+誘導(dǎo)SH-SY5Y細(xì)胞鐵水平和DMT1表達(dá)影響"/>
[摘要]目的 探討大麻素Ⅱ型受體(CB2R)激活對(duì)1-甲基-4-苯基-吡啶離子(MPP+)誘導(dǎo)的SH-SY5Y細(xì)胞損傷的保護(hù)作用機(jī)制。方法 培養(yǎng)SH-SY5Y細(xì)胞,根據(jù)藥物處理不同將其分為對(duì)照組、MPP+組、CB2R激動(dòng)劑JWH133+MPP+組、CB2R抑制劑AM630+JWH133+MPP+組。應(yīng)用激光掃描共聚焦顯微鏡分析技術(shù)檢測(cè)SH-SY5Y細(xì)胞鐵水平變化,應(yīng)用免疫印跡法(Western blot)檢測(cè)各組細(xì)胞二價(jià)金屬離子轉(zhuǎn)運(yùn)蛋白1(DMT1)的表達(dá)。結(jié)果 與對(duì)照組相比,MPP+組細(xì)胞熒光強(qiáng)度明顯降低,差異有顯著性(F=26.620,q=10.410,P<0.05);用JWH133預(yù)處理后,JWH133+MPP+組細(xì)胞熒光淬滅程度低于MPP+組,差異有顯著性(q=4.868,P<0.05);而且應(yīng)用AM630可以逆轉(zhuǎn)JWH133的這種作用,AM630+JWH133+MPP+組和JWH133+MPP+組熒光強(qiáng)度相比差異具有顯著性(q=5.619,P<0.05)。與對(duì)照組相比,MPP+組細(xì)胞的DMT1蛋白表達(dá)量顯著升高(F=9.493,q=4.109,P<0.05);JWH133+MPP+組細(xì)胞DMT1蛋白表達(dá)量下降,與MPP+組相比差異具有顯著性(q=4.771,P<0.05);而AM630可阻斷JWH133的作用,AM630+JWH133+MPP+組細(xì)胞DMT1蛋白表達(dá)量較JWH133+MPP+組顯著升高(q=6.240,P<0.05)。結(jié)論 激活CB2R可以抑制MPP+對(duì)DMT1蛋白表達(dá)的誘導(dǎo)從而調(diào)節(jié)SH-SY5Y細(xì)胞鐵水平降低。
[關(guān)鍵詞]受體,大麻酚,CB2;大麻素受體激動(dòng)劑;金屬伴侶蛋白質(zhì)類;帕金森病;SH-SY5Y細(xì)胞
[中圖分類號(hào)]R338.2
[文獻(xiàn)標(biāo)志碼]A
[文章編號(hào)]2096-5532(2021)02-0206-04
[ABSTRACT]Objective To investigate the protective mechanism of cannabinoid Ⅱ type receptor (CB2R) activation against 1-methyl-4-phenylpyridine (MPP+)-induced SH-SY5Y cell injury."Methods SH-SY5Y cells were cultured and divided into control group, MPP+ group, JWH133+MPP+ group, and AM630+JWH133+MPP+ group according to the drug treatment me-thod. Laser scanning confocal microscopy was used to observe the change in iron level in SH-SY5Y cells, and Western blot was used to measure the expression of divalent metal ion transporter 1 (DMT1) in each group."Results Compared with the control group, the MPP+ group had a significant reduction in the fluorescence intensity of cells (F=26.620, q=10.410,Plt;0.05). After pretreatment with the CB2R agonist JWH133, the JWH133+MPP+ group had a significantly lower fluorescence quenching degree than the MPP+ group (q=4.868,Plt;0.05). The effect of JWH133 could be reversed by the CB2R inhibitor AM630, and there was a signi-ficant difference in fluorescence intensity between the AM630+JWH133+MPP+ group and the JWH133+MPP+ group (q=5.619,Plt;0.05). Compared with the control group, the MPP+ group had a significant increase in the protein expression level of DMT1 (F=9.493, q=4.109,Plt;0.05), while the JWH133+MPP+ group had a significant reduction in the protein expression level of DMT1 (q=4.771,Plt;0.05). AM630 could block the effect of JWH133, and compared with the JWH133+MPP+ group, the AM630+JWH133+MPP+ group had a significant increase in the protein expression level of DMT1 (q=6.240,Plt;0.05).Conclusion Activation of CB2R can inhibit the protein expression of DMT1 induced by MPP+ and thus regulate the reduction in iron level in SH-SY5Y cells.
