deterministic.

    In general,if the frequencies{?piN0(p?)}di=1are rationally independent,the solution of(1.3)is invariant tori like:

    where{Yj(t,ω)}dj=1are RPVSs.

    If there is essentially only one driving Hamiltonian in (1.1),i.e.,Hα=Fα(H)for allα= 0,··· ,l,it is easy to apply the classic KAM theorem to obtain random invariant tori like solutions in the stochastic case.Generally multi driving Hamiltonian functions may lead to non-existence of invariant tori.For the special cased= 1,we will see there exists a neat result:

    Proposition 1.2Letd=1.LetH0be a Hamiltonian function on R×T which gives rise to a small analytic perturbation of integrable systems.Let{Hα}lα=1be analytic functions ofp,q ∈C2.If the driving Hamiltonian functions satisfy

    then under reasonable non-degenerate assumptions,(1.1)has random invariant tori.See Proposition 3.2 for the precise statement.

    In a summary for SODEs,we remark that(i)Random periodic solutions generally do not exist for Hamiltonian type equations;(ii)The existence of random periodic variation solutions and invariant tori depends heavily on the involution property of the driving Hamiltonian functions.

    Let’s consider infinite dimensional random dynamical systems.Let(?,F,(Ft)t∈R,P,(θt)t∈Λ)be the canonical complete filtered Wiener space endowed with filtrationFts:=σ{Br1?Br2:s ≤r1,r2≤t}.DenoteandLet{ζj(t)}j∈Zbe a sequence of independent R-valued standard Brownian motions ont ∈R associated to the filtration(Ft)t∈R.LetΦ:L2(Td;C)→L2(Td;C)be a linear bounded operator withQ=ΦΦ?being a finite trace operator inL2(Td;C).Lettingbe the orthonormal basis forL2(Td;C),we define the processWto be

    It is easy to see the series (1.11)converges inL2(?×Td;C)and almost surely inL2(Td;C).This process is a special case ofQ-cylindrical Wiener process withQ=ΦΦ?.

    Theorem 1.1(i)IfΦ0,then the linear stochastic Schr?dinger equation with addictive noise

    has no RPVS.

    (ii)Let us consider the linear stochastic Schr?dinger equation with combined noise:

    whereλ ∈R,fis a real valued function which is periodic int,f(t+T1)=f(t),and smooth inx ∈Td.Thenuis an RPVS withF0measurable initial datau0∈L2(?,L2x)for (1.12)if only iff=0 andu=0.

    In the following,we denote ?Tu(t,w)=u(t+T,w)?u(t,θTw).

    2.Linear SPDEs

    We divide the proof of Theorem 1.1 into two propositions.Let{ek}k∈Zdbe the eigenfunctions of ?in Tdsuch that ?ek=?|k|2ek,andπkdenote the projection onto span{ek}.We getf:? →L2xis (F,B(L2x))measurable iffπkfis (F,B(C))measurable for allk ∈Zd.And similar results hold withFreplaced byFts,FtandFtas well.These facts will be used widely in this section without emphasis.

    Proposition 2.1Assume that the operatorΦ0 in (1.11).The linear stochastic Schr?dinger equation with addictive noise

    has no RPVS.

    ProofDefine

    then we haveE|ξk(t,ω)|2=|t|β2kwhere{βk}are defined by

    Applying the Fourier transform to (2.1)gives

    The solution is an Ornstein-Uhlenbeck process

    whereak=(u0,ek),k ∈Zd.Thus we have

    And by change of variables,(2.4)reduces to

    Thus,ifuis a random periodic variation solution,then there holds

    By iteration of (2.6),there holds

    Since we have by be Cauchy-Schwartz inequality and the Itisometry formula that

    the contradiction follows ifβk0 by lettingL →∞.Therefore,βk=0 for allk ∈Zd,which leads toΦ= 0,since{}j∈Zand{ek}k∈Zdare complete bases.Hence,no random periodic variation solution exists ifΦ0 .

    Proposition 2.2Let us consider the linear stochastic Schr?dinger equation with combined noise:

    whereλ ∈R,fis a real valued function which is periodic int,f(t+T1)=f(t),and smooth inx ∈Td.Thenuis an RPVS withF0measurable initial datau0∈L2(?,L2x)for (2.8)if only iff=0 andu=0.

