• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Exploring the influence of microRNA miR-34 on p53 dynamics: a numerical study*

    2021-04-12 00:48:52NanLiu劉楠HongliYang楊紅麗andLianguiYang楊聯(lián)貴
    Communications in Theoretical Physics 2021年3期

    Nan Liu (劉楠),Hongli Yang (楊紅麗) and Liangui Yang (楊聯(lián)貴)

    School of Mathematical Sciences,Inner Mongolia University,Hohhot 010021,China

    Abstract The tumor suppressor p53 is at the hub of the cellular DNA damage response network.P53-dependent cell fate decision is inseparable from p53 dynamics.A type of non-coding microRNA miR-34 has the function of enhancing p53 content.An intriguing question arises: How does miR-34 affect p53 kinetics?To address this question,we reconstruct a p53 signal transduction network model containing miR-34.Some experimental phenomena of p53 pulses are reproduced to explain the rationality of the model.The method of numerical bifurcation is used to investigate the effect of miR-34 on p53 kinetics.We point out that appropriate or higher miR-34 transcription rates can prevent DNA-damaged cell proliferation by causing p53 oscillation or high steady-state kinetic behavior,respectively.However,the lack of miR-34 synthesis ability will induce p53 to remain at a low level,and cells cannot respond correctly to DNA damage.These results are well in line with the anti-cancer role of miR-34.Our work sheds light on how miR-34 carries out its tumor-suppressive function from tuning p53 dynamic aspect.

    Keywords: miR-34,P53 kinetic model,oscillation,bifurcation

    1.Introduction

    P53,one of the most important genetic guardians,can suppress the canceration of a variety of cells[1].As a transcription factor,p53 enables a large number of target genes to be transactivated.These target genes are involved in cell senescence,programmed cell death,cell cycle arrest,metastasis inhibition,and DNA damage response,etc [2].More than half of human cancers are related to p53 gene defects: for example,p53 gene loss or mutation[3,4].MicroRNA(miR)is a class of non-coding RNA molecules,which bind to the untranslated region of messenger RNA in a specific sequence,causing translation to be inhibited[5].Among them,miR-34 has a positive effect on p53 level[6].Therefore,it is not surprising that the down-expression of miR-34 occurs in a lot of p53-related tumors [7].Conversely,the over-expression of miR-34 induced by p53 suggests that miR-34 has an anticancer effect in many human cancer cells [8].It has been found experimentally that the cell fate after DNA damage is regulated by p53 dynamics,that is,the periodic pulse dynamics of p53 level makes cells stop cell division,stable medium concentration of p53 triggers cell senescence,and a monotonous increase in p53 concentration leads to cell apoptosis[9,10].Therefore,it is necessary to explore the kinetic regulation of p53.However,how miR-34 finely controls the dynamics of p53 after DNA damage is not fully understood.

    In the progress of p53 kinetics research,both biological experiments and mathematical models have played a very important role [11].The mathematical models are very predictable.For example: (i) as early as 2002,Tiana et al [12]used the p53-Mdm2 (the major negative regulator of p53)motif to add a large time delay,which resulted in a stable limit cycle for the dynamic system,although the undamped oscillation of p53 had not been discovered at that time;(ii)as early as 2011,Zhang et al [13] employed a mathematical model to demonstrate that there may be two-stage dynamics in the p53 system,as far as we know,this phenomenon was not reported experimentally until 2020 [14].As we all know,negative feedback loop(NFL)is essential to generate pulses dynamic in protein signal networks,and the periodic pulse dynamics requires time lag in NFL[15].Time delay plays a role in many oscillating or chaotic systems[16–18].In fact,most of the p53 vibrator models have two elements,i.e.NFL and delay.Delay differential equations obviously include time lag,and ordinary differential equations(ODE)can also include an invisible time delay.There are hidden delay in the p53 models that distinguishes the cytoplasm and the nucleus [19].Similarly,supposing an intermediate substance between p53 and Mdm2 is also a way to hide the time lag [20].Adding a positive feedback loop (PFL) to the NFL can also produce continuous and stable vibration,because PFL can provide delay for NFL[21].In a variety of biological networks,the NFL-PFL coupling model is more tunable and therefore more realistic [22–24].

    Motivated by the above considerations,we develop a NFLs-PFLs coupled p53 ODE model containing miR-34.Our model is derived by modifying the model of Zhuge et al[25].Their model used a nonlinear sigmoidal function (the generalized Hill function) to adapt the model established by Zhang et al[26],and explained the mediation of p53 co-factor on p53 dynamics and cell fate well.In this work,we ignore the role of co-factor and add miR-34 pathway to the p53 vibrator module to rebuild a mathematical model in order to analyze the effect of miR-34 on p53 dynamics under DNA damage.For a detailed description of the model,see section 2.We first reproduce the continuous or damped oscillation of p53 found in the experiments[27,28].Secondly,the method of numerical bifurcation is applied to the model,and we find that this ODE system has two kinds of stability under standard parameters,one is a stable limit cycle,and the other is a stable fixed point.The appropriate expression of miR-34 is required for p53 oscillation.Finally,we investigate the kinetics of p53 under the combined action of the parameter regulated by DNA damage and the production parameter of miR-34.The dynamic effect of miR-34 on p53 system is verified again.The anticancer effect of miR-34 is explained from the perspective of p53 kinetics.

