• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Exploring the influence of microRNA miR-34 on p53 dynamics: a numerical study*

    2021-04-12 00:48:52NanLiu劉楠HongliYang楊紅麗andLianguiYang楊聯(lián)貴
    Communications in Theoretical Physics 2021年3期

    Nan Liu (劉楠),Hongli Yang (楊紅麗) and Liangui Yang (楊聯(lián)貴)

    School of Mathematical Sciences,Inner Mongolia University,Hohhot 010021,China

    Abstract The tumor suppressor p53 is at the hub of the cellular DNA damage response network.P53-dependent cell fate decision is inseparable from p53 dynamics.A type of non-coding microRNA miR-34 has the function of enhancing p53 content.An intriguing question arises: How does miR-34 affect p53 kinetics?To address this question,we reconstruct a p53 signal transduction network model containing miR-34.Some experimental phenomena of p53 pulses are reproduced to explain the rationality of the model.The method of numerical bifurcation is used to investigate the effect of miR-34 on p53 kinetics.We point out that appropriate or higher miR-34 transcription rates can prevent DNA-damaged cell proliferation by causing p53 oscillation or high steady-state kinetic behavior,respectively.However,the lack of miR-34 synthesis ability will induce p53 to remain at a low level,and cells cannot respond correctly to DNA damage.These results are well in line with the anti-cancer role of miR-34.Our work sheds light on how miR-34 carries out its tumor-suppressive function from tuning p53 dynamic aspect.

    Keywords: miR-34,P53 kinetic model,oscillation,bifurcation

    1.Introduction

    P53,one of the most important genetic guardians,can suppress the canceration of a variety of cells[1].As a transcription factor,p53 enables a large number of target genes to be transactivated.These target genes are involved in cell senescence,programmed cell death,cell cycle arrest,metastasis inhibition,and DNA damage response,etc [2].More than half of human cancers are related to p53 gene defects: for example,p53 gene loss or mutation[3,4].MicroRNA(miR)is a class of non-coding RNA molecules,which bind to the untranslated region of messenger RNA in a specific sequence,causing translation to be inhibited[5].Among them,miR-34 has a positive effect on p53 level[6].Therefore,it is not surprising that the down-expression of miR-34 occurs in a lot of p53-related tumors [7].Conversely,the over-expression of miR-34 induced by p53 suggests that miR-34 has an anticancer effect in many human cancer cells [8].It has been found experimentally that the cell fate after DNA damage is regulated by p53 dynamics,that is,the periodic pulse dynamics of p53 level makes cells stop cell division,stable medium concentration of p53 triggers cell senescence,and a monotonous increase in p53 concentration leads to cell apoptosis[9,10].Therefore,it is necessary to explore the kinetic regulation of p53.However,how miR-34 finely controls the dynamics of p53 after DNA damage is not fully understood.

    In the progress of p53 kinetics research,both biological experiments and mathematical models have played a very important role [11].The mathematical models are very predictable.For example: (i) as early as 2002,Tiana et al [12]used the p53-Mdm2 (the major negative regulator of p53)motif to add a large time delay,which resulted in a stable limit cycle for the dynamic system,although the undamped oscillation of p53 had not been discovered at that time;(ii)as early as 2011,Zhang et al [13] employed a mathematical model to demonstrate that there may be two-stage dynamics in the p53 system,as far as we know,this phenomenon was not reported experimentally until 2020 [14].As we all know,negative feedback loop(NFL)is essential to generate pulses dynamic in protein signal networks,and the periodic pulse dynamics requires time lag in NFL[15].Time delay plays a role in many oscillating or chaotic systems[16–18].In fact,most of the p53 vibrator models have two elements,i.e.NFL and delay.Delay differential equations obviously include time lag,and ordinary differential equations(ODE)can also include an invisible time delay.There are hidden delay in the p53 models that distinguishes the cytoplasm and the nucleus [19].Similarly,supposing an intermediate substance between p53 and Mdm2 is also a way to hide the time lag [20].Adding a positive feedback loop (PFL) to the NFL can also produce continuous and stable vibration,because PFL can provide delay for NFL[21].In a variety of biological networks,the NFL-PFL coupling model is more tunable and therefore more realistic [22–24].

    Motivated by the above considerations,we develop a NFLs-PFLs coupled p53 ODE model containing miR-34.Our model is derived by modifying the model of Zhuge et al[25].Their model used a nonlinear sigmoidal function (the generalized Hill function) to adapt the model established by Zhang et al[26],and explained the mediation of p53 co-factor on p53 dynamics and cell fate well.In this work,we ignore the role of co-factor and add miR-34 pathway to the p53 vibrator module to rebuild a mathematical model in order to analyze the effect of miR-34 on p53 dynamics under DNA damage.For a detailed description of the model,see section 2.We first reproduce the continuous or damped oscillation of p53 found in the experiments[27,28].Secondly,the method of numerical bifurcation is applied to the model,and we find that this ODE system has two kinds of stability under standard parameters,one is a stable limit cycle,and the other is a stable fixed point.The appropriate expression of miR-34 is required for p53 oscillation.Finally,we investigate the kinetics of p53 under the combined action of the parameter regulated by DNA damage and the production parameter of miR-34.The dynamic effect of miR-34 on p53 system is verified again.The anticancer effect of miR-34 is explained from the perspective of p53 kinetics.

