[摘要]目的 探究枸櫞酸鐵銨(FAC)對過表達(dá)α-突觸核蛋白PC12細(xì)胞Rab35蛋白表達(dá)的影響。方法 用多西環(huán)素(DOX)處理24 h誘導(dǎo)PC12細(xì)胞高表達(dá)α-突觸核蛋白。應(yīng)用100 μmol/L和1 mmol/L FAC處理24 h后用免疫印跡法檢測細(xì)胞內(nèi)Rab35蛋白表達(dá),探討高鐵對Rab35蛋白表達(dá)影響。進(jìn)一步用FAC(100 μmol/L)、鐵死亡誘導(dǎo)劑erastin(10 μmol/L)+FAC、鐵死亡抑制劑ferrostatin-1(10 μmol/L)+FAC處理細(xì)胞24 h,檢測Rab35蛋白表達(dá),探討鐵死亡水平對Rab35蛋白表達(dá)的影響。結(jié)果 100 μmol/L和1 mmol/L FAC處理過表達(dá)α-突觸核蛋白PC12細(xì)胞不影響Rab35蛋白表達(dá)水平(F=1.601,q=1.726、2.466,P>0.05)。100 μmol/L FAC處理組Rab35蛋白表達(dá)水平與對照組相比沒有明顯變化(F=13.35,q=0.442,P>0.05);FAC和erastin共處理組Rab35蛋白表達(dá)水平與對照組和FAC組相比均沒有明顯變化(q=3.415、2.973,P>0.05);但FAC和ferrostatin-1共處理組Rab35蛋白表達(dá)水平下調(diào),與對照組和FAC組相比差異具有統(tǒng)計(jì)學(xué)意義(q=7.933、7.491,P<0.05)。結(jié)論 鐵對過表達(dá)α-突觸核蛋白PC12細(xì)胞Rab35蛋白表達(dá)沒有影響;鐵死亡抑制劑在高鐵情況下可降低Rab35蛋白表達(dá),提示鐵死亡可能參與了鐵對Rab35蛋白的調(diào)控。
[關(guān)鍵詞]鐵;PC12細(xì)胞;鐵死亡;rab GTP結(jié)合蛋白質(zhì)類
[中圖分類號]R338.2
[文獻(xiàn)標(biāo)志碼]A
[文章編號]2096-5532(2021)02-0202-04
[ABSTRACT]Objective To investigate the effect of ferric ammonium citrate (FAC) on the protein expression of Rab35 in PC12 cells with α-synuclein overexpression."Methods PC12 cells were treated with doxycycline for 24 h to induce the high expression of α-synuclein. After treatment with FAC at a dose of 100 μmol/L or 1 mmol/L for 24 h, Western blotting was used to measure the protein expression of Rab35, and the effect of high iron level on the protein expression of Rab35 was analyzed. The cells were treated with FAC (100 μmol/L), the ferroptosis inducer erastin (10 μmol/L)+FAC, or the ferroptosis inhibitor ferrostatin-1 (10 μmol/L)+FAC for 24 h, and the protein expression of Rab35 was measured to investigate the effect of ferroptosis on the protein expression of Rab35."Results The treatment of PC12 cells with α-synuclein overexpression with 100 μmol/L or 1 mmol/L FAC did not affect the protein expression level of Rab35 (F=1.601;q=1.726,2.466;Pgt;0.05). Compared with the control group, the 100 μmol/L FAC treatment group had no significant change in the protein expression level of Rab35 (F=13.35,q=0.442,Pgt;0.05); compared with the control group and the FAC group, the FAC+erastin treatment group had no significant change in the protein expression level of Rab35 (q=3.415,2.973;Pgt;0.05); compared with the control group and the FAC group, the FAC+ferrostatin-1 treatment group had a significant reduction in the protein expression level of Rab35 (q=7.933,7.491;Plt;0.05)."Conclusion Iron has no effect on the protein expression of Rab35 in PC12 cells with α-synuclein overexpression, and with the presence of high iron level, ferroptosis inhibitor can reduce the protein expression of Rab35, suggesting that ferroptosis might be involved in the regulation of Rab35 protein by iron.