    2.Model

    Figure 1.Schematic depiction of ATM-p53-Mdm2 module regulated by miR-34.Arrow-headed and solid-circle-headed solid lines denote promotion and inhibition,respectively.Arrow-headed dashed lines represent state transition or degradation.

    In resting cells,the ubiquitin-proteasome degradation pathway caused by Mdm2 results in low levels of p53 [29].In turn,p53 can promote the expression of Mdm2.In the case of DNA damage,the mutual regulation between p53 and Mdm2 is altered.The protein kinase ATM first senses DNA damage and is activated by phosphorylation [30].After being activated,ATM catalyzes the phosphorylation of p53 and Mdm2[31].Phosphorylated p53 has more transcriptional activity,while phosphorylated Mdm2 is more easily degraded [32].Interestingly,phosphorylated Mdm2 can also increase the translation efficiency of p53 messenger RNA[33].On the one hand,p53 triggers the dephosphorylation (inactivation) of ATM by inducing the expression of phosphatase (Wip1),forming a NFL [34].On the other hand,p53 induces the transcription of miR-34,and miR-34 hinders the translation of the protein (Mdm4) required for Mdm2 to ubiquitinate p53.Therefore,miR-34 inhibits the pro-degradation function of Mdm2 on p53,forming a PFL[6].The schematic diagram of the model is shown in figure 1.Here Mdm2 is divided into three categories,i.e.Mdm2 in the nucleus (Mdm2n),Mdm2 in the cytoplasm(Mdm2c),and phosphorylated Mdm2 in the cytoplasm(Mdm2p).According to the law of mass action,the equations are as follows:

    Here [] represents the dimensionless concentration and prime means its differentiation to time.All promotion or inhibition are expressed as the generalized Hill functions.The sub-functions are as follows:

    Table 1.Simulation parameters.

    Numerical solution is done by MATLAB Euler method.The numerical bifurcation is performed with the free software XPPAUT.The parameter values and descriptions are shown in the table 1.These parameters mainly come from [25],and some parameters are adjusted with ‘trial and error’ method.Limited to experimental data,the real parameter values are usually difficult to obtain,and the‘trial and error’approach is popular,for example in [35].The concentration units of the parameters are dimensionless ‘C’,the proportional constants have no unit marked as ‘’,and the time unit is minutes ‘min’.

    3.Results

    3.1.Reproduction of p53 oscillation dynamics

    Figure 2.(a) Time series of [p53] and (b) trajectory in the deterministic case.Here [Mdm2]=[Mdm2n]+[Mdm2c]+[Mdm2p].

    Figure 3.Time series of[p53]under random simulation.The noise intensity D is set to 10?7.(a)is 50 single-cell samples,and the color bar represents the dimensionless concentration of p53.(b) is the average of 50 single cells.

    The vibration dynamic of p53 under the deterministic case is exhibited in figure 2(a).The p53 oscillation period is between 4 and 7 h,which is consistent with the pulse interval in the experiment[27].The long-lasting and stable-interval pulse of p53 means that the system has the possibility of a stable limit cycle.To explain this point clearly,we draw a trajectory in the three-dimensional space in figure 2(b).The trajectory from the origin quickly converges to a stable circle,which is the limit cycle.In real cells,p53 will not oscillate indefinitely because the damaged DNA will be repaired during the p53 pulse phase.When DNA damage drops to a certain level,p53 may recover to a basal concentration[36].The above analysis are the p53 oscillation dynamics under the ideal condition.Due to the PH and temperature etc in the real cells are fluctuation,or the number of molecules in a cell is not very large,the ODE model cannot reflect the dynamics of the protein well.There may be internal noise or external noise disturbing the system[37].Therefore,we will consider the oscillation of p53 corresponded to the stochastic differential equation(SDE) next.

    The ODE dx/dt=F(x) can be rewritten as SDE dx/dt= F(x)+ξ,here ξ is the noise term.ξ is usually assumed Gaussian white with zero mean,i.e.〈ξ(t)〉=0 andwhere δ(t) is the Dirac function and D is the homogeneous constant matrix,which describes the intensity of noise.A noise system with such properties can further obtain the Fokker–Planck equation by introducing a probability flow.Therefore,this SDE system is used to create the potential landscape related to steady probabilitydistribution [38].As mentioned above,the cellular networks have internal or external noise,and this additive noise is closer to the internal noise [39].We display 50 single-cell samples in figure 3(a).All of them exhibit significant p53 pulse.Unlike the deterministic case,the pulse interval and height of p53 are uncertain in the random simulation.In other words,the p53 oscillations are not synchronized in the population of cells.It is easy to understand that the oscillation of p53 is damped in the population cells,because the condition of population cells is the average result of all single cells,as shown in figure 3(b).Thus,the p53 oscillation behavior observed experimentally by Western blotting is damped [28].