    2.Model

    Figure 1.Schematic depiction of ATM-p53-Mdm2 module regulated by miR-34.Arrow-headed and solid-circle-headed solid lines denote promotion and inhibition,respectively.Arrow-headed dashed lines represent state transition or degradation.

    In resting cells,the ubiquitin-proteasome degradation pathway caused by Mdm2 results in low levels of p53 [29].In turn,p53 can promote the expression of Mdm2.In the case of DNA damage,the mutual regulation between p53 and Mdm2 is altered.The protein kinase ATM first senses DNA damage and is activated by phosphorylation [30].After being activated,ATM catalyzes the phosphorylation of p53 and Mdm2[31].Phosphorylated p53 has more transcriptional activity,while phosphorylated Mdm2 is more easily degraded [32].Interestingly,phosphorylated Mdm2 can also increase the translation efficiency of p53 messenger RNA[33].On the one hand,p53 triggers the dephosphorylation (inactivation) of ATM by inducing the expression of phosphatase (Wip1),forming a NFL [34].On the other hand,p53 induces the transcription of miR-34,and miR-34 hinders the translation of the protein (Mdm4) required for Mdm2 to ubiquitinate p53.Therefore,miR-34 inhibits the pro-degradation function of Mdm2 on p53,forming a PFL[6].The schematic diagram of the model is shown in figure 1.Here Mdm2 is divided into three categories,i.e.Mdm2 in the nucleus (Mdm2n),Mdm2 in the cytoplasm(Mdm2c),and phosphorylated Mdm2 in the cytoplasm(Mdm2p).According to the law of mass action,the equations are as follows:

    Here [] represents the dimensionless concentration and prime means its differentiation to time.All promotion or inhibition are expressed as the generalized Hill functions.The sub-functions are as follows:

    Table 1.Simulation parameters.

    Numerical solution is done by MATLAB Euler method.The numerical bifurcation is performed with the free software XPPAUT.The parameter values and descriptions are shown in the table 1.These parameters mainly come from [25],and some parameters are adjusted with ‘trial and error’ method.Limited to experimental data,the real parameter values are usually difficult to obtain,and the‘trial and error’approach is popular,for example in [35].The concentration units of the parameters are dimensionless ‘C’,the proportional constants have no unit marked as ‘’,and the time unit is minutes ‘min’.

    3.Results

    3.1.Reproduction of p53 oscillation dynamics

    Figure 2.(a) Time series of [p53] and (b) trajectory in the deterministic case.Here [Mdm2]=[Mdm2n]+[Mdm2c]+[Mdm2p].

    Figure 3.Time series of[p53]under random simulation.The noise intensity D is set to 10?7.(a)is 50 single-cell samples,and the color bar represents the dimensionless concentration of p53.(b) is the average of 50 single cells.

    The vibration dynamic of p53 under the deterministic case is exhibited in figure 2(a).The p53 oscillation period is between 4 and 7 h,which is consistent with the pulse interval in the experiment[27].The long-lasting and stable-interval pulse of p53 means that the system has the possibility of a stable limit cycle.To explain this point clearly,we draw a trajectory in the three-dimensional space in figure 2(b).The trajectory from the origin quickly converges to a stable circle,which is the limit cycle.In real cells,p53 will not oscillate indefinitely because the damaged DNA will be repaired during the p53 pulse phase.When DNA damage drops to a certain level,p53 may recover to a basal concentration[36].The above analysis are the p53 oscillation dynamics under the ideal condition.Due to the PH and temperature etc in the real cells are fluctuation,or the number of molecules in a cell is not very large,the ODE model cannot reflect the dynamics of the protein well.There may be internal noise or external noise disturbing the system[37].Therefore,we will consider the oscillation of p53 corresponded to the stochastic differential equation(SDE) next.

    The ODE dx/dt=F(x) can be rewritten as SDE dx/dt= F(x)+ξ,here ξ is the noise term.ξ is usually assumed Gaussian white with zero mean,i.e.〈ξ(t)〉=0 andwhere δ(t) is the Dirac function and D is the homogeneous constant matrix,which describes the intensity of noise.A noise system with such properties can further obtain the Fokker–Planck equation by introducing a probability flow.Therefore,this SDE system is used to create the potential landscape related to steady probabilitydistribution [38].As mentioned above,the cellular networks have internal or external noise,and this additive noise is closer to the internal noise [39].We display 50 single-cell samples in figure 3(a).All of them exhibit significant p53 pulse.Unlike the deterministic case,the pulse interval and height of p53 are uncertain in the random simulation.In other words,the p53 oscillations are not synchronized in the population of cells.It is easy to understand that the oscillation of p53 is damped in the population cells,because the condition of population cells is the average result of all single cells,as shown in figure 3(b).Thus,the p53 oscillation behavior observed experimentally by Western blotting is damped [28].