[KEY WORDS]iron; PC12 cells; ferroptosis; rab GTP-binding proteins
帕金森病(PD)是第二大常見的神經(jīng)退行性疾病,隨著老齡化程度的逐漸加重,到2030年,中國PD病人將增加至495萬,約占全球PD病人的一半[1]。PD最典型的病理學(xué)特征是黑質(zhì)致密部多巴胺能神經(jīng)元選擇性丟失以及路易小體的形成,其中路易小體最主要的成分是異常聚集的α-突觸核蛋白,并同時存在著鐵的沉積[2]。近年來,α-突觸核蛋白被證實(shí)可在神經(jīng)元與鄰近的細(xì)胞之間傳播[3-4]。Rab蛋白是一類小分子三磷酸鳥苷(GTP)結(jié)合蛋白,可調(diào)控內(nèi)吞途徑中囊泡的形成、轉(zhuǎn)運(yùn)、黏附和融合等過程[5]。已有研究表明,作為Rab蛋白家族成員,Rab35蛋白磷酸化可促進(jìn)α-突觸核蛋白的傳播 [6]。細(xì)胞內(nèi)鐵沉積不僅能通過芬頓反應(yīng)引起氧化應(yīng)激,最近研究還發(fā)現(xiàn)了一種新的、鐵依賴性的、以脂質(zhì)過氧化物堆積為主要特征的非凋亡性細(xì)胞死亡形式——鐵死亡[7-9]。鐵死亡在包括PD在內(nèi)的神經(jīng)退變疾病中起著極其重要的作用。有研究發(fā)現(xiàn),在小鼠中鐵死亡抑制劑ferrostatin-1可降低1-甲基-4-苯基-1,2,3,6-四氫吡啶(MPTP)對多巴胺能神經(jīng)元的毒性[10]。鐵沉積與α-突觸核蛋白聚集均是PD發(fā)病的重要神經(jīng)病理學(xué)表現(xiàn),兩者之間互相促進(jìn),共同參與了PD中多巴胺能神經(jīng)元退變過程[11]。然而,目前關(guān)于鐵對α-突觸核蛋白細(xì)胞間傳播的影響仍研究較少,Rab35蛋白作為調(diào)控α-突觸核蛋白傳播的重要分子,鐵對其表達(dá)的影響和機(jī)制尚未見報(bào)道。因此,本研究應(yīng)用多西環(huán)素(DOX)誘導(dǎo)建立高表達(dá)α-突觸核蛋白的PC12細(xì)胞模型模擬PD疾病狀態(tài),觀察枸櫞酸鐵銨(FAC)對Rab35蛋白表達(dá)的影響,并應(yīng)用鐵死亡誘導(dǎo)劑erastin和鐵死亡抑制劑ferrostatin-1觀察鐵死亡在鐵調(diào)控Rab35蛋白中的作用。現(xiàn)將結(jié)果報(bào)告如下。
1 材料和方法
1.1 實(shí)驗(yàn)材料
實(shí)驗(yàn)所用的PC12細(xì)胞購自中國科學(xué)院上海細(xì)胞庫;DMEM高糖培養(yǎng)液、胎牛血清(FBS)購自以色列 Biological Industries(BI)公司;FAC、鐵死亡誘導(dǎo)劑erastin、鐵死亡抑制劑ferrostatin-1購自美國Sigma公司;β-actin抗體購自北京博奧森公司;Rab35抗體購自美國Proteintech公司;HRP-IgG標(biāo)記的二抗購自英國abcam公司;聚偏二氟乙烯(PVDF)膜、ECL發(fā)光液購自美國Millipore公司;其他試劑均為國產(chǎn)分析純。
1.2 PC12細(xì)胞的培養(yǎng)
實(shí)驗(yàn)前將實(shí)驗(yàn)器具高壓滅菌。從-80 ℃冰箱中取出凍存的攜帶α-突觸核蛋白過表達(dá)載體的PC12細(xì)胞,迅速轉(zhuǎn)移至37 ℃水浴鍋中,不斷搖晃直至完全溶解,將細(xì)胞懸液轉(zhuǎn)移到裝有10 mL完全培養(yǎng)液的15 mL離心管中,使用吸管充分混勻后,以1 000 r/min離心5 min,棄上清,加入6 mL完全培養(yǎng)液吹打混勻,接種至25 cm2的細(xì)胞培養(yǎng)瓶中,置于37 ℃、含體積分?jǐn)?shù)0.05 CO2培養(yǎng)箱中培養(yǎng)。每4~5 d傳代1次,傳代3次時,以2×107/L的密度接種于6孔板中,每孔加入2 mL細(xì)胞混懸液培養(yǎng)。當(dāng)細(xì)胞達(dá)到60%~70%融合時,加入DOX(2 mg/L)處理24 h誘導(dǎo)α-突觸核蛋白過表達(dá)。