[KEY WORDS]receptor, cannabinoid, CB2; cannabinoid receptor agonists; metallochaperones; Parkinson disease; SH-SY5Y cells
帕金森病(PD)是一種中老年人常見(jiàn)的、緩慢進(jìn)行的神經(jīng)退行性疾病。PD常見(jiàn)運(yùn)動(dòng)癥狀包括運(yùn)動(dòng)功能受損、運(yùn)動(dòng)緩慢、靜止性震顫及平衡障礙等[1]。PD的病理學(xué)特征是黑質(zhì)(SN)多巴胺(DA)能神經(jīng)元的進(jìn)行性丟失和紋狀體(Str)內(nèi)DA的耗竭[2]。PD的發(fā)病機(jī)制與年齡老化、環(huán)境毒素、氧化應(yīng)激和神經(jīng)炎癥等因素有關(guān),但到目前為止PD中腦DA能神經(jīng)元變性機(jī)制仍尚未明確[3]。近年來(lái),更多的證據(jù)表明中腦DA能神經(jīng)元損傷是由中腦SN鐵聚積造成的[4-7]。PD病人SN鐵聚積是由于鐵轉(zhuǎn)入蛋白二價(jià)金屬離子轉(zhuǎn)運(yùn)蛋白1(DMT1)和鐵轉(zhuǎn)出蛋白(Fpn1)的表達(dá)調(diào)控失調(diào)導(dǎo)致的,通過(guò)免疫標(biāo)記研究發(fā)現(xiàn),PD 病人SN區(qū)DA 能神經(jīng)元上DMT1的表達(dá)多于腹側(cè)中腦被蓋區(qū)(VTA),這也提示SN鐵選擇性聚積受DMT1的表達(dá)調(diào)控[8-11]。大麻素Ⅱ型受體(CB2R)是一種G蛋白耦聯(lián)受體[12]。近期研究表明,CB2R在大腦的海馬、VTA、SN、Str等區(qū)都有表達(dá)[13]。藥理學(xué)研究表明,CB2R激活可以抑制小膠質(zhì)細(xì)胞的活化并改善神經(jīng)退行性疾病中的神經(jīng)功能缺陷和延緩疾病的進(jìn)展[14-15],CB2R現(xiàn)已成為 PD 等神經(jīng)退行性疾病的潛在治療靶點(diǎn)。內(nèi)源性大麻素系統(tǒng)在SH-SY5Y細(xì)胞中有表達(dá)[16]。我們前期的研究顯示,激活CB2R可以減輕1-甲基-4-苯基-吡啶離子(MPP+)對(duì)SH-SY5Y細(xì)胞的損傷作用。為了研究激活SH-SY5Y細(xì)胞上CB2R發(fā)揮保護(hù)作用的機(jī)制,本研究選用MPP+處理的 SH-SY5Y 細(xì)胞作為PD細(xì)胞模型,觀察使用特異性CB2R 激動(dòng)劑 JWH133 激活CB2R對(duì)細(xì)胞鐵水平和DMT1表達(dá)的影響,以及CB2R 抑制劑AM630對(duì) CB2R特異性激活的阻斷效應(yīng),確定激活CB2R是否可以通過(guò)調(diào)控DMT1 的表達(dá)而調(diào)節(jié)細(xì)胞鐵水平。
1 材料與方法
1.1 試劑及其來(lái)源
二甲基亞砜(DMSO)、MPP+、硫酸亞鐵、維生素C、4-羥乙基哌嗪乙磺酸(HEPES)、鈣黃綠素購(gòu)自美國(guó)Sigma-Aldrich公司;DMEM高糖培養(yǎng)液、胎牛血清(FBS)購(gòu)自以色列Biological Industries公司;青霉素/鏈霉素混合液(100×)購(gòu)自索萊寶公司;JWH133和AM630購(gòu)自美國(guó)Tocris Bioscience公司;DMT1抗體購(gòu)自美國(guó)OriGene公司;β-actin抗體購(gòu)自博奧森生物公司;HRP標(biāo)記山羊抗兔IgG購(gòu)自聯(lián)科生物公司。
1.2 細(xì)胞培養(yǎng)及分組