    Figure 4.Time occurs of [p53] at different vmir values.

    3.2.The kinetics of p53 mediated by miR-34

    The function of miR-34 in the p53 signaling network has been initially discovered,but how miR-34 regulates p53 dynamics remains mysterious.Figure 4 depicts the p53 kinetics of three miR-34 expression rate (vmir) scenarios.When miR-34 is expressed at a low level (vmir=0.02),p53 remains at a low level;when miR-34 is expressed at a high level(vmir=0.04),the p53 level first increases monotonically,then decreases and finally stabilizes at a higher level.The model shows that for p53 to oscillate,miR-34 needs to maintain a medium production rate,similar to the prediction in [40].In order to fully reflect the correlation between miR-34 generation rate and p53 kinetics,we draw a bifurcation diagram in figure 5.There are four key points in figure 5(a),the saddle node bifurcation point at the steadystate branch (SN),the Hopf bifurcation point (HB),the saddle node bifurcation point at the limit cycle branch (SNL),and the saddle node invariant circle bifurcation point (SNIC).The oscillation originates from HB and ends at SNIC.These four bifurcation points divide this parameter into five intervals: (i)when vmir∈[0,SN],p53 maintains a low steady state;(ii)when vmir∈(SN,SNIC],the system appears excitable state;(iii)when vmir∈(SNIC,HB],p53 has only stable oscillation; (iv) when vmir∈(HB,SNL],p53 has both stable steady state and stable oscillation; and (v) when vmir∈(SNIC,+∞),p53 finally high steady state will be achieved.

    This oscillator has a remarkable characteristic that the oscillation appears in the form of‘all or none’,that is,all the oscillation is of large amplitude,and there is no ambiguous phenomenon of either seeming or non oscillation.Such oscillation feature may be attributed to the existence of PFL[41].And the oscillation produced by this vibrator has a variety of rhythms,as shown in figure 5(b).A wide range of frequencies is required by many biological processes (like heartbeats and cell cycles)[24].Therefore,our model may be more suitable for the truth.Moreover,the bifurcation diagram shows that in addition to stable oscillation,there is also a stable steady state in the dynamic system under the default parameters.As shown in figure 6,there are one stable limit cycle and one stable fixed point in the phase diagram.Which dynamic of the system can appear is historically dependent.Indeed,p53 pulsed cells accounted for a certain percentage after DNA damage,but not all in the experiment [27].Thereby,it is plausible that the p53 dynamic system has other stability.

    3.3.The combined effect of miR-34 and ATM on p53 dynamics

    The above analysis suggest that different miR-34 expression capabilities cause distinct p53 kinetics.In order to make these results more solid,we further combine vmirwith another parameter vatmto analyze.As a sensor,ATM activation parameter vatmis affected by DNA damage [30].Figure 7 depicts the bifurcation curve of p53 steady-state branch as a function of vatmunder different vmirvalues.P53 keep low concentration when vmir=0.02 despite vatmvarying.The bifurcation curve is ‘S’ shaped when vmir=0.03: the lower branch is composed of stable nodes; the middle branch is consist of unstable saddle points; and the upper branch is the unstable focus in a large vatmrange.The bifurcation curves corresponding to vmir=0.04 and vmir=0.03 are qualitatively similar,and the only difference is that the oscillation is compressed in a very narrow vatminterval.As vatmincreases,the unstable focus becomes stable nodes after encountering HB.The bifurcation curves also mean that: (i) if the expression of miR-34 is low,p53 will not reach a high concentration;(ii)the appropriate expression of miR-34 will make p53 oscillation conditions more relaxed; and (iii) when miR-34 is expressed in large quantities,p53 is more likely to be at a high concentration.These agree well with the previous analysis in section 3.2.

    Figure 5.(a)Codimension-one bifurcation diagram of[p53]versus the parameter vmir.The red solid and the black solid lines represent stable and unstable equilibria,respectively.The green solid lines and the blue dotted lines are the maxima and minima of stable and unstable limit cycles,respectively.(b)The oscillation period as a function of vmir.The green solid lines and the blue dotted lines are the period of stable and unstable limit cycles,respectively.

    Figure 6.Phase diagram on ([p53],[Mdm2]) plane.