    Figure 4.Time occurs of [p53] at different vmir values.

    3.2.The kinetics of p53 mediated by miR-34

    The function of miR-34 in the p53 signaling network has been initially discovered,but how miR-34 regulates p53 dynamics remains mysterious.Figure 4 depicts the p53 kinetics of three miR-34 expression rate (vmir) scenarios.When miR-34 is expressed at a low level (vmir=0.02),p53 remains at a low level;when miR-34 is expressed at a high level(vmir=0.04),the p53 level first increases monotonically,then decreases and finally stabilizes at a higher level.The model shows that for p53 to oscillate,miR-34 needs to maintain a medium production rate,similar to the prediction in [40].In order to fully reflect the correlation between miR-34 generation rate and p53 kinetics,we draw a bifurcation diagram in figure 5.There are four key points in figure 5(a),the saddle node bifurcation point at the steadystate branch (SN),the Hopf bifurcation point (HB),the saddle node bifurcation point at the limit cycle branch (SNL),and the saddle node invariant circle bifurcation point (SNIC).The oscillation originates from HB and ends at SNIC.These four bifurcation points divide this parameter into five intervals: (i)when vmir∈[0,SN],p53 maintains a low steady state;(ii)when vmir∈(SN,SNIC],the system appears excitable state;(iii)when vmir∈(SNIC,HB],p53 has only stable oscillation; (iv) when vmir∈(HB,SNL],p53 has both stable steady state and stable oscillation; and (v) when vmir∈(SNIC,+∞),p53 finally high steady state will be achieved.

    This oscillator has a remarkable characteristic that the oscillation appears in the form of‘all or none’,that is,all the oscillation is of large amplitude,and there is no ambiguous phenomenon of either seeming or non oscillation.Such oscillation feature may be attributed to the existence of PFL[41].And the oscillation produced by this vibrator has a variety of rhythms,as shown in figure 5(b).A wide range of frequencies is required by many biological processes (like heartbeats and cell cycles)[24].Therefore,our model may be more suitable for the truth.Moreover,the bifurcation diagram shows that in addition to stable oscillation,there is also a stable steady state in the dynamic system under the default parameters.As shown in figure 6,there are one stable limit cycle and one stable fixed point in the phase diagram.Which dynamic of the system can appear is historically dependent.Indeed,p53 pulsed cells accounted for a certain percentage after DNA damage,but not all in the experiment [27].Thereby,it is plausible that the p53 dynamic system has other stability.

    3.3.The combined effect of miR-34 and ATM on p53 dynamics

    The above analysis suggest that different miR-34 expression capabilities cause distinct p53 kinetics.In order to make these results more solid,we further combine vmirwith another parameter vatmto analyze.As a sensor,ATM activation parameter vatmis affected by DNA damage [30].Figure 7 depicts the bifurcation curve of p53 steady-state branch as a function of vatmunder different vmirvalues.P53 keep low concentration when vmir=0.02 despite vatmvarying.The bifurcation curve is ‘S’ shaped when vmir=0.03: the lower branch is composed of stable nodes; the middle branch is consist of unstable saddle points; and the upper branch is the unstable focus in a large vatmrange.The bifurcation curves corresponding to vmir=0.04 and vmir=0.03 are qualitatively similar,and the only difference is that the oscillation is compressed in a very narrow vatminterval.As vatmincreases,the unstable focus becomes stable nodes after encountering HB.The bifurcation curves also mean that: (i) if the expression of miR-34 is low,p53 will not reach a high concentration;(ii)the appropriate expression of miR-34 will make p53 oscillation conditions more relaxed; and (iii) when miR-34 is expressed in large quantities,p53 is more likely to be at a high concentration.These agree well with the previous analysis in section 3.2.

    Figure 5.(a)Codimension-one bifurcation diagram of[p53]versus the parameter vmir.The red solid and the black solid lines represent stable and unstable equilibria,respectively.The green solid lines and the blue dotted lines are the maxima and minima of stable and unstable limit cycles,respectively.(b)The oscillation period as a function of vmir.The green solid lines and the blue dotted lines are the period of stable and unstable limit cycles,respectively.

    Figure 6.Phase diagram on ([p53],[Mdm2]) plane.