在溫度37 ℃、含體積分?jǐn)?shù)0.05 CO2的細(xì)胞培養(yǎng)箱中,用含體積分?jǐn)?shù)0.05的FBS和體積分?jǐn)?shù)0.01青霉素/鏈霉素的高糖培養(yǎng)液培養(yǎng)SH-SY5Y細(xì)胞。將JWH133和AM630溶于DMSO中,制成儲(chǔ)備溶液(1 mmol/L),加藥以前用培養(yǎng)液稀釋為工作溶液。將細(xì)胞分為對(duì)照組(A組)、MPP+組(B組)、JWH133+MPP+組(C組)和AM630+JWH133+MPP+組(D組)。對(duì)照組細(xì)胞用正常培養(yǎng)液培養(yǎng);MPP+組細(xì)胞用含有1 mmol/L MPP+的培養(yǎng)液處理24 h;JWH133+MPP+組細(xì)胞用含有1 μmol/L JWH133的培養(yǎng)液先預(yù)處理30 min,然后再加入1 mmol/L MPP+共處理24 h;AM630+JWH133+MPP+組細(xì)胞用含有1 μmol/L JWH133和1 μmol/L AM630的培養(yǎng)液先預(yù)處理30 min,然后再加入1 mmol/L MPP+共處理24 h。
1.3 細(xì)胞鐵水平檢測(cè)
各組細(xì)胞藥物處理結(jié)束后,吸凈培養(yǎng)板中培養(yǎng)液,用HBS漂洗3次后每孔加入500 μL鈣黃綠素,放入細(xì)胞培養(yǎng)箱中孵育30 min,再用HBS漂洗3次。將玻片置于含有HBS的灌流槽中,調(diào)節(jié)激光掃描共聚焦顯微鏡物鏡找到合適的觀察視野,將灌流槽中的HBS緩慢吸出,加入500 μL硫酸亞鐵溶液,設(shè)置顯微鏡的激發(fā)光波長(zhǎng)為488 nm,在X-Y-T模式下掃描,30 min后觀察SH-SY5Y細(xì)胞鈣黃綠素的熒光強(qiáng)度。
1.4 免疫印跡法檢測(cè)DMT1蛋白的表達(dá)
各組細(xì)胞藥物處理結(jié)束后,吸凈培養(yǎng)板中的培養(yǎng)液,每孔加入100 μL裂解液處理30 min。吸取底部蛋白置于EP管中,在4 ℃條件下以12 000 r/min離心30 min,取上清80 μL。每組蛋白的上樣量為25 μg,電泳后將蛋白轉(zhuǎn)移到PVDF膜上,使用50 g/L的脫脂奶粉封閉2 h,加入相應(yīng)一抗溶液后置于搖床上在4 ℃條件下孵育16 h,使用TBST漂洗4次(每次5 min),加入二抗溶液室溫孵育1 h,使用TBST漂洗4次(每次5 min),用ECL顯影液顯影。目的蛋白的表達(dá)以DMT1與β-actin條帶灰度值的比值表示,實(shí)驗(yàn)重復(fù)6次,取平均值。
1.5 統(tǒng)計(jì)學(xué)分析
應(yīng)用Graphpad Prism 5.0軟件進(jìn)行統(tǒng)計(jì)學(xué)分析。計(jì)量數(shù)據(jù)以x2±s表示,采用單因素方差分析進(jìn)行多組間的比較,然后用Turkey法進(jìn)行組間兩兩比較。以P<0.05為差異具有顯著性。
2 結(jié) 果
2.1 JWH133對(duì) MPP+誘導(dǎo)的SH-SY5Y細(xì)胞鐵水平的影響
鈣黃綠素在細(xì)胞內(nèi)可以發(fā)出綠色熒光,與細(xì)胞內(nèi)的鐵離子結(jié)合后可導(dǎo)致熒光淬滅,故細(xì)胞內(nèi)的鐵水平可以用熒光強(qiáng)度表示。用1 mmol/L的硫酸亞鐵溶液灌流SH-SY5Y細(xì)胞后,與對(duì)照組相比較,MPP+組細(xì)胞熒光強(qiáng)度明顯降低,差異有顯著性(F=26.620,q=10.410,P<0.05);用CB2R激動(dòng)劑JWH133預(yù)處理后,JWH133+MPP+組細(xì)胞熒光淬滅程度低于MPP+組,差異有顯著性(q=4.868,P<0.05);而且應(yīng)用CB2R抑制劑AM630可逆轉(zhuǎn)JWH133的這種作用,AM630+JWH133+MPP+組和JWH133+MPP+組熒光強(qiáng)度相比較差異具有統(tǒng)計(jì)學(xué)意義(q=5.619,P<0.05);而AM630+JWH133+MPP+組熒光強(qiáng)度與MPP+組相比較,差異則無(wú)統(tǒng)計(jì)學(xué)意義(q=0.751,P>0.05)。表明JWH133可以通過(guò)激活CB2R來(lái)抑制MPP+誘導(dǎo)的SH-SY5Y細(xì)胞內(nèi)的鐵水平升高。見(jiàn)表1。
2.2 JWH133對(duì)MPP+誘導(dǎo)的細(xì)胞DMT1蛋白表達(dá)的影響