    We further extend the four bifurcation points in figure 5(a)on the (vmir,vatm) parameter plane,as shown in figure 8.This parameter region is divided into five subregions by four bifurcation curves:(i)p53 is low expressed in the R1 region;(ii)the p53 regulatory network is excitable in the R2 region;(iii)in the R3 area,p53 has repeated pulses; (iv) the p53 dynamic system appears atypical bistable(stable steady state and stable vibration)when the parameters are in the R4 region; and (v) in the R5 region,p53 cascade occurs.The co-dimension two bifurcation graph confirms the correctness of co-dimension one bifurcation graphs.When the abnormal DNA signal is sufficient to fully activate ATM,miR-34 can finely regulate the dynamics of p53 motif.Furthermore,the two PFLs coupled dynamical systems have the potential to produce tristability [42].In our model,in addition to the miR-34 pathway,the Mdm2p pathway is also a PFL.When the expression level of miR-34 is extremely high,as plotted in figure 9,the lower branch of the ‘S’ shaped curve is folded.Since the intermediate steady state of the tristable state is very low and close to the low steady state,we do not do the extra research.

    Figure 7.Codimension-one bifurcation diagram of [p53] versus the parameter vatm at the given vmir.Only steady-state branches are presented here.The red solid and the black solid lines represent stable and unstable steady-state,respectively.

    4.Discussion and conclusion

    Figure 8.Codimension-two bifurcation diagram for parameters vmir and vatm.

    Figure 9.Codimension-one bifurcation diagram of [p53] versus the parameter vatm when vmir=0.2.Here HC is the homoclinic bifurcation point.The red solid and the black solid lines represent stable and unstable steady-state,respectively.Blue dotted lines are the maxima and minima of unstable limit cycles.

    Our ODE model does not include the equations of Wip1 and Mdm4,but the roles of these two proteins in the signal transduction network have been considered,i.e.p53 promotes ATM inactivation,and miR-34 inhibits the effect of Mdm2n on p53 degradation.In addition to Mdm4,miR-34 suppresses SIRT1 protein is also a possible mechanism[6].SIRT1 does not participate in the degradation of p53,but converts active p53 into inactive p53.Therefore miR-34 prevents p53 inactivation.If this pathway is introduced,the reduction coefficientdp53should be the multiplication of two Hill functions (degradation multiply by inactivation),which is similar to the generation coefficient(production multiply by activation).We reset.The parameter j is negatively related to the strength of this pathway.When this effect of miR-34 on this way is not very strong (j=1),our results remain unchanged.But as the intensity of this effect increases (j=0.1),the p53 oscillation behavior will be destroyed and replaced by an ultra-high steady state (see figure 10).However,the inhibition of miR-34 on SIRT1 does not seem to occur in some cases [6].

    Figure 10.The scenario of another miR-34 pathway is introduced into the model.Codimension-one bifurcation diagram of [p53]versus the parameter vmir at the given j.Only steady-state branches are presented here.The red solid and the black solid lines represent stable and unstable steady-state,respectively.

    In summary,the main reason of cancer is DNA damage[11].This paper uses numerical methods to study a mathematical model of miR-34 and p53 motif crosstalk after DNA damage.If cells fail to respond appropriately to DNA damage,it may lead to uncontrolled cell proliferation [11].We find that miR-34 plays an important role in p53-mediated cellular DNA damage response.If ATM is fully activated,the moderate miR-34 synthesis rate triggers p53 oscillation,leading to cell cycle arrest.The larger miR-34 production rate is conducive to the high concentration of p53,causing cell senescence or apoptosis.Too low miR-34 production will make cells with low p53 concentration,meaning that DNA damaged cells can also proliferate.This may be the reason why the miR-34 content in many tumors is low.Moreover,miR-34 can also be related to the apoptosis regulatory network downstream of p53 [43],which is worthy of further research in the future.We hope that our work will be helpful to the design of biological experiments and anti-cancer strategies.