    ProofSince (2.8)is non-autonomous,for RPVS,we use the definition in (1.8).Let us choose the eigenfunctions{ek}for Laplacian to be real valued functions,The solution is written as

    whereak=(u0,ek),k ∈Zd.Then one has by change of variables that

    Now,we prove RPVS exists ifff=0 andu=0.Assume thatuis an RPVS,i.e.?Tu(t)=ξfor someF-measurable random variableξand allt ≥0.

    Step 1 Taking the covariance of both sides of (2.10),we obtain by the It? isometry formula and the Cauchy-Schwartz inequality that

    for allt ≥0.Sincefis real valued and we have taken the orthogonal basis to be real functions,we see{}are real fork ∈Zd.Then byf(t+T1)=f(t)for allt ≥0,one has

    forn ∈Z.Thus (2.11),(2.12)show

    where in the last line we applied the periodicity off,(2.12)and change of variables.Thus,lettingn →∞,we get

    which by the periodicity offfurther shows that

    holds for allt ≥0.Assume thatis not identically zero.Let(t1,t2)be any interval contained in((0,∞)),then,choosing|t1?t2|to be sufficiently small,we have fort ∈(t1,t2)

    for someL ∈Z which depends ont1,t2and is independent oft ∈(t1,t2).Taking derivatives tot ∈(t1,t2)yieldsfort ∈(t1,t2).

    Back to (2.10),we see,for allt ≥0,

    Recall ?Tu=ξ.DenoteSinceu0isF0measurable,the underline parts areFTmeasurable.Taking conditional expectation E(·|FT),by the independence ofBt+T ?BTandFT,we have

    Thus since

    by taking covariance of (2.14)and the It? formula,we get that

    which ast →∞yields E(ξk|FT)=0,a.s.

    Inserting this to (2.14)shows

    Then by iteration we obtain for allt ≥0

    where we chosetj:=LT ?(j+1)Tand applied the fact thatTis a period off.Then by the Itformula,

    Therefore,by lettingL →∞,we see there exists no RPVS iffis nontrivial.

    Step 2 Now,it remains to consider the degenerate case whenf ≡0.In this case,(2.10)reduces to

    which combined withθ?TP=P gives

    where in the second equality we usedBT ?B0is independent ofF0andu0isF0adapted.

    LettingL →∞,by (2.16),we have

    SinceF0:=σ{Bt ?Bs:s,t ≤0},u0isF0measurable and belongs toL2(?;L2x),we obtain by(2.17)and the representation theorem for square integrable random variables (see Theorem 1.1.3 in [11])that there exists a unique adapted processMt ∈L2((?∞,0)×?)such that

    Thus,by the same reason as (2.16),we see from (2.15)that

    Then,applying (2.18),we arrive at

    which by change of variables gives

    SinceM(t ?T,θTω)andM(t,ω)areFtadapted and belong toL2((?∞,0)×?),by the It? formula,(2.19)shows

    Taking conditional expectation of both sides of (2.15)w.r.t,FT0gives

    which combined with (2.18)shows

    However,sinceFT0is independent ofF0,we see E(ak|FT0)=E(ak)=0.

    Thus (2.21)shows

    which by the It? formula further yields

    SinceθTis invertible,taking(2.22)as the starting point and doing iteration by(2.20)illustrate that

    Therefore,we conclude from (2.18)that

    3.Finite Dimensional Case

    In this section,we prove the results stated in Section 1 for SODEs.

    Proposition 3.1LetN0,N1beC1bounded functions ofp ∈Rd.Consider the SODE for (p,q)∈Rd×Td:

    Then we have

    1)(p,q)is RPVS if and only if?pN0(ξ),?pN1(ξ)are independent ofω;

    2)(p,q)is RPS if and only ifwithandη,ξare deterministic.

    ProofStep 1 The solution for (3.1)is given by

    The covariance of (3.2)is of orderc0t2ast →∞,ifc0defined by

    does not vanish.If (p,q)is an RPVS,then the covariance of ?Tq(t,ω)is identical w.r.t.t ≥0.Thusc0= 0.SinceξisF0measurable,isFTmeasurable.ThenBt+T ?BTis independent ofHence there holds

    Thus byc0= 0,the covariance of (3.2)is of orderc1tast →∞ifc1:=is not zero.Hence,c1=0 as well.Now we summarize that if (p,q)is an RPVS then

    (3.3)impliesNi(ξ)is independent ofωby similar arguments in Section 2.In fact,the representation theorem of square random variables show

    forMi ∈L2((?∞,0)×?)because(ξ)∈L2(?)isF0measurable fori= 0,1.Inserting(3.4)into (3.3)yields

    Then the It? formula shows

    Therefore,we arrive at

    namely,they are independent ofω.