    We further extend the four bifurcation points in figure 5(a)on the (vmir,vatm) parameter plane,as shown in figure 8.This parameter region is divided into five subregions by four bifurcation curves:(i)p53 is low expressed in the R1 region;(ii)the p53 regulatory network is excitable in the R2 region;(iii)in the R3 area,p53 has repeated pulses; (iv) the p53 dynamic system appears atypical bistable(stable steady state and stable vibration)when the parameters are in the R4 region; and (v) in the R5 region,p53 cascade occurs.The co-dimension two bifurcation graph confirms the correctness of co-dimension one bifurcation graphs.When the abnormal DNA signal is sufficient to fully activate ATM,miR-34 can finely regulate the dynamics of p53 motif.Furthermore,the two PFLs coupled dynamical systems have the potential to produce tristability [42].In our model,in addition to the miR-34 pathway,the Mdm2p pathway is also a PFL.When the expression level of miR-34 is extremely high,as plotted in figure 9,the lower branch of the ‘S’ shaped curve is folded.Since the intermediate steady state of the tristable state is very low and close to the low steady state,we do not do the extra research.

    Figure 7.Codimension-one bifurcation diagram of [p53] versus the parameter vatm at the given vmir.Only steady-state branches are presented here.The red solid and the black solid lines represent stable and unstable steady-state,respectively.

    4.Discussion and conclusion

    Figure 8.Codimension-two bifurcation diagram for parameters vmir and vatm.

    Figure 9.Codimension-one bifurcation diagram of [p53] versus the parameter vatm when vmir=0.2.Here HC is the homoclinic bifurcation point.The red solid and the black solid lines represent stable and unstable steady-state,respectively.Blue dotted lines are the maxima and minima of unstable limit cycles.

    Our ODE model does not include the equations of Wip1 and Mdm4,but the roles of these two proteins in the signal transduction network have been considered,i.e.p53 promotes ATM inactivation,and miR-34 inhibits the effect of Mdm2n on p53 degradation.In addition to Mdm4,miR-34 suppresses SIRT1 protein is also a possible mechanism[6].SIRT1 does not participate in the degradation of p53,but converts active p53 into inactive p53.Therefore miR-34 prevents p53 inactivation.If this pathway is introduced,the reduction coefficientdp53should be the multiplication of two Hill functions (degradation multiply by inactivation),which is similar to the generation coefficient(production multiply by activation).We reset.The parameter j is negatively related to the strength of this pathway.When this effect of miR-34 on this way is not very strong (j=1),our results remain unchanged.But as the intensity of this effect increases (j=0.1),the p53 oscillation behavior will be destroyed and replaced by an ultra-high steady state (see figure 10).However,the inhibition of miR-34 on SIRT1 does not seem to occur in some cases [6].

    Figure 10.The scenario of another miR-34 pathway is introduced into the model.Codimension-one bifurcation diagram of [p53]versus the parameter vmir at the given j.Only steady-state branches are presented here.The red solid and the black solid lines represent stable and unstable steady-state,respectively.

    In summary,the main reason of cancer is DNA damage[11].This paper uses numerical methods to study a mathematical model of miR-34 and p53 motif crosstalk after DNA damage.If cells fail to respond appropriately to DNA damage,it may lead to uncontrolled cell proliferation [11].We find that miR-34 plays an important role in p53-mediated cellular DNA damage response.If ATM is fully activated,the moderate miR-34 synthesis rate triggers p53 oscillation,leading to cell cycle arrest.The larger miR-34 production rate is conducive to the high concentration of p53,causing cell senescence or apoptosis.Too low miR-34 production will make cells with low p53 concentration,meaning that DNA damaged cells can also proliferate.This may be the reason why the miR-34 content in many tumors is low.Moreover,miR-34 can also be related to the apoptosis regulatory network downstream of p53 [43],which is worthy of further research in the future.We hope that our work will be helpful to the design of biological experiments and anti-cancer strategies.