與對(duì)照組相比,MPP+組細(xì)胞的DMT1蛋白表達(dá)量升高,差異有顯著性(F=9.493,q=4.109,P<0.05);用JWH133預(yù)處理后,JWH133+MPP+組細(xì)胞DMT1蛋白表達(dá)量下降,與MPP+組相比差異具有顯著性(q=4.771,P<0.05);而AM630可阻斷JWH133的作用,AM630+JWH133+MPP+組細(xì)胞的DMT1蛋白表達(dá)量較JWH133+MPP+組顯著升高(q=6.240,P<0.05)。見(jiàn)表1。
3 討 論
PD是第二常見(jiàn)的神經(jīng)退行性疾病,隨著社會(huì)老齡化的加劇,PD在中老年人群中患病率成倍增加,老年人群中65歲以上者的患病率為1%~2%,85歲以上者的患病率為3%~5%[17]。越來(lái)越多的研究表明,CB2R在PD中起著非常重要的作用。有研究在PD病人的SN區(qū)發(fā)現(xiàn)酪氨酸羥化酶(TH)與CB2R共表達(dá),并且PD病人SN區(qū)CB2R的表達(dá)下降[18]。使用CB2R的選擇性激動(dòng)劑(HU-308)可以減少脂多糖誘導(dǎo)的小鼠Str和SN區(qū)DA能神經(jīng)元死亡[19]。在1-甲基-4-苯基-1,2,3,6-四氫吡啶(MPTP)誘導(dǎo)損傷的模型小鼠中使用CB2R激動(dòng)劑AM1241,可以減少M(fèi)PTP對(duì)DA能神經(jīng)元的損傷作用[20]。以上結(jié)果均證實(shí)激活CB2R對(duì)PD具有保護(hù)作用。
有研究表明,腦內(nèi)鐵含量與PD的進(jìn)展有著密切的聯(lián)系,運(yùn)動(dòng)障礙越嚴(yán)重的PD病人,其SN區(qū)的鐵含量就越多[21-22]。鐵元素是人體不可或缺的微量元素,中樞神經(jīng)系統(tǒng)的多種代謝過(guò)程都需要鐵參與,鐵在SN區(qū)聚積可以通過(guò)催化過(guò)氧化氫(H2O2)產(chǎn)生羥自由基和促進(jìn)α-突觸核蛋白原纖維的形成導(dǎo)致DA能神經(jīng)元的死亡[23]。大麻素可以通過(guò)激活CB2R抑制HEK293T細(xì)胞對(duì)鐵的攝入[24],激活原代星形膠質(zhì)細(xì)胞上的CB2R可以減少進(jìn)入細(xì)胞鐵的數(shù)量[25]。本研究采用激光掃描共聚焦顯微鏡分析技術(shù)檢測(cè)SH-SY5Y細(xì)胞鐵轉(zhuǎn)運(yùn)功能情況,結(jié)果顯示,MPP+損傷可以導(dǎo)致細(xì)胞鐵水平升高,預(yù)先使用JWH133處理細(xì)胞可使細(xì)胞鐵水平明顯降低,進(jìn)一步使用CB2R拮抗劑AM630進(jìn)行阻斷驗(yàn)證,證實(shí)使用JWH133激活SH-SY5Y細(xì)胞的CB2R可以減少進(jìn)入細(xì)胞內(nèi)鐵的數(shù)量,從而可能減輕鐵聚積對(duì)細(xì)胞的損傷作用。
研究證實(shí),PD病人中腦SN區(qū)DMT1表達(dá)顯著升高[26],激活CB2R可以抑制MPP+誘導(dǎo)的原代星形膠質(zhì)細(xì)胞中DMT1表達(dá)上調(diào)[25]。DMT1基因突變可以減弱MPTP和6-羥基多巴胺(6-OHDA)誘導(dǎo)的神經(jīng)毒性作用,激活CB2R可以通過(guò)DMT1磷酸化水平的降低減少轉(zhuǎn)入細(xì)胞鐵的數(shù)量,并且該作用可能是通過(guò)調(diào)控cAMP-PKA信號(hào)通路來(lái)實(shí)現(xiàn)的[27-28]。本實(shí)驗(yàn)結(jié)果顯示,使用JWH133預(yù)處理激活CB2R可以拮抗MPP+誘導(dǎo)的SH-SY5Y細(xì)胞的DMT1蛋白表達(dá)上調(diào),使用CB2R拮抗劑AM630可以阻斷JWH133的作用則更加明確激活CB2R可以調(diào)控DMT1蛋白的表達(dá)。但激活CB2R是如何調(diào)控細(xì)胞DMT1蛋白表達(dá)的機(jī)制仍不清楚,需要進(jìn)一步研究。
[參考文獻(xiàn)]