    Step 2 If we assume furthermore that (p,q)is an RPS,then by (3.5)and (3.2),for someZdthere holds

    Similar arguments as Step 1 show that(3.6)impliesξis deterministic.And we seeTE(ξ)=by applying mathematical expectation to (3.7)sinceθ?P = P.Writingη= E(η)+for someh ∈L2((?∞,0)×?),taking conditional expectation of (3.7)w.r.t.FT0,one obtains

    And taking conditional expectation of (3.7)w.r.t.F0gives

    Sincethe Itformula with (3.8)shows

    By (3.10)and (3.11),we have

    which belongs toL2((?∞,0)×?)if and only if E(ξ)=0.Hence,we have deduced

    Therefore,by Step 1,we conclude that (p,q)is an RPS if and only if

    We have several examples:

    Example 3.1Letd= 2,N0(p)=f(p1),N1(p)=g(p1),then (p0,q0)= (c1,?,ψ1,ψ2),wherec1is deterministic and?,ψ1,ψ2areF0adapted random variables,evolves to an RPVS.It is an RPS iffψ1,ψ2are deterministic.

    Given?>0.p?∈Rd,define the setDp?,?={(p,q)∈C2d:|p ?p?|≤?,|?q|≤?},where?q= (?q1,··· ,?qd).Let Ap?,?be the set of complex valued continuous functions onDp?,?which are analytic functions in the interior,2π-periodic inq(i.e.f(p,q+2π)=f(p,q),?f ∈Ap?,?)and real valued for (p,q)∈R2d.

    Proposition 3.2LetH0be a Hamiltonian function of the formH0=N(p)+?(p,q)withN,∈Ap?,?.Denote

    Assume that (Bij)is a non-singulard×dmatrix andsatisfies the Diophantine condition,i.e.there exists a positive constantγsuch thatdefined by

    ?Consider the stochastic ODE (1.1)in R1×T with Hamiltonian functions{Hα}0≤α≤lwhich satisfy

    And assume that{Hα}lα=1are analytic functions inD?,p?and continuous to the boundary as well.Then there exists a constant?0>0 such that for given? ∈[0,?0] there exists a symplectic transformΨ:D?′,p?→D?,p?and solution (p(t),q(t))to (1.1)satisfying

    for someconstantsλα ∈R,α=1,··· ,l,andλ0=?pN(p?).

    ?Letd ≥1.Consider the stochastic ODE (1.1)in Rd×Tdwith Hamiltonian functionsH0(p,q)=N(p)+(p,q)and{Fβ(H0)}1≤β≤l:

    where{Fβ}are smooth functions.Then there exists a constant?0>0 such that for given? ∈[0,?0] there exists a symplectic transformΨ:D?′,p?→D?,p?satisfying

    ProofStep 1 Letλ=?N(p?)be the unperturbed frequency.By the classic KAM theorem,there exists a symplectic differmorphismsuch that

    in(p,q)for somez ∈R and an analytic functionR(·,·)which is of the order|p?p?|2.

    We will frequently use the following identity

    DenoteΨ=(Ψ1,··· ,Ψ2d)the inverse ofΦ,then

    Assume that (p(t),q(t))solve (3.13),then by It?’s formula

    By (3.16)and the factΦis a symplectic differmorphism,we get

    where in the last line we applied the Taylor expansion toFαatzand used (3.15)to expandH ?Φ.

    Thus (3.17),(3.18)show

    which implies that (3.14)is a solution.

    Step 2 It remains to prove the left S1×R1case.Applying (3.15)toH0gives the expansion

    for some symplectic differmorphismΦ,z0∈R,λ=H′0(p?),andRis of order|p ?p?|2.SinceΦkeeps the symplectic form,

    where we applied (3.12)in the last line.Therefore,we arrive at

    for allβ=0,...,l.Denote=Hβ ?Φ.Then one sees

    Then,comparing the coefficients of zero and one order of|p ?p?|,(3.19)gives

    Sinceλ0,A0(q)andA1(q)are constants.Thus (3.20)shows the symplectic transformΦtransforms all{Hα}into the canonical form

    Then the same argument in Step 1 gives the desired result.