    99精品欧美一区二区三区四区| 一级黄色大片毛片| 国产精品 国内视频| 成在线人永久免费视频| 90打野战视频偷拍视频| 一区福利在线观看| 久久中文看片网| 在线观看一区二区三区激情| 欧美精品一区二区大全| 宅男免费午夜| kizo精华| 久久久久精品人妻al黑| 久热这里只有精品99| 精品少妇黑人巨大在线播放| 国产精品九九99| 91成年电影在线观看| 18禁国产床啪视频网站| 黑人操中国人逼视频| 久久 成人 亚洲| 99国产精品99久久久久| 国产99久久九九免费精品| 欧美日韩视频精品一区| 在线观看免费午夜福利视频| 亚洲国产av影院在线观看| e午夜精品久久久久久久| 午夜久久久在线观看| 国产一区二区 视频在线| 日日摸夜夜添夜夜添小说| 一区二区三区乱码不卡18| 亚洲午夜精品一区,二区,三区| 亚洲精品第二区| 成年av动漫网址| 国产又爽黄色视频| 国产一卡二卡三卡精品| 国产一区二区三区在线臀色熟女 | 他把我摸到了高潮在线观看 | 在线亚洲精品国产二区图片欧美| 91字幕亚洲| 无遮挡黄片免费观看| 久热这里只有精品99| 久久久水蜜桃国产精品网| 天天添夜夜摸| 免费高清在线观看日韩| 日本wwww免费看| 黄色怎么调成土黄色| 国产精品一二三区在线看| 少妇被粗大的猛进出69影院| 啪啪无遮挡十八禁网站| 青春草亚洲视频在线观看| 岛国在线观看网站| 国产精品国产av在线观看| 99国产精品一区二区蜜桃av | 精品国产乱码久久久久久小说| 成人18禁高潮啪啪吃奶动态图| 国产精品久久久久成人av| 女性被躁到高潮视频| 欧美变态另类bdsm刘玥| 乱人伦中国视频| 欧美日韩亚洲高清精品| 亚洲精品一区蜜桃| 午夜免费观看性视频| 亚洲精品国产精品久久久不卡| 国产主播在线观看一区二区| 国产亚洲一区二区精品| 啦啦啦免费观看视频1| 99国产综合亚洲精品| 国产精品秋霞免费鲁丝片| 青春草亚洲视频在线观看| 97精品久久久久久久久久精品| 亚洲精品久久成人aⅴ小说| 在线看a的网站| 狂野欧美激情性xxxx| 国产成人免费无遮挡视频| 国产欧美日韩一区二区三区在线| 精品久久久久久久毛片微露脸 | 亚洲国产欧美网| 国产精品影院久久| 国产伦人伦偷精品视频| 法律面前人人平等表现在哪些方面 | 久久影院123| 丰满迷人的少妇在线观看| 久久久精品区二区三区| 国产精品.久久久| 亚洲一卡2卡3卡4卡5卡精品中文| 在线观看舔阴道视频| av天堂在线播放| 国产成人精品在线电影| 91麻豆av在线| 欧美日韩av久久| 午夜福利乱码中文字幕| 久久九九热精品免费| 黑人欧美特级aaaaaa片| 天天躁夜夜躁狠狠躁躁| 俄罗斯特黄特色一大片| 日本猛色少妇xxxxx猛交久久| 欧美日韩av久久| 欧美变态另类bdsm刘玥| 中文字幕人妻熟女乱码| 一本久久精品| 另类亚洲欧美激情| 91国产中文字幕| 黄片播放在线免费| 日韩欧美国产一区二区入口| 亚洲av日韩在线播放| 欧美日韩亚洲国产一区二区在线观看 | 日本a在线网址| 国产成人欧美在线观看 | 热re99久久国产66热| 99国产极品粉嫩在线观看| 欧美日韩中文字幕国产精品一区二区三区 | 超碰成人久久| 午夜福利视频在线观看免费| 啪啪无遮挡十八禁网站| 青春草亚洲视频在线观看| 老司机在亚洲福利影院| 日韩欧美一区视频在线观看| 51午夜福利影视在线观看| 国产一区二区在线观看av| 国产成人免费无遮挡视频| 777久久人妻少妇嫩草av网站| 天堂俺去俺来也www色官网| 午夜影院在线不卡| 黄频高清免费视频| 婷婷丁香在线五月| 秋霞在线观看毛片| 日本黄色日本黄色录像| 桃花免费在线播放| 久久青草综合色| 妹子高潮喷水视频| 精品少妇黑人巨大在线播放| 中文字幕人妻熟女乱码| 人妻人人澡人人爽人人| 日本五十路高清| 美女脱内裤让男人舔精品视频| 极品人妻少妇av视频| av在线播放精品| 欧美 日韩 精品 国产| 精品乱码久久久久久99久播| 国产精品偷伦视频观看了| 国产高清国产精品国产三级| 欧美日韩亚洲高清精品| 精品国产一区二区三区久久久樱花| 操美女的视频在线观看| 欧美激情久久久久久爽电影 | 亚洲中文日韩欧美视频| 国产亚洲av片在线观看秒播厂| 国产av一区二区精品久久| 俄罗斯特黄特色一大片| 视频区图区小说| 制服人妻中文乱码| 欧美 日韩 精品 国产| 国产精品九九99| 操出白浆在线播放| 日日夜夜操网爽| 