1.3 實(shí)驗(yàn)分組及處理
為觀察不同濃度的FAC對Rab35蛋白表達(dá)的影響,將過表達(dá)α-突觸核蛋白的PC12細(xì)胞隨機(jī)分為對照組、FAC低濃度組和FAC高濃度組,分別用基礎(chǔ)培養(yǎng)液、100 μmol/L FAC和1 mmol/L FAC處理24 h。為觀察鐵死亡對Rab35蛋白表達(dá)的影響,將細(xì)胞隨機(jī)分為對照組、FAC組、FAC+erastin組和FAC+ferrostatin-1組,對照組和FAC組分別用基礎(chǔ)培養(yǎng)液、100 μmol/L FAC處理24 h,F(xiàn)AC+erastin組和FAC+ferrostatin-1組細(xì)胞先分別用10 μmol/L erastin和ferrostatin-1預(yù)處理30 min后,再加入100 μmol/L FAC共處理24 h。
1.4 免疫印跡法檢測Rab35蛋白表達(dá)
藥物處理24 h后提取蛋白,用BCA蛋白定量試劑盒檢測蛋白濃度,按每孔總蛋白20 μg計(jì)算上樣量,加入Loading Buffer,95 ℃煮5 min。經(jīng)120 g/L的SDS-PAGE凝膠電泳后濕轉(zhuǎn)到0.22 μm 的PVDF膜上,用50 g/L的脫脂奶粉溶液室溫?fù)u床孵育2 h,加Rab35(1∶1 000)和β-actin(1∶10 000)一抗4 ℃搖床孵育過夜。第2天加山羊抗兔HRP-IgG(1∶10 000)二抗室溫孵育1 h,然后用TBST溶液洗3次,每次10 min。ECL發(fā)光液顯影后應(yīng)用Image J軟件進(jìn)行條帶灰度分析,結(jié)果以Rab35 與β-actin條帶灰度值的比值來表示。
1.5 統(tǒng)計(jì)學(xué)處理
應(yīng)用Prism 6軟件進(jìn)行統(tǒng)計(jì)學(xué)處理,計(jì)量資料結(jié)果以x2±s表示,多組間比較采用單因素方差分析(one-way ANOVA檢驗(yàn)),以P<0.05表示差異有統(tǒng)計(jì)學(xué)意義。
2 結(jié) 果
2.1 不同濃度FAC對Rab35蛋白表達(dá)的影響
對照組、FAC低濃度組和FAC高濃度組的Rab35蛋白表達(dá)水平分別為0.838±0.100、0.936±0.121和0.978±0.154(n=6)。與對照組相比,100 μmol/L 和1 mmol/L FAC單獨(dú)處理PC12細(xì)胞24 h對Rab35蛋白的表達(dá)沒有明顯影響(F=1.601,q=1.726、2.466,P>0.05)。
2.2 鐵死亡對Rab35蛋白表達(dá)的影響
對照組、FAC組、FAC+erastin組和FAC+ferrostatin-1組Rab35蛋白表達(dá)水平分別為0.966±0.137、0.947±0.097、0.818±0.047和0.621±0.086(n=6)。 FAC組Rab35蛋白表達(dá)水平與對照組相比沒有明顯變化(F=13.35,q=0.442,P>0.05);與對照組、FAC組相比,F(xiàn)AC+erastin共處理對Rab35蛋白的表達(dá)沒有明顯影響(q=3.415、2.973,P>0.05);但FAC+ferrostatin-1組Rab35蛋白表達(dá)水平下調(diào),與對照組、FAC組相比差異具有統(tǒng)計(jì)學(xué)意義(q=7.933、7.491,P<0.05)。
3 討 論