    丰满人妻熟妇乱又伦精品不卡| 黄色丝袜av网址大全| 色综合欧美亚洲国产小说| 99久久国产精品久久久| 日本一区二区免费在线视频| 国产1区2区3区精品| 午夜两性在线视频| 亚洲三区欧美一区| 精品亚洲成a人片在线观看| 一区二区三区激情视频| 波多野结衣av一区二区av| 久久国产精品男人的天堂亚洲| 国产欧美日韩一区二区三| 亚洲av日韩在线播放| 极品人妻少妇av视频| 黄色a级毛片大全视频| 777久久人妻少妇嫩草av网站| 久久国产乱子伦精品免费另类| 欧美激情极品国产一区二区三区| 午夜精品久久久久久毛片777| av天堂久久9| 亚洲va日本ⅴa欧美va伊人久久| 日韩欧美国产一区二区入口| 国产xxxxx性猛交| 大陆偷拍与自拍| 亚洲一卡2卡3卡4卡5卡精品中文| av国产精品久久久久影院| 女同久久另类99精品国产91| 国产一卡二卡三卡精品| 1024视频免费在线观看| 国产高清国产精品国产三级| 国产亚洲一区二区精品| 99re6热这里在线精品视频| 久久精品成人免费网站| 国内久久婷婷六月综合欲色啪| 热99国产精品久久久久久7| 99国产极品粉嫩在线观看| 国产三级黄色录像| 国产成人av教育| 欧美最黄视频在线播放免费 | 国产aⅴ精品一区二区三区波| 99国产精品一区二区三区| www.自偷自拍.com| 国产精品一区二区在线观看99| 国产av精品麻豆| 亚洲一卡2卡3卡4卡5卡精品中文| 精品卡一卡二卡四卡免费| 999久久久国产精品视频| 亚洲熟妇中文字幕五十中出 | 欧洲精品卡2卡3卡4卡5卡区| 麻豆乱淫一区二区| 欧美黑人欧美精品刺激| 欧美日韩一级在线毛片| 黑人操中国人逼视频| 日韩制服丝袜自拍偷拍| 欧美日韩乱码在线| 国产精品免费大片| 亚洲熟女毛片儿| 1024香蕉在线观看| 成人黄色视频免费在线看| 9色porny在线观看| 国产高清视频在线播放一区| 叶爱在线成人免费视频播放| 成人国语在线视频| 手机成人av网站| 国产又色又爽无遮挡免费看| 久久亚洲真实| 欧美久久黑人一区二区| 12—13女人毛片做爰片一| 天堂动漫精品| 国产成人一区二区三区免费视频网站| 女人爽到高潮嗷嗷叫在线视频| av天堂在线播放| 久久国产精品大桥未久av| 精品无人区乱码1区二区| 亚洲成人手机| 日本五十路高清| 国产精品自产拍在线观看55亚洲 | 午夜福利视频在线观看免费| 大型av网站在线播放| 熟女少妇亚洲综合色aaa.| a级毛片黄视频| 天天躁狠狠躁夜夜躁狠狠躁| 中文字幕另类日韩欧美亚洲嫩草| 美女扒开内裤让男人捅视频| 热re99久久精品国产66热6| 日本精品一区二区三区蜜桃| 精品国产一区二区久久| 中文字幕精品免费在线观看视频| 国产男靠女视频免费网站| 国产av精品麻豆| 亚洲精品乱久久久久久| 国产精品1区2区在线观看. | 99久久综合精品五月天人人| 美女国产高潮福利片在线看| 深夜精品福利| 亚洲欧美激情综合另类| 久久久久国产精品人妻aⅴ院 | 精品国产乱子伦一区二区三区| 欧美日韩黄片免| 亚洲精品美女久久av网站| 一级作爱视频免费观看| 免费在线观看视频国产中文字幕亚洲| 国产又色又爽无遮挡免费看| 成年人黄色毛片网站| 精品国产乱子伦一区二区三区| 老熟妇仑乱视频hdxx| 成人免费观看视频高清| 操美女的视频在线观看| 国产精品98久久久久久宅男小说| 久久天堂一区二区三区四区| 国产成人av教育| 午夜福利影视在线免费观看| 久热这里只有精品99| 欧美日韩成人在线一区二区| 99久久99久久久精品蜜桃| 涩涩av久久男人的天堂| 久久天躁狠狠躁夜夜2o2o| 久久午夜综合久久蜜桃| 丝瓜视频免费看黄片| 