    欧美一级a爱片免费观看看| 天堂√8在线中文| 一个人观看的视频www高清免费观看 | 欧美xxxx黑人xx丫x性爽| 亚洲一区高清亚洲精品| 国产欧美日韩精品一区二区| 亚洲电影在线观看av| 日韩欧美精品v在线| 综合色av麻豆| 国产亚洲精品久久久com| 美女扒开内裤让男人捅视频| 婷婷亚洲欧美| avwww免费| 男女之事视频高清在线观看| 色av中文字幕| 国产精品一区二区三区四区免费观看 | 亚洲成人精品中文字幕电影| 黄频高清免费视频| 人妻久久中文字幕网| 国产精品亚洲美女久久久| 亚洲av成人不卡在线观看播放网| 舔av片在线| 别揉我奶头~嗯~啊~动态视频| 最近最新中文字幕大全电影3| 国产黄片美女视频| 一a级毛片在线观看| 日本免费a在线| 日本黄色片子视频| 在线十欧美十亚洲十日本专区| 波多野结衣高清无吗| 女生性感内裤真人,穿戴方法视频| 真人一进一出gif抽搐免费| 亚洲欧美激情综合另类| 国产69精品久久久久777片 | а√天堂www在线а√下载| 成年免费大片在线观看| 色老头精品视频在线观看| 精品久久久久久,| 亚洲狠狠婷婷综合久久图片| www国产在线视频色| 国产亚洲精品av在线| 又粗又爽又猛毛片免费看| 久久香蕉国产精品| 国产97色在线日韩免费| www日本在线高清视频| 少妇人妻一区二区三区视频| 免费搜索国产男女视频| 欧美大码av| 国产精品亚洲一级av第二区| 国产免费av片在线观看野外av| 少妇裸体淫交视频免费看高清| 国产69精品久久久久777片 | 午夜免费激情av| 制服人妻中文乱码| 12—13女人毛片做爰片一| 99精品欧美一区二区三区四区| 美女cb高潮喷水在线观看 | 一个人免费在线观看的高清视频| 国产成人欧美在线观看| 国产乱人伦免费视频| 亚洲美女黄片视频| 国产高清有码在线观看视频| 色尼玛亚洲综合影院| 婷婷精品国产亚洲av| 久久这里只有精品中国| 毛片女人毛片| 久久久久久久久免费视频了| 国内少妇人妻偷人精品xxx网站 | 色老头精品视频在线观看| 最新中文字幕久久久久 | 午夜日韩欧美国产| 精品久久久久久,| 欧美性猛交╳xxx乱大交人| 午夜福利视频1000在线观看| 国产成人欧美在线观看| 国产精品98久久久久久宅男小说| 97超视频在线观看视频| 久久性视频一级片| 久久精品国产综合久久久| 国产男靠女视频免费网站| 国产精品女同一区二区软件 | 黄色女人牲交| 国产亚洲av嫩草精品影院| 久久久久久久久免费视频了| 又粗又爽又猛毛片免费看| 黄色视频,在线免费观看| 亚洲人成伊人成综合网2020| 婷婷亚洲欧美| 精品国产美女av久久久久小说| 久久婷婷人人爽人人干人人爱| 99久久无色码亚洲精品果冻| 两人在一起打扑克的视频| 欧美最黄视频在线播放免费| 欧美日本亚洲视频在线播放| 最近最新免费中文字幕在线| 天堂网av新在线| 成人av一区二区三区在线看| 搡老妇女老女人老熟妇| 国产aⅴ精品一区二区三区波| 欧美三级亚洲精品| 90打野战视频偷拍视频| 一卡2卡三卡四卡精品乱码亚洲| 国产精品一区二区三区四区免费观看 | 国产伦精品一区二区三区视频9 | 久久精品国产99精品国产亚洲性色| 欧美绝顶高潮抽搐喷水| 久久久成人免费电影| 久久久久国内视频| 国产探花在线观看一区二区| 2021天堂中文幕一二区在线观| 91av网站免费观看| 亚洲国产中文字幕在线视频| 国产99白浆流出| 成年女人永久免费观看视频| 老司机午夜福利在线观看视频| 欧美日韩精品网址| АⅤ资源中文在线天堂| 少妇的丰满在线观看| 欧美精品啪啪一区二区三区| 男女做爰动态图高潮gif福利片| 又大又爽又粗| 小蜜桃在线观看免费完整版高清| 啦啦啦免费观看视频1| 嫩草影院入口| 真人做人爱边吃奶动态| 国产一区二区在线观看日韩 | 国产美女午夜福利| 亚洲av五月六月丁香网| 久久久成人免费电影| 男人和女人高潮做爰伦理| 窝窝影院91人妻| 午夜免费成人在线视频| 亚洲精品中文字幕一二三四区| 国产av一区在线观看免费| 亚洲中文字幕日韩| 天天添夜夜摸| 级片在线观看| 日本五十路高清| 国产高清有码在线观看视频| 99热精品在线国产| 啦啦啦免费观看视频1| 国产成人影院久久av| 精品国内亚洲2022精品成人| 色噜噜av男人的天堂激情| 免费看十八禁软件| 国产亚洲精品av在线| 色噜噜av男人的天堂激情| 黄片大片在线免费观看| 熟妇人妻久久中文字幕3abv| 