久久久久久久大尺度免费视频| 日本91视频免费播放| 亚洲一码二码三码区别大吗| 淫妇啪啪啪对白视频 | 叶爱在线成人免费视频播放| 亚洲综合色网址| 老司机亚洲免费影院| 在线永久观看黄色视频| 人人妻人人澡人人看| 亚洲va日本ⅴa欧美va伊人久久 | 夫妻午夜视频| 韩国精品一区二区三区| 亚洲激情五月婷婷啪啪| 丰满迷人的少妇在线观看| 好男人电影高清在线观看| 高清视频免费观看一区二区| 高清黄色对白视频在线免费看| 国产精品成人在线| svipshipincom国产片| 欧美 亚洲 国产 日韩一| 久久久久久人人人人人| 好男人电影高清在线观看| 国产免费av片在线观看野外av| 中文字幕另类日韩欧美亚洲嫩草| av福利片在线| 男女床上黄色一级片免费看| 久久免费观看电影| 亚洲国产欧美在线一区| 天天躁日日躁夜夜躁夜夜| 不卡一级毛片| 欧美午夜高清在线| 人成视频在线观看免费观看| e午夜精品久久久久久久| 亚洲国产欧美网| 亚洲专区中文字幕在线| 国产精品九九99| 亚洲一卡2卡3卡4卡5卡精品中文| svipshipincom国产片| a 毛片基地| 久久精品aⅴ一区二区三区四区| 国产福利在线免费观看视频| 桃花免费在线播放| 日韩制服骚丝袜av| 午夜精品久久久久久毛片777| √禁漫天堂资源中文www| 91大片在线观看| 亚洲专区字幕在线| 欧美日韩黄片免| 欧美黑人精品巨大| 老司机影院毛片| 国产成人av教育| 成人国产av品久久久| 视频区欧美日本亚洲| 欧美精品一区二区免费开放| 国产高清videossex| 久久久久国产精品人妻一区二区| 一区福利在线观看| 天堂中文最新版在线下载| 一进一出抽搐动态| 精品国内亚洲2022精品成人 | 巨乳人妻的诱惑在线观看| 深夜精品福利| 国产精品九九99| 中文字幕另类日韩欧美亚洲嫩草| 免费不卡黄色视频| 亚洲自偷自拍图片 自拍| 考比视频在线观看| 国产成人av教育| 水蜜桃什么品种好| 视频区欧美日本亚洲| 欧美国产精品一级二级三级| tube8黄色片| 久久九九热精品免费| 无限看片的www在线观看| 精品乱码久久久久久99久播| 菩萨蛮人人尽说江南好唐韦庄| 亚洲五月色婷婷综合| 女性生殖器流出的白浆| 9色porny在线观看| 久久精品熟女亚洲av麻豆精品| 99香蕉大伊视频| 美女国产高潮福利片在线看| 国产av精品麻豆| 青春草亚洲视频在线观看| 两性夫妻黄色片| 国产在视频线精品| 大香蕉久久网| 亚洲情色 制服丝袜| 欧美精品高潮呻吟av久久| 人成视频在线观看免费观看| 多毛熟女@视频| 一区二区三区乱码不卡18| 亚洲精品一区蜜桃| 亚洲人成77777在线视频| 国产成人av教育| av电影中文网址| 男人添女人高潮全过程视频| a级毛片在线看网站| 中国国产av一级| 悠悠久久av| 成人亚洲精品一区在线观看| 菩萨蛮人人尽说江南好唐韦庄| 欧美中文综合在线视频| 我的亚洲天堂| 亚洲熟女毛片儿| 久久亚洲精品不卡| 日本黄色日本黄色录像| 国产极品粉嫩免费观看在线| 99久久综合免费| av在线app专区| 亚洲av电影在线进入| 十分钟在线观看高清视频www| 两性午夜刺激爽爽歪歪视频在线观看 | 狠狠狠狠99中文字幕| 亚洲综合色网址| 曰老女人黄片| 国产免费av片在线观看野外av| 一区二区三区精品91| 精品国产乱子伦一区二区三区 | 午夜精品久久久久久毛片777| 91精品国产国语对白视频| 亚洲专区国产一区二区| 99精国产麻豆久久婷婷| 日日摸夜夜添夜夜添小说| 国产精品久久久人人做人人爽| 黄色片一级片一级黄色片| 亚洲精品成人av观看孕妇| 中文字幕另类日韩欧美亚洲嫩草| 国产成人精品久久二区二区免费| 在线精品无人区一区二区三| 国产男人的电影天堂91| 亚洲精品国产av蜜桃| av网站免费在线观看视频| 午夜91福利影院| 中文字幕人妻丝袜一区二区| 亚洲av电影在线观看一区二区三区| 巨乳人妻的诱惑在线观看| 午夜老司机福利片| 久久久久久人人人人人| 成人黄色视频免费在线看| 国产精品免费视频内射| 欧美精品人与动牲交sv欧美| 在线 av 中文字幕| 黄频高清免费视频| 日韩免费高清中文字幕av| 日韩三级视频一区二区三区| 狂野欧美激情性xxxx| 久久人人97超碰香蕉20202| 免费人妻精品一区二区三区视频| 秋霞在线观看毛片| 麻豆av在线久日| 欧美 亚洲 国产 日韩一| 午夜福利免费观看在线| 国产成人免费无遮挡视频| 