PD病因與發(fā)病機(jī)制仍不清楚,與遺傳、環(huán)境等因素有關(guān)[12-13]。Rab蛋白是Ras超家族成員,一類小分子GTP結(jié)合蛋白,是膜轉(zhuǎn)運(yùn)過程中的關(guān)鍵調(diào)節(jié)因素[14],其中一些與PD有關(guān)的基因突變,如LRRK2、SNCA、Rab39B與Rab蛋白功能和膜轉(zhuǎn)運(yùn)有關(guān)[15]。Rab35是Rab家族成員,定位于質(zhì)膜和內(nèi)體,在內(nèi)吞循環(huán)和肌動蛋白絲重塑中發(fā)揮重要作用[16],被認(rèn)為是神經(jīng)突向外生長[17]、細(xì)胞因子[18]、吞噬作用[19]、細(xì)胞黏附[20]、細(xì)胞遷移[21]、細(xì)胞極性[22]和外泌體分泌[23]的調(diào)節(jié)因子。有文獻(xiàn)報(bào)道,在PD線蟲、小鼠模型中,PD相關(guān)的激酶LRRK2(leucine-rich repeat kinase 2)以激酶活性依賴的方式調(diào)節(jié)α-突觸核蛋白的傳播,LRRK2 G2019S突變可增加LRRK2激酶活性,促進(jìn)Rab35磷酸化,繼而促進(jìn)α-突觸核蛋白的傳播[6]。有研究顯示,PD小鼠模型(MPTP模型、魚藤酮小鼠、LRRK2 G2019S轉(zhuǎn)基因小鼠)黑質(zhì)區(qū)和PD病人血清中Rab35蛋白表達(dá)均升高,且血清Rab35水平與PD發(fā)病年齡顯著相關(guān)[24]。這些結(jié)果提示,Rab35可能參與了α-突觸核蛋白的加工與轉(zhuǎn)運(yùn)過程,并且內(nèi)吞循環(huán)可能與PD病理有關(guān)。
鐵沉積是除了α-突觸核蛋白聚集之外PD另一個重要的神經(jīng)病理學(xué)表現(xiàn)。鐵可以通過氧化應(yīng)激導(dǎo)致DNA、蛋白質(zhì)和脂質(zhì)過氧化,鐵過載還可以導(dǎo)致線粒體功能障礙,使ATP產(chǎn)生減少,繼而導(dǎo)致細(xì)胞死亡[25]。近年來研究發(fā)現(xiàn),鐵死亡參與PD神經(jīng)退行性病變的過程,但其在PD中的確切機(jī)制尚不清楚[10,26]。最近有文獻(xiàn)報(bào)道,在A53T PD小鼠模型中,鐵死亡發(fā)生于細(xì)胞凋亡之前;在多巴胺能神經(jīng)元中,鐵死亡可促進(jìn)鐵過載導(dǎo)致的細(xì)胞凋亡,鐵死亡抑制劑可抑制鐵過載引起的鐵死亡和細(xì)胞凋亡,但凋亡抑制劑不能阻止鐵死亡的發(fā)生[27]。本研究結(jié)果表明,在過表達(dá)α-突觸核蛋白的PC12細(xì)胞模型中,F(xiàn)AC處理造成的細(xì)胞內(nèi)高鐵對Rab35蛋白的表達(dá)沒有影響。用FAC和鐵死亡誘導(dǎo)劑erastin共同處理時,Rab35蛋白表達(dá)水平也沒有明顯變化。鑒于鐵可明顯上調(diào)細(xì)胞內(nèi)磷酸激酶酪蛋白激酶2(CK2)和Polo樣激酶2(PLK2)的表達(dá)[28],同時LRRK2 G2019S突變可增強(qiáng)LRRK2激酶活性,促進(jìn)Rab35磷酸化,繼而促進(jìn)α-突觸核蛋白的傳播[6]。故我們推測,鐵存在及鐵死亡發(fā)生雖不影響Rab35蛋白表達(dá)水平,但有可能影響其磷酸化水平,因此Rab35蛋白翻譯后修飾值得進(jìn)一步研究。用FAC和鐵死亡抑制劑ferrostatin-1共同處理時,Rab35蛋白表達(dá)水平明顯下調(diào)。ferrostatin-1是一種小分子鐵死亡抑制劑,可特異性抑制RSL(RAS-selective lethal)誘導(dǎo)的細(xì)胞死亡,而不能抑制其他氧化性致命化合物和凋亡誘導(dǎo)劑誘導(dǎo)的細(xì)胞死亡,ferrostatin-1還被證實(shí)能夠抑制谷胱甘肽誘導(dǎo)的神經(jīng)毒性[7]。故我們推測,RSL通路可能參與了Rab35蛋白的表達(dá)調(diào)控。ferrostatin-1還可以抑制多巴胺能神經(jīng)元的丟失,改善PD行為及運(yùn)動障礙[29]。故我們推測,在高鐵狀態(tài)下,由于Rab35本身可促進(jìn)α-突觸核蛋白傳播[6],雖然鐵離子本身并不影響Rab35表達(dá),但在鐵死亡被抑制的情況下,Rab35的表達(dá)下調(diào),故在鐵死亡被抑制的情況下可能不利于α-突觸核蛋白的傳播。