88av欧美| 首页视频小说图片口味搜索| 亚洲成人免费电影在线观看| 亚洲九九香蕉| 天堂影院成人在线观看| 村上凉子中文字幕在线| 禁无遮挡网站| 熟妇人妻久久中文字幕3abv| 天堂√8在线中文| 最新在线观看一区二区三区| 精品不卡国产一区二区三区| 亚洲九九香蕉| 亚洲在线观看片| 婷婷精品国产亚洲av在线| 成人午夜高清在线视频| 免费一级毛片在线播放高清视频| 国产免费av片在线观看野外av| 别揉我奶头~嗯~啊~动态视频| 又黄又粗又硬又大视频| 亚洲国产欧洲综合997久久,| 人妻久久中文字幕网| 成年女人看的毛片在线观看| 国产伦人伦偷精品视频| 久久国产精品人妻蜜桃| 日本与韩国留学比较| 麻豆av在线久日| 国产av麻豆久久久久久久| 天天躁狠狠躁夜夜躁狠狠躁| 好男人在线观看高清免费视频| 亚洲av成人一区二区三| 日韩欧美三级三区| 亚洲第一欧美日韩一区二区三区| 动漫黄色视频在线观看| 69av精品久久久久久| 淫妇啪啪啪对白视频| 国产三级在线视频| 99riav亚洲国产免费| 精品久久久久久久人妻蜜臀av| 一级a爱片免费观看的视频| 日本一二三区视频观看| 在线十欧美十亚洲十日本专区| 深夜精品福利| 色av中文字幕| 午夜免费成人在线视频| 真人一进一出gif抽搐免费| 欧美绝顶高潮抽搐喷水| 久久精品综合一区二区三区| 欧美大码av| 女人高潮潮喷娇喘18禁视频| 久久久色成人| 激情在线观看视频在线高清| 俄罗斯特黄特色一大片| 99精品在免费线老司机午夜| 99久久精品热视频| 亚洲一区高清亚洲精品| 18禁观看日本| 免费搜索国产男女视频| 国产伦一二天堂av在线观看| 变态另类丝袜制服| av黄色大香蕉| 亚洲国产精品sss在线观看| 男人的好看免费观看在线视频| 久久精品国产综合久久久| 91麻豆精品激情在线观看国产| 99热6这里只有精品| 小说图片视频综合网站| av视频在线观看入口| 欧美成狂野欧美在线观看| 欧美国产日韩亚洲一区| 老熟妇仑乱视频hdxx| 偷拍熟女少妇极品色| 午夜成年电影在线免费观看| 亚洲精品在线观看二区| 亚洲欧美日韩高清专用| 亚洲色图av天堂| 久久久久久国产a免费观看| 国产久久久一区二区三区| 久久久久亚洲av毛片大全| 色精品久久人妻99蜜桃| www日本在线高清视频| 国产黄a三级三级三级人| 成人亚洲精品av一区二区| 一进一出抽搐gif免费好疼| 99久久无色码亚洲精品果冻| 国产午夜精品论理片| 深夜精品福利| 99久久成人亚洲精品观看| 99国产极品粉嫩在线观看| 国产成人精品无人区| 日日摸夜夜添夜夜添小说| 亚洲片人在线观看| 少妇的丰满在线观看| 久久久久久人人人人人| 男人的好看免费观看在线视频| 国产免费男女视频| 听说在线观看完整版免费高清| 久久热在线av| 国产精品久久久人人做人人爽| x7x7x7水蜜桃| 两个人的视频大全免费| 午夜免费激情av| 不卡av一区二区三区| 亚洲熟妇熟女久久| 真实男女啪啪啪动态图| 久久99热这里只有精品18| 免费在线观看亚洲国产| 男人舔女人的私密视频| 日本一二三区视频观看| 三级男女做爰猛烈吃奶摸视频| 99国产综合亚洲精品| 免费观看精品视频网站| 黄片小视频在线播放| 成人亚洲精品av一区二区| 97碰自拍视频| 在线观看免费午夜福利视频| 精品一区二区三区视频在线观看免费| 国模一区二区三区四区视频 | 久久久久九九精品影院| 欧美不卡视频在线免费观看| 亚洲七黄色美女视频| 中文字幕av在线有码专区| 宅男免费午夜| 欧美国产日韩亚洲一区| 久久精品夜夜夜夜夜久久蜜豆| 亚洲欧美激情综合另类| 国产三级中文精品| 欧美日韩一级在线毛片| 99久久久亚洲精品蜜臀av| 亚洲国产欧美一区二区综合| 少妇熟女aⅴ在线视频| 亚洲av电影在线进入| 精品国产乱子伦一区二区三区| 男人舔女人下体高潮全视频| 欧美成人免费av一区二区三区| 伊人久久大香线蕉亚洲五| 青草久久国产| 亚洲人成网站在线播放欧美日韩| 精品久久久久久久末码| 亚洲av成人精品一区久久| 亚洲av成人不卡在线观看播放网| 欧美zozozo另类| 男女那种视频在线观看| 亚洲av成人不卡在线观看播放网| 欧美激情在线99| 国产综合懂色| www.