欧美黄色片欧美黄色片| 国产精品二区激情视频| 欧美精品av麻豆av| 国产精品国产av在线观看| 精品久久蜜臀av无| 在线观看一区二区三区激情| 成人国产av品久久久| 在线永久观看黄色视频| 国产精品 欧美亚洲| 久久久国产欧美日韩av| 最新在线观看一区二区三区| 97在线人人人人妻| 99久久精品国产亚洲精品| 国产高清视频在线播放一区 | 成年av动漫网址| 国产一区二区三区av在线| 一二三四在线观看免费中文在| 日本a在线网址| 91九色精品人成在线观看| 亚洲精品粉嫩美女一区| 亚洲色图综合在线观看| 黄色视频不卡| av国产精品久久久久影院| 久久中文看片网| 国产精品 欧美亚洲| 日韩视频在线欧美| 婷婷丁香在线五月| 精品一区二区三卡| av网站在线播放免费| 国产野战对白在线观看| 女人精品久久久久毛片| 亚洲成人免费av在线播放| 国产麻豆69| 纯流量卡能插随身wifi吗| 如日韩欧美国产精品一区二区三区| 一级黄色大片毛片| 汤姆久久久久久久影院中文字幕| 亚洲欧美激情在线| 一级片免费观看大全| 亚洲一区中文字幕在线| cao死你这个sao货| 下体分泌物呈黄色| 色精品久久人妻99蜜桃| 亚洲精品成人av观看孕妇| 母亲3免费完整高清在线观看| 亚洲av成人一区二区三| 叶爱在线成人免费视频播放| 亚洲专区字幕在线| 久久精品国产亚洲av高清一级| 久久精品国产综合久久久| 女人久久www免费人成看片| 免费在线观看日本一区| 国产精品九九99| av在线播放精品| 十八禁网站免费在线| 国产片内射在线| 久久亚洲精品不卡| av一本久久久久| 午夜福利一区二区在线看| 午夜久久久在线观看| 青春草视频在线免费观看| 亚洲国产欧美在线一区| 欧美97在线视频| tocl精华| 色老头精品视频在线观看| 欧美日韩亚洲综合一区二区三区_| 中文字幕高清在线视频| 午夜福利免费观看在线| 丰满少妇做爰视频| www.999成人在线观看| 成人国语在线视频| 国产野战对白在线观看| av片东京热男人的天堂| 婷婷成人精品国产| 午夜福利在线观看吧| 九色亚洲精品在线播放| 日韩大码丰满熟妇| 麻豆乱淫一区二区| 91国产中文字幕| 啦啦啦啦在线视频资源| 中文欧美无线码| 啦啦啦啦在线视频资源| 99香蕉大伊视频| 每晚都被弄得嗷嗷叫到高潮| 国产欧美日韩综合在线一区二区| 韩国精品一区二区三区| 十分钟在线观看高清视频www| 国产野战对白在线观看| 色综合欧美亚洲国产小说| 美女中出高潮动态图| 亚洲avbb在线观看| 少妇被粗大的猛进出69影院| 亚洲情色 制服丝袜| 男女床上黄色一级片免费看| 啦啦啦在线免费观看视频4| 国产精品九九99| 少妇猛男粗大的猛烈进出视频| 亚洲精品国产精品久久久不卡| 丁香六月欧美| 亚洲人成77777在线视频| 久久精品国产综合久久久| 亚洲九九香蕉| 一边摸一边抽搐一进一出视频| cao死你这个sao货| 国产视频一区二区在线看| 国产黄频视频在线观看| 飞空精品影院首页| 国产麻豆69| 男女午夜视频在线观看| av网站在线播放免费| 国产主播在线观看一区二区| 成人18禁高潮啪啪吃奶动态图| 高清视频免费观看一区二区| 免费一级毛片在线播放高清视频 | 国产国语露脸激情在线看| 嫩草影视91久久| 夜夜夜夜夜久久久久| 久久久国产欧美日韩av| 免费久久久久久久精品成人欧美视频| 国产精品国产av在线观看| 国产人伦9x9x在线观看| 欧美激情 高清一区二区三区| 国产成人av激情在线播放| 亚洲精品粉嫩美女一区| 美国免费a级毛片| 欧美xxⅹ黑人| 一二三四在线观看免费中文在| 亚洲人成电影观看| 在线亚洲精品国产二区图片欧美| 免费不卡黄色视频| 久久狼人影院| 亚洲国产精品一区三区| 亚洲精品国产精品久久久不卡| 99久久99久久久精品蜜桃| 国产亚洲精品久久久久5区| 手机成人av网站| 亚洲精品久久久久久婷婷小说| 不卡一级毛片| 菩萨蛮人人尽说江南好唐韦庄| 少妇精品久久久久久久| 男女国产视频网站| 中文字幕人妻丝袜一区二区| 亚洲国产欧美网| 久久人妻熟女aⅴ| 丝袜脚勾引网站| 这个男人来自地球电影免费观看| 成人av一区二区三区在线看 | 精品人妻在线不人妻| 欧美另类亚洲清纯唯美| 久久女婷五月综合色啪小说| 久久精品国产综合久久久| 国产免费福利视频在线观看| 我要看黄色一级片免费的| 交换朋友夫妻互换小说| 侵犯人妻中文字幕一二三四区| 成年人黄色毛片网站| 伊人久久大香线蕉亚洲五| 亚洲精品乱久久久久久| 国产精品国产av在线观看| 久久久久久久精品精品| 久久中文字幕一级| 久热爱精品视频在线9| 国产精品成人在线| 国产精品影院久久| 熟女少妇亚洲综合色aaa.