綜上所述,在過表達(dá)α-突觸核蛋白的PC12細(xì)胞中,鐵不影響Rab35蛋白表達(dá),但鐵與鐵死亡抑制劑ferrostatin-1共同存在時可降低Rab35蛋白表達(dá),提示鐵死亡可能參與了鐵對Rab35蛋白的調(diào)控。由于Rab35蛋白磷酸化可促進(jìn)α-突觸核蛋白傳播,因此Rab35蛋白表達(dá)調(diào)控異常可能為PD中鐵代謝異常和α-突觸核蛋白病理學(xué)之間的相互關(guān)系研究提供了新的理論依據(jù),為PD治療了提供新的靶點(diǎn)。
[參考文獻(xiàn)]
[1]LI G, MA J F, CUI S S, et al. Parkinson’s disease in China: a forty-year growing track of bedside work[J]. Translational Neurodegeneration, 2019,8:22.
[2]KALIA L V, LANG A E. Parkinson’s disease[J]. The Lan-cet, 2015,386(9996):896-912.
[3]CUI J T, GUO X L, LI Q J, et al. Hepcidin-to-ferritin ratio is decreased in astrocytes with extracellular alpha-synuclein and iron exposure[J]. Frontiers in Cellular Neuroscience, 2020,14:47.
[4]PENG C, TROJANOWSKI J Q, LEE V M Y. Protein transmission in neurodegenerative disease[J]. Nature Reviews Neurology, 2020,16(4):199-212.
[5]WANDINGER-NESS A, ZERIAL M. Rab proteins and the compartmentalization of the endosomal system[J]. Cold Spring Harbor Perspectives in Biology, 2014,6(11):a022616.
[6]BAE E J, KIM D K, KIM C, et al. LRRK2 kinase regulates α-synuclein propagation via RAB35 phosphorylation[J]. Nature Communications, 2018,9(1):3465.
[7]DIXON S J, LEMBERG K M, LAMPRECHT M R, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death[J]. Cell, 2012,149(5):1060-1072.
[8]XIE Y, HOU W, SONG X, et al. Ferroptosis: process and function[J]. Cell Death and Differentiation, 2016,23(3):369-379.
[9]YANG W S, STOCKWELL B R. Ferroptosis: death by lipid peroxidation[J]. Trends in Cell Biology, 2016,26(3):165-176.
[10]DO VAN B, GOUEL F, JONNEAUX A, et al. Ferroptosis, a newly characterized form of cell death in Parkinson’s disease that is regulated by PKC[J]. Neurobiology of Disease, 2016,94:169-178.
[11]CHEN B B, WEN X M, JIANG H, et al. Interactions between iron and α-synuclein pathology in Parkinson’s disease[J]. Free Radical Biology amp; Medicine, 2019,141:253-260.