自偷自拍.com| 欧美在线一区亚洲| 一本精品99久久精品77| 亚洲成人久久性| 国产精品女同一区二区软件 | 亚洲国产精品合色在线| 香蕉av资源在线| 国产麻豆成人av免费视频| 在线十欧美十亚洲十日本专区| 香蕉av资源在线| 欧美日韩福利视频一区二区| 91在线观看av| 久久精品aⅴ一区二区三区四区| 欧美成狂野欧美在线观看| 国产成人精品久久二区二区免费| 一本一本综合久久| 免费在线观看成人毛片| 午夜福利在线在线| 黄色片一级片一级黄色片| 日本黄色视频三级网站网址| 18禁裸乳无遮挡免费网站照片| 岛国在线观看网站| 狠狠狠狠99中文字幕| 国产亚洲精品一区二区www| 国产精品日韩av在线免费观看| 99热这里只有是精品50| 国产高清视频在线观看网站| 精品一区二区三区av网在线观看| 美女高潮喷水抽搐中文字幕| 观看免费一级毛片| 88av欧美| 免费观看精品视频网站| 国产成人福利小说| 成人欧美大片| 久久久国产精品麻豆| 午夜精品一区二区三区免费看| 18禁国产床啪视频网站| 久久午夜综合久久蜜桃| 亚洲av美国av| 国内精品久久久久精免费| 宅男免费午夜| 久久国产精品人妻蜜桃| 99精品欧美一区二区三区四区| 中文在线观看免费www的网站| 亚洲片人在线观看| www.熟女人妻精品国产| 日韩欧美一区二区三区在线观看| 午夜福利成人在线免费观看| 国产精品综合久久久久久久免费| 欧美在线一区亚洲| 99久久精品一区二区三区| 欧美黄色片欧美黄色片| 精品国产乱子伦一区二区三区| 99热只有精品国产| 免费观看精品视频网站| 久久久久久国产a免费观看| 99精品在免费线老司机午夜| 成年女人永久免费观看视频| 亚洲av片天天在线观看| 免费大片18禁| 一个人看视频在线观看www免费 | 狂野欧美白嫩少妇大欣赏| 12—13女人毛片做爰片一| 1024手机看黄色片| 91字幕亚洲| 狂野欧美白嫩少妇大欣赏| 18禁观看日本| 国产视频内射| 日韩欧美精品v在线| 欧美中文日本在线观看视频| 国产一区二区在线观看日韩 | 亚洲欧美日韩高清在线视频| 国产成人福利小说| 亚洲av成人一区二区三| 少妇裸体淫交视频免费看高清| 国产精品亚洲美女久久久| 在线观看美女被高潮喷水网站 | 欧美乱妇无乱码| 欧美激情久久久久久爽电影| 成年女人永久免费观看视频| 人妻久久中文字幕网| 国产精品综合久久久久久久免费| 亚洲av熟女| 少妇的逼水好多| 免费电影在线观看免费观看| 老司机午夜福利在线观看视频| 日韩人妻高清精品专区| 精品久久久久久久末码| 熟妇人妻久久中文字幕3abv| 国产av不卡久久| 精品午夜福利视频在线观看一区| 成人国产一区最新在线观看| 亚洲五月天丁香| 人人妻人人看人人澡| 18禁国产床啪视频网站| 老司机午夜福利在线观看视频| 亚洲专区中文字幕在线| 嫁个100分男人电影在线观看| 特级一级黄色大片| 哪里可以看免费的av片| 日韩欧美在线二视频| 国产三级在线视频| 国产成人aa在线观看| 午夜两性在线视频| 男插女下体视频免费在线播放| 国产极品精品免费视频能看的| 午夜精品在线福利| www.自偷自拍.com| 久久草成人影院| 午夜福利欧美成人| 在线播放国产精品三级| 亚洲精品美女久久久久99蜜臀| 精品国产乱子伦一区二区三区| 麻豆国产97在线/欧美| 一级毛片高清免费大全| 观看美女的网站| 色老头精品视频在线观看| 男女视频在线观看网站免费| 久久香蕉精品热| 后天国语完整版免费观看| 午夜福利高清视频| 亚洲成a人片在线一区二区| 少妇人妻一区二区三区视频| 色尼玛亚洲综合影院| 亚洲,欧美精品.| 亚洲欧美日韩高清在线视频| 噜噜噜噜噜久久久久久91| 国产午夜精品论理片| 国产高清有码在线观看视频| 九九在线视频观看精品| 成人av在线播放网站| 亚洲精品在线观看二区| 亚洲av电影不卡..在线观看| 亚洲,欧美精品.| 亚洲 欧美一区二区三区| 亚洲av电影在线进入| 国产精品99久久久久久久久| 亚洲五月天丁香| 夜夜看夜夜爽夜夜摸| 午夜精品久久久久久毛片777| 亚洲av成人不卡在线观看播放网| 99久国产av精品| 国产精品av视频在线免费观看| 久久久久精品国产欧美久久久| 亚洲国产欧洲综合997久久,| 国产激情久久老熟女| 在线永久观看黄色视频| 中文字幕久久专区| 叶爱在线成人免费视频播放| 婷婷精品国产亚洲av| 欧美乱妇无乱码| 日韩精品青青久久久久久| 狂野欧美激情性xxxx| 九九久久精品国产亚洲av麻豆 | 日韩 欧美 亚洲 中文字幕| 成人18禁在线播放| 99在线人妻在线中文字幕| 黑人操中国人逼视频| 亚洲欧美日韩卡通动漫| 