99国产综合亚洲精品| 国产成人欧美在线观看 | 欧美乱妇无乱码| 日日夜夜操网爽| 乱人伦中国视频| 欧美日韩乱码在线| 9色porny在线观看| 久久久国产欧美日韩av| 1024视频免费在线观看| 国产成人精品久久二区二区免费| av欧美777| 欧美日韩成人在线一区二区| 91九色精品人成在线观看| 欧美av亚洲av综合av国产av| 十八禁人妻一区二区| 黄色怎么调成土黄色| 成人国产一区最新在线观看| 母亲3免费完整高清在线观看| 国产高清videossex| 精品国产亚洲在线| 国产有黄有色有爽视频| 国产日韩一区二区三区精品不卡| 极品少妇高潮喷水抽搐| a在线观看视频网站| 国产99久久九九免费精品| 日韩欧美国产一区二区入口| 午夜福利在线观看吧| 精品一区二区三区av网在线观看| 午夜福利视频在线观看免费| 中文欧美无线码| 亚洲色图综合在线观看| 新久久久久国产一级毛片| 国产成人精品久久二区二区91| 黄色丝袜av网址大全| 老司机靠b影院| 大陆偷拍与自拍| 国产激情久久老熟女| 国产亚洲一区二区精品| 男女之事视频高清在线观看| 国产高清videossex| 丝袜在线中文字幕| 在线看a的网站| 欧美大码av| 18禁观看日本| a级毛片在线看网站| 精品一区二区三区av网在线观看| 日本欧美视频一区| 午夜精品久久久久久毛片777| 韩国av一区二区三区四区| 午夜福利欧美成人| 久久精品亚洲av国产电影网| 国产在视频线精品| 亚洲成av片中文字幕在线观看| 午夜老司机福利片| 欧美国产精品va在线观看不卡| 日韩欧美一区二区三区在线观看 | 国产精品亚洲一级av第二区| 日韩三级视频一区二区三区| 日韩欧美在线二视频 | 少妇的丰满在线观看| 久热爱精品视频在线9| 99re6热这里在线精品视频| 日本撒尿小便嘘嘘汇集6| 老司机在亚洲福利影院| 一个人免费在线观看的高清视频| 国产精品一区二区在线不卡| 免费黄频网站在线观看国产| 午夜精品久久久久久毛片777| 高清欧美精品videossex| 另类亚洲欧美激情| 亚洲成a人片在线一区二区| 精品福利观看| 日韩视频一区二区在线观看| 黑人猛操日本美女一级片| 飞空精品影院首页| 夜夜爽天天搞| 脱女人内裤的视频| 久久精品熟女亚洲av麻豆精品| 制服诱惑二区| 又黄又粗又硬又大视频| 亚洲熟妇熟女久久| 国产精品欧美亚洲77777| 午夜视频精品福利| 99国产精品一区二区蜜桃av | 国产免费现黄频在线看| 色婷婷av一区二区三区视频| 美女福利国产在线| 男人操女人黄网站| 亚洲精品中文字幕一二三四区| 十八禁人妻一区二区| 亚洲精品国产色婷婷电影| 欧美日韩国产mv在线观看视频| 变态另类成人亚洲欧美熟女 | 免费在线观看影片大全网站| 亚洲国产精品sss在线观看 | 亚洲精品中文字幕在线视频| av中文乱码字幕在线| av中文乱码字幕在线| 19禁男女啪啪无遮挡网站| 欧美精品一区二区免费开放| 最近最新中文字幕大全电影3 | 啦啦啦在线免费观看视频4| 国产亚洲一区二区精品| 精品乱码久久久久久99久播| a在线观看视频网站| 亚洲欧洲精品一区二区精品久久久| 两性午夜刺激爽爽歪歪视频在线观看 | 免费看a级黄色片| e午夜精品久久久久久久| 两性午夜刺激爽爽歪歪视频在线观看 | 精品一区二区三区视频在线观看免费 | 高清欧美精品videossex| 女人高潮潮喷娇喘18禁视频| 欧美日韩中文字幕国产精品一区二区三区 | 99香蕉大伊视频| av一本久久久久| 在线观看66精品国产| 亚洲精品一二三| 两性夫妻黄色片| 人人澡人人妻人| 欧美亚洲日本最大视频资源| 老汉色av国产亚洲站长工具| 