[1]SVEINBJORNSDOTTIR S. The clinical symptoms of Parkinson’s disease[J]. Journal of Neurochemistry, 2016,139:318-324.
[2]KORDOWER J H, OLANOW C W, DODIYA H B, et al. Disease duration and the integrity of the nigrostriatal system in"Parkinson’s disease[J]. Brain, 2013,136(8):2419-2431.
[3]HWANG O. Role of oxidative stress in Parkinson’s disease[J]. Experimental Neurobiology, 2013,22(1):11-17.
[4]HIRSCH E C. Iron transport in Parkinson’s disease[J]. Parkinsonism amp; Related Disorders, 2009,15:S209-S211.
[5]MOCHIZUKI H, YASUDA T. Iron accumulation in Parkinson’s disease[J]. Journal of Neural Transmission (Vienna, Austria, 2012,119(12):1511-1514.
[6]PARIS I, MARTINEZ-ALVARADO P, CRDENAS S, et al. Dopamine-dependent iron toxicity in cells derived from rat hypothalamus[J]. Chemical Research in Toxicology, 2005,18(3):415-419.
[7]ZUCCA F A, SEGURA-AGUILAR J, FERRARI E, et al. Interactions of iron, dopamine and neuromelanin pathways in brain aging and Parkinson’s disease[J]. Progress in Neurobio-logy, 2017,155:96-119.
[8]JIANG H, WANG J, ROGERS J, et al. Brain iron metabolism dysfunction in Parkinson’s disease[J]. Molecular Neurobiology, 2017,54(4):3078-3101.
[9]WANG J, XU H M, YANG H D, et al. Rg1 reduces nigral iron levels of MPTP-treated C57BL6 mice by regulating certain iron transport proteins[J]. Neurochemistry International, 2009,54(1):43-48.
[10]ZHANG H Y, SONG N, JIANG H, et al. Brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor inhibit ferrous iron influx via divalent metal transporter 1 and iron regulatory protein 1 regulation in ventral mesencephalic neurons[J]. Biochimica et Biophysica Acta, 2014,1843(12):2967-2975.
[11]PERFEITO R, CUNHA-OLIVEIRA T, REGO A C. Reprint of: revisiting oxidative stress and mitochondrial dysfunction in the pathogenesis of Parkinson disease—resemblance to the effect of amphetamine drugs of abuse[J]. Free Radical Biology and Medicine, 2013,62:186-201.