| 国产又色又爽无遮挡免| 91精品国产国语对白视频| 少妇裸体淫交视频免费看高清 | 999久久久国产精品视频| 欧美日韩福利视频一区二区| 男女午夜视频在线观看| 夫妻午夜视频| 国产欧美亚洲国产| 天天躁日日躁夜夜躁夜夜| 亚洲av欧美aⅴ国产| 久久久精品区二区三区| 亚洲国产av影院在线观看| 日韩视频在线欧美| 久久人人爽av亚洲精品天堂| 一个人免费在线观看的高清视频 | 日韩视频一区二区在线观看| 久久久久网色| 后天国语完整版免费观看| 丝瓜视频免费看黄片| 日韩中文字幕视频在线看片| 亚洲精品一二三| 久久 成人 亚洲| 亚洲欧美精品自产自拍| 精品国产超薄肉色丝袜足j| 国产麻豆69| avwww免费| 青青草视频在线视频观看| 国产精品一区二区在线观看99| www日本在线高清视频| 亚洲精品久久久久久婷婷小说| 999久久久国产精品视频| 久久久久国产一级毛片高清牌| 久久天堂一区二区三区四区| 热re99久久国产66热| 男女下面插进去视频免费观看| 久久久精品区二区三区| 夜夜夜夜夜久久久久| 少妇被粗大的猛进出69影院| 91精品国产国语对白视频| 亚洲av日韩在线播放| 久久久久久免费高清国产稀缺| 极品人妻少妇av视频| 日韩欧美一区视频在线观看| 丁香六月欧美| 交换朋友夫妻互换小说| 久久久久久久大尺度免费视频| 大码成人一级视频| 亚洲成av片中文字幕在线观看| 女人爽到高潮嗷嗷叫在线视频| 午夜福利在线观看吧| 亚洲专区中文字幕在线| 熟女少妇亚洲综合色aaa.| 国产在线视频一区二区| 老司机亚洲免费影院| 国产一区二区三区av在线| 国产亚洲精品第一综合不卡| 国产高清videossex| 色94色欧美一区二区| 国产精品久久久久久精品电影小说| 亚洲色图 男人天堂 中文字幕| 免费黄频网站在线观看国产| 久久综合国产亚洲精品| 国产精品av久久久久免费| 黄色视频在线播放观看不卡| 18禁黄网站禁片午夜丰满| av欧美777| 日日摸夜夜添夜夜添小说| 69av精品久久久久久 | www.av在线官网国产| 国产老妇伦熟女老妇高清| 如日韩欧美国产精品一区二区三区| 久久久国产欧美日韩av| 久久久久久久久免费视频了| 国产有黄有色有爽视频| 在线观看www视频免费| 桃花免费在线播放| 免费在线观看完整版高清| 国产成+人综合+亚洲专区| 大香蕉久久成人网| 少妇精品久久久久久久| 高潮久久久久久久久久久不卡| 免费女性裸体啪啪无遮挡网站| 性色av一级| 日韩大片免费观看网站| a级片在线免费高清观看视频| 日日摸夜夜添夜夜添小说| 啪啪无遮挡十八禁网站| 日韩制服丝袜自拍偷拍| 免费av中文字幕在线| 久久精品人人爽人人爽视色| 国产精品一区二区精品视频观看| 精品国产一区二区久久| 国产不卡av网站在线观看| 午夜91福利影院| 在线观看免费日韩欧美大片| 国产一区有黄有色的免费视频| 精品国产乱子伦一区二区三区 | 欧美性长视频在线观看| 一级片免费观看大全| 国产精品国产三级国产专区5o| 男人操女人黄网站| 一本色道久久久久久精品综合| videos熟女内射| 多毛熟女@视频| 欧美黑人欧美精品刺激| 日日爽夜夜爽网站| 十八禁网站网址无遮挡| 午夜91福利影院| 美女大奶头黄色视频| 国产精品一区二区精品视频观看| 免费看十八禁软件| 999精品在线视频| 三级毛片av免费| 搡老岳熟女国产| 黑人猛操日本美女一级片| 男女床上黄色一级片免费看| 国产成人a∨麻豆精品| 少妇裸体淫交视频免费看高清 | 最新的欧美精品一区二区| 妹子高潮喷水视频| bbb黄色大片| 国产成人系列免费观看| 亚洲精品国产色婷婷电影| 十八禁网站免费在线| 黑人操中国人逼视频| 亚洲欧美一区二区三区黑人| 久久人人爽人人片av| 日韩有码中文字幕| 亚洲国产毛片av蜜桃av| av一本久久久久| 日韩三级视频一区二区三区| 午夜福利影视在线免费观看| 母亲3免费完整高清在线观看| 久久久精品区二区三区| 国产精品秋霞免费鲁丝片| 精品一区二区三卡| 久久影院123| 欧美日韩中文字幕国产精品一区二区三区 | 久久久国产一区二区| 亚洲av电影在线进入| 亚洲精品国产区一区二| 午夜成年电影在线免费观看|