麻豆国产av国片精品| 高潮久久久久久久久久久不卡| 美女视频免费永久观看网站| 黄色视频不卡| 国产麻豆69| 国产免费男女视频| 国产一区在线观看成人免费| 69av精品久久久久久| 校园春色视频在线观看| 每晚都被弄得嗷嗷叫到高潮| 大香蕉久久成人网| 亚洲色图av天堂| 精品久久久久久久毛片微露脸| 国产日韩一区二区三区精品不卡| 久热这里只有精品99| 色婷婷av一区二区三区视频| 国产一区二区三区视频了| 久久久久久久精品吃奶| 欧美人与性动交α欧美软件| 亚洲av电影在线进入| 最新美女视频免费是黄的| 天天躁夜夜躁狠狠躁躁| 国产熟女午夜一区二区三区| 亚洲三区欧美一区| 久久天躁狠狠躁夜夜2o2o| 亚洲一区二区三区不卡视频| 欧美日韩中文字幕国产精品一区二区三区 | 91麻豆精品激情在线观看国产 | 不卡av一区二区三区| 亚洲熟妇熟女久久| 亚洲在线自拍视频| 国产91精品成人一区二区三区| 久久久国产成人精品二区 | 亚洲精品国产精品久久久不卡| 久久久国产一区二区| 丝袜在线中文字幕| 久久99一区二区三区| 亚洲国产中文字幕在线视频| 欧美精品高潮呻吟av久久| 99热国产这里只有精品6| 亚洲熟女毛片儿| 高清黄色对白视频在线免费看| 亚洲国产欧美网| 99re6热这里在线精品视频| 国产精品永久免费网站| 国产主播在线观看一区二区| 久久久久国产一级毛片高清牌| 精品电影一区二区在线| 在线观看日韩欧美| 999精品在线视频| 久久精品成人免费网站| 久热爱精品视频在线9| 51午夜福利影视在线观看| 99国产精品99久久久久| 国产三级黄色录像| 中文字幕av电影在线播放| 精品乱码久久久久久99久播| 欧美大码av| 一区福利在线观看| 久久久国产一区二区| 村上凉子中文字幕在线| 极品人妻少妇av视频| 女人被躁到高潮嗷嗷叫费观| 青草久久国产| 国产亚洲精品久久久久久毛片 | 超碰97精品在线观看| 最近最新免费中文字幕在线| 国产乱人伦免费视频| 少妇裸体淫交视频免费看高清 | 麻豆成人av在线观看| 国产亚洲精品久久久久5区| 亚洲av片天天在线观看| 人人妻人人澡人人爽人人夜夜| xxxhd国产人妻xxx| 十八禁网站免费在线| 久久影院123| 国产又色又爽无遮挡免费看| 精品欧美一区二区三区在线| 欧美在线黄色| 自拍欧美九色日韩亚洲蝌蚪91| videos熟女内射| 精品无人区乱码1区二区| 久久久久久人人人人人| 国产欧美日韩一区二区精品| 亚洲国产欧美日韩在线播放| 久久香蕉激情| 午夜精品国产一区二区电影| 国产亚洲一区二区精品| 中文欧美无线码| 国产精品亚洲一级av第二区| 高清毛片免费观看视频网站 | 纯流量卡能插随身wifi吗| 国产精品成人在线| 成人特级黄色片久久久久久久| 日韩人妻精品一区2区三区| 又黄又爽又免费观看的视频| 亚洲一码二码三码区别大吗| 激情在线观看视频在线高清 | 激情视频va一区二区三区| 在线观看午夜福利视频| 欧美成人午夜精品| a在线观看视频网站| 在线观看66精品国产| 母亲3免费完整高清在线观看| 757午夜福利合集在线观看| 午夜亚洲福利在线播放| 亚洲国产欧美网| 99精品欧美一区二区三区四区| 久久ye,这里只有精品| 国产主播在线观看一区二区| 国产片内射在线| 两个人免费观看高清视频| 成人三级做爰电影| 日韩 欧美 亚洲 中文字幕| 精品欧美一区二区三区在线| 久久精品熟女亚洲av麻豆精品| 色综合欧美亚洲国产小说| 日本欧美视频一区| 国产精品久久电影中文字幕 | 久久久精品国产亚洲av高清涩受| 91字幕亚洲| 99久久国产精品久久久| 免费看a级黄色片| 色婷婷av一区二区三区视频| 