[12]MUNRO S, THOMAS K L, ABU-SHAAR M. Molecular characterization of a peripheral receptor for cannabinoids[J]. Nature, 1993,365(6441):61-65.
[13]CHEN D J, GAO M, GAO F F, et al. Brain cannabinoid receptor 2: expression, function and modulation[J]. Acta Pharmacologica Sinica, 2017,38(3):312-316.
[14]JAVED H, AZIMULLAH S, HAQUE M E, et al. Cannabinoid type 2 (CB2) receptors activation protects against oxidative stress and neuroinflammation associated dopaminergic neurodegeneration in rotenone model of Parkinson’s disease[J]. Frontiers in Neuroscience, 2016,10:321.
[15]CHUNG Y C, SHIN W H, BAEK J Y, et al. CB2 receptor activation prevents glial-derived neurotoxic mediator production, BBB leakage and peripheral immune cell infiltration and rescues dopamine neurons in the MPTP model of Parkinson’s disease[J]. Experimental amp; Molecular Medicine, 2016,48(1):e205.
[16]PASQUARIELLO N, CATANZARO G, MARZANO V, et al. Characterization of the endocannabinoid system in human neuronal cells and proteomic analysis of anandamide-induced apoptosis[J]. The Journal of Biological Chemistry, 2009,284(43):29413-29426.
[17]DE LAU L M, BRETELER M M. Epidemiology of Parkinson’s disease[J]. The Lancet Neurology, 2006,5(6):525-535.
[18]GARCA M C, CINQUINA V, PALOMO-GARO C, et al. Identification of CB2 receptors in human nigral neurons that degenerate in Parkinson’s disease[J]. Neuroscience Letters, 2015,587:1-4.
[19]GMEZ-GLVEZ Y, PALOMO-GARO C, FERNNDEZ-RUIZ J, et al. Potential of the cannabinoid CB(2) receptor as a pharmacological target against inflammation in Parkinson’s disease[J]. Progress in Neuro-Psychopharmacology amp; Biological Psychiatry, 2016,64:200-208.
[20]BELTRAMO M, BERNARDINI N, BERTORELLI R, et al. CB2 receptor-mediated antihyperalgesia: possible direct involvement of neural mechanisms[J]. European Journal of Neuroscience, 2006,23(6):1530-1538.
[21]WIELER M, GEE M, CAMICIOLI R, et al. Freezing of gait in early Parkinson’s disease: nigral iron content estimated from magnetic resonance imaging[J]. Journal of the Neurolo-gical Sciences, 2016,361:87-91.
[22]REIMO S, FERREIRA S, NUNES R G, et al. Magnetic resonance correlation of iron content with neuromelanin in the substantia nigra of early-stage Parkinson’s disease[J]. European Journal of Neurology, 2016,23(2):368-374.
[23]ZHANG J Q, ZHANG Y L, WANG J, et al. Characterizing iron deposition in Parkinson’s disease using susceptibility-weighted imaging: an in vivo MR study[J]. Brain Research, 2010,1330:124-130.
[24]WETLI H A, BUCKETT P D, WESSLING-RESNICK M. Small-molecule screening identifies the selanazal drug ebselen as a potent inhibitor of DMT1-mediated iron uptake[J]. Che-mistry amp; Biology, 2006,13(9):965-972.
[25]JIA Y, DENG H, QIN Q Y, et al. JWH133 inhibits MPP+-induced inflammatory response and iron influx in astrocytes[J]. Neuroscience Letters, 2020,720:134779.
[26]HE Q, DU T T, YU X J, et al. DMT1 polymorphism and risk of Parkinson’s disease[J]. Neuroscience Letters, 2011,501(3):128-131.
[27]SEO Y A, KUMARA R, WETLI H, et al. Regulation of divalent metal transporter-1 by serine phosphorylation[J]. The Biochemical Journal, 2016,473(22):4243-4254.
[28]LI H, DEGENHARDT B, TOBIN D, et al. Identification, localization, and function in steroidogenesis of PAP7: a perip-heral-type benzodiazepine receptor- and PKA (RIalpha)-asso-ciated protein[J]. Molecular Endocrinology (Baltimore, Md), 2001,15(12):2211-2228.
(本文編輯 馬偉平)