[12]DE LAU L M, BRETELER M M. Epidemiology of Parkinson’s disease[J]. The Lancet Neurology, 2006,5(6):525-535.
[13]BLAUWENDRAAT C, NALLS M A, SINGLETON A B. The genetic architecture of Parkinson’s disease[J]. The Lancet Neurology, 2020,19(2):170-178.
[14]KIRAL F R, KOHRS F E, JIN E J, et al. Rab GTPases and membrane trafficking in neurodegeneration[J]. Current Biology: CB, 2018,28(8):R471-R486.
[15]GUADAGNO N A, PROGIDA C. Rab GTPases: switching to human diseases[J]. Cells, 2019,8(8):E909.
[16]KLINKERT K, ECHARD A. Rab35 GTPase: a central regulator of phosphoinositides and F-actin in endocytic recycling and beyond[J]. Traffic (Copenhagen, Denmark), 2016,17(10):1063-1077.
[17]CHEVALLIER J, KOOP C, SRIVASTAVA A, et al. Rab35 regulates neurite outgrowth and cell shape[J]. FEBS Letters, 2009,583(7):1096-1101.
[18]DAMBOURNET D, MACHICOANE M, CHESNEAU L, et al. Rab35 GTPase and OCRL phosphatase remodel lipids and F-actin for successful cytokinesis[J]. Nature Cell Biology, 2011,13(8):981-988.
[19]EGAMI Y, FUJII M, KAWAI K, et al. Activation-inactivation cycling of Rab35 and ARF6 is required for phagocytosis of zymosan in RAW264 macrophages[J]. Journal of Immunology Research, 2015, 2015:429439.
[20]ALLAIRE P D, SEYED SADR M, CHAINEAU M, et al. Interplay between Rab35 and Arf6 controls cargo recycling to coordinate cell adhesion and migration[J]. Journal of Cell Science, 2013,126(Pt 3):722-731.
[21]ZHU Y C, SHEN T, LIU J J, et al. Rab35 is required for Wnt5a/Dvl2-induced Rac1 activation and cell migration in MCF-7 breast cancer cells[J]. Cellular Signalling, 2013,25(5):1075-1085.
[22]KLINKERT K, ROCANCOURT M, HOUDUSSE A, et al. Rab35 GTPase couples cell division with initiation of epithelial apico-basal polarity and lumen opening[J]. Nature Communications, 2016,7:11166.
[23]HSU C, MOROHASHI Y, YOSHIMURA S, et al. Regulation of exosome secretion by Rab35 and its GTPase-activating proteins TBC1D10A-C[J]. The Journal of Cell Biology, 2010,189(2):223-232.
[24]CHIU C C, YEH T H, LAI S C, et al. Increased Rab35 expression is a potential biomarker and implicated in the pathogenesis of Parkinson’s disease[J]. Oncotarget, 2016,7(34):54215-54227.
[25]MENA N P, URRUTIA P J, LOURIDO F, et al. Mitochondrial iron homeostasis and its dysfunctions in neurodegenerative disorders[J]. Mitochondrion, 2015,21:92-105.
[26]STOCKWELL B R, FRIEDMANN ANGELI J P, BAYIR H, et al. Ferroptosis: a regulated cell death Nexus linking meta-bolism, redox biology, and disease[J]. Cell, 2017,171(2):273-285.
[27]ZHANG P, CHEN L, ZHAO Q Q, et al. Ferroptosis was more initial in cell death caused by iron overload and its underlying mechanism in Parkinson’s disease[J]. Free Radical Bio-logy amp; Medicine, 2020,152:227-234.
[28]WANG R R, WANG Y C, QU L, et al. Iron-induced oxidative stress contributes to α-synuclein phosphorylation and up-regulation via polo-like kinase 2 and casein kinase 2[J]. Neurochemistry International, 2019,125:127-135.
[29]MAHONEY-SNCHEZ L, BOUCHAOUI H, AYTON S, et al. Ferroptosis and its potential role in the physiopathology of Parkinson’s Disease[J]. Progress in Neurobiology, 2021,196:101890.
(本文編輯 馬偉平)