欧美av亚洲av综合av国产av| 国产亚洲欧美精品永久| 亚洲片人在线观看| 亚洲国产中文字幕在线视频| 久久天堂一区二区三区四区| 国产成人av激情在线播放| 亚洲男人天堂网一区| 丰满迷人的少妇在线观看| 日韩欧美三级三区| 欧美最黄视频在线播放免费 | 亚洲国产精品一区二区三区在线| 美女国产高潮福利片在线看| 1024视频免费在线观看| 久久久久久免费高清国产稀缺| 国产精品偷伦视频观看了| 动漫黄色视频在线观看| 别揉我奶头~嗯~啊~动态视频| 久久婷婷成人综合色麻豆| 欧美人与性动交α欧美精品济南到| 老司机靠b影院| 亚洲人成电影免费在线| av中文乱码字幕在线| 国产97色在线日韩免费| 国产又色又爽无遮挡免费看| 亚洲精品国产色婷婷电影| 宅男免费午夜| 精品少妇久久久久久888优播| 老汉色av国产亚洲站长工具| 热re99久久国产66热| 国产一区二区三区在线臀色熟女 | 天天躁狠狠躁夜夜躁狠狠躁| 免费久久久久久久精品成人欧美视频| 他把我摸到了高潮在线观看| 亚洲欧美日韩高清在线视频| 久久久久久久午夜电影 | 女人高潮潮喷娇喘18禁视频| 欧美一级毛片孕妇| 精品久久久久久,| 三级毛片av免费| 亚洲精品成人av观看孕妇| 久久人妻福利社区极品人妻图片| 久久久久久久久免费视频了| 精品视频人人做人人爽| 99热网站在线观看| 欧美日韩黄片免| 中亚洲国语对白在线视频| 好看av亚洲va欧美ⅴa在| www.999成人在线观看| 欧美国产精品一级二级三级| 欧美精品高潮呻吟av久久| 国产亚洲欧美98| 纯流量卡能插随身wifi吗| 超色免费av| www日本在线高清视频| 90打野战视频偷拍视频| 丰满迷人的少妇在线观看| 国产一区有黄有色的免费视频| 男人操女人黄网站| 激情在线观看视频在线高清 | 日日摸夜夜添夜夜添小说| 1024香蕉在线观看| 久久久精品国产亚洲av高清涩受| 精品亚洲成a人片在线观看| 天天操日日干夜夜撸| 王馨瑶露胸无遮挡在线观看| 精品人妻熟女毛片av久久网站| 亚洲精品国产色婷婷电影| 国产在线观看jvid| 国产成人av教育| 久久婷婷成人综合色麻豆| 国产成人影院久久av| 国产精品国产高清国产av | 999久久久精品免费观看国产| 69精品国产乱码久久久| 午夜影院日韩av| 亚洲综合色网址| 亚洲成人免费av在线播放| 亚洲欧美激情综合另类| 女人高潮潮喷娇喘18禁视频| 久久这里只有精品19| 日韩制服丝袜自拍偷拍| 99热国产这里只有精品6| 久久婷婷成人综合色麻豆| 一区二区三区精品91| 亚洲中文字幕日韩| 1024视频免费在线观看| 国产精品一区二区精品视频观看| 香蕉丝袜av| 精品卡一卡二卡四卡免费| 女人久久www免费人成看片| 脱女人内裤的视频| 在线免费观看的www视频| 国产成人啪精品午夜网站| 色在线成人网| 99热网站在线观看| 欧美+亚洲+日韩+国产| 69精品国产乱码久久久| 国产亚洲一区二区精品| 丝袜人妻中文字幕| 曰老女人黄片| 日本a在线网址| 又黄又粗又硬又大视频| 精品久久久久久久毛片微露脸| 日日摸夜夜添夜夜添小说| 欧美日本中文国产一区发布| 精品久久久久久久久久免费视频 | 免费看a级黄色片| 国产精品秋霞免费鲁丝片| 天天躁夜夜躁狠狠躁躁| 午夜精品久久久久久毛片777| 国产精品久久久久久精品古装| 国产精华一区二区三区| 国产视频一区二区在线看| 桃红色精品国产亚洲av| av免费在线观看网站| 亚洲一码二码三码区别大吗| 欧美激情久久久久久爽电影 | 精品亚洲成a人片在线观看| 亚洲人成伊人成综合网2020| 91字幕亚洲| 视频区图区小说| 天天躁夜夜躁狠狠躁躁| 国产精品美女特级片免费视频播放器 | 国产成人精品无人区| 亚洲一区二区三区不卡视频| 欧美日韩亚洲综合一区二区三区_| 亚洲av片天天在线观看| 色94色欧美一区二区| 国产成人免费无遮挡视频| 黄色视频不卡| 看片在线看免费视频| 深夜精品福利| 黄色a级毛片大全视频| 亚洲成av片中文字幕在线观看| 国产成人av激情在线播放| 国产精品免费一区二区三区在线 | 不卡一级毛片| 中文欧美无线码| 妹子高潮喷水视频| 桃红色精品国产亚洲av| 天堂俺去俺来也www色官网| 大香蕉久久成人网| 精品国产亚洲在线| 成年人黄色毛片网站| 不卡一级毛片| tocl精华| 女人被躁到高潮嗷嗷叫费观| 一级作爱视频免费观看| 精品电影一区二区在线| 热99re8久久精品国产| 午夜免费成人在线视频| 亚洲成国产人片在线观看| 国产xxxxx性猛交| 国产精品欧美亚洲77777| 国产一卡二卡三卡精品| 人人澡人人妻人| 亚洲熟妇熟女久久| 真人做人爱边吃奶动态| 午夜福利在线免费观看网站| av电影中文网址| 性色av乱码一区二区三区2| 女性被躁到高潮视频| 国产亚洲精品久久久久久毛片 | 欧美亚洲 丝袜 人妻 在线| 丝袜美足系列| 精品久久久久久久毛片微露脸| 亚洲成人手机| 欧美日韩亚洲综合一区二区三区_| 亚洲专区字幕在线| 久久99一区二区三区| 亚洲欧美精品综合一区二区三区| 久久天躁狠狠躁夜夜2o2o| 麻豆乱淫一区二区| 免费观看a级毛片全部| 欧美+亚洲+日韩+国产| 国产精品偷伦视频观看了| 每晚都被弄得嗷嗷叫到高潮| 日韩有码中文字幕| 国产在线一区二区三区精| 久久精品国产99精品国产亚洲性色 | 天堂动漫精品| 精品一区二区三区av网在线观看| 国产午夜精品久久久久久| 国产在视频线精品| cao死你这个sao货| 热99国产精品久久久久久7| 亚洲av第一区精品v没综合| 亚洲一区二区三区不卡视频| 亚洲av欧美aⅴ国产| 建设人人有责人人尽责人人享有的| 在线观看日韩欧美| 午夜福利视频在线观看免费| 日韩欧美在线二视频 | 多毛熟女@视频| 深夜精品福利| 亚洲国产欧美网| 久久国产精品大桥未久av| 久久国产亚洲av麻豆专区| 亚洲九九香蕉| 国产精品99久久99久久久不卡| 久久午夜亚洲精品久久| 国产无遮挡羞羞视频在线观看| 午夜精品久久久久久毛片777| 国产无遮挡羞羞视频在线观看| 欧美乱妇无乱码| 精品国产亚洲在线| 亚洲色图 男人天堂 中文字幕| 91字幕亚洲| 国产成人欧美在线观看 | 视频区图区小说| 亚洲中文字幕日韩| 国产色视频综合| 91字幕亚洲| 中出人妻视频一区二区| 国产蜜桃级精品一区二区三区 | 中文字幕人妻丝袜一区二区| 国产成人免费无遮挡视频| 精品国产乱码久久久久久男人| 色婷婷久久久亚洲欧美| 亚洲精华国产精华精| 久久久精品区二区三区| 黄色片一级片一级黄色片| 国产一区有黄有色的免费视频| 国产高清videossex| 国产一区二区激情短视频| 在线观看舔阴道视频| 久久精品国产亚洲av高清一级| 岛国在线观看网站| 国产成人影院久久av| 午夜精品国产一区二区电影| 在线av久久热| 日韩欧美一区视频在线观看| av天堂久久9| 女性生殖器流出的白浆| 亚洲自偷自拍图片 自拍| 18在线观看网站| 18禁观看日本| 婷婷丁香在线五月| a级片在线免费高清观看视频| 91精品国产国语对白视频| 最近最新中文字幕大全免费视频| 成人特级黄色片久久久久久久| 18禁黄网站禁片午夜丰满| 一级a爱片免费观看的视频| 国产高清国产精品国产三级| 国产精品.久久久| 中文字幕精品免费在线观看视频| 亚洲国产精品一区二区三区在线| 亚洲欧美激情在线|