欧美三级亚洲精品| 亚洲欧美激情综合另类| 日本 av在线| 男女那种视频在线观看| 中文字幕熟女人妻在线| 婷婷亚洲欧美| 久久久色成人| 亚洲自拍偷在线| 国产久久久一区二区三区| 国产高清视频在线观看网站| 亚洲无线观看免费| 18美女黄网站色大片免费观看| 人妻夜夜爽99麻豆av| 欧美色欧美亚洲另类二区| 一a级毛片在线观看| 国产高清三级在线| 欧美性猛交╳xxx乱大交人| 白带黄色成豆腐渣| 真人一进一出gif抽搐免费| 亚洲精品在线观看二区| 国产久久久一区二区三区| 一二三四社区在线视频社区8| 看黄色毛片网站| 两个人视频免费观看高清| 日韩中文字幕欧美一区二区| 亚洲欧美激情综合另类| 精品电影一区二区在线| 后天国语完整版免费观看| 亚洲中文字幕一区二区三区有码在线看 | 中文字幕最新亚洲高清| 亚洲av日韩精品久久久久久密| 在线十欧美十亚洲十日本专区| 俺也久久电影网| 18禁观看日本| 亚洲男人的天堂狠狠| 男女床上黄色一级片免费看| 香蕉久久夜色| 俺也久久电影网| 日韩欧美国产一区二区入口| 蜜桃久久精品国产亚洲av| 长腿黑丝高跟| 天天一区二区日本电影三级| 国产亚洲精品久久久com| 午夜免费成人在线视频| 久久久久精品国产欧美久久久| 国产精品九九99| 亚洲va日本ⅴa欧美va伊人久久| 桃红色精品国产亚洲av| 最好的美女福利视频网| 亚洲欧洲精品一区二区精品久久久| 国产亚洲欧美在线一区二区| 老熟妇乱子伦视频在线观看| 成人性生交大片免费视频hd| 欧美在线黄色| 精品国内亚洲2022精品成人| 最近最新中文字幕大全免费视频| 欧美三级亚洲精品| 成人鲁丝片一二三区免费| 宅男免费午夜| 国产午夜精品论理片| 十八禁人妻一区二区| av天堂在线播放| 久久久久精品国产欧美久久久| 视频区欧美日本亚洲| 国产精品国产高清国产av| 99在线视频只有这里精品首页| 丁香欧美五月| 夜夜躁狠狠躁天天躁| 国产黄色小视频在线观看| 精品国产亚洲在线| www国产在线视频色| 99精品欧美一区二区三区四区| 国产成+人综合+亚洲专区| 桃红色精品国产亚洲av| 村上凉子中文字幕在线| 99热这里只有是精品50| 黄频高清免费视频| 麻豆久久精品国产亚洲av| 中出人妻视频一区二区| 天堂√8在线中文| 国内精品一区二区在线观看| 国产真实乱freesex| 国产精品香港三级国产av潘金莲| 国产精品野战在线观看| 嫩草影院入口| 婷婷精品国产亚洲av在线| 级片在线观看| 精品国产乱码久久久久久男人| 99视频精品全部免费 在线 | 宅男免费午夜| 成人永久免费在线观看视频| 久久午夜亚洲精品久久| 丁香欧美五月| 窝窝影院91人妻| 男女视频在线观看网站免费| 97碰自拍视频| 久久午夜综合久久蜜桃| 欧美日韩乱码在线| 亚洲成人久久性| 亚洲avbb在线观看| 午夜福利免费观看在线| 三级男女做爰猛烈吃奶摸视频| aaaaa片日本免费| 91麻豆精品激情在线观看国产| 香蕉久久夜色| 后天国语完整版免费观看| 日韩 欧美 亚洲 中文字幕| 美女被艹到高潮喷水动态| 天天躁日日操中文字幕| av天堂在线播放| 九色国产91popny在线| 黄频高清免费视频| 国产精品综合久久久久久久免费| svipshipincom国产片| 国产精品自产拍在线观看55亚洲| 国产精品一区二区精品视频观看| 亚洲欧美激情综合另类| 欧美黑人欧美精品刺激| 国产精品国产高清国产av| 国产成人av教育| 精品国产美女av久久久久小说| 亚洲无线观看免费| 亚洲欧美日韩高清专用| 精品国产三级普通话版| 国产亚洲精品av在线| 国产精华一区二区三区| 国产一区二区在线观看日韩 | 国产乱人伦免费视频| 免费在线观看亚洲国产| 深夜精品福利| 曰老女人黄片| 99久久精品国产亚洲精品| 99精品欧美一区二区三区四区| 国产精品国产高清国产av| 国产精品久久久av美女十八| 成人欧美大片| 亚洲av熟女| 亚洲电影在线观看av| 久久这里只有精品19| 中文字幕人成人乱码亚洲影| 国产综合懂色| 麻豆国产97在线/欧美| 亚洲一区二区三区不卡视频| 一个人观看的视频www高清免费观看 | 亚洲国产高清在线一区二区三| 欧美日韩福利视频一区二区| 村上凉子中文字幕在线| 国产精品 欧美亚洲| 天堂√8在线中文| 国产成+人综合+亚洲专区| 亚洲五月天丁香| 国产高清视频在线播放一区| 97超级碰碰碰精品色视频在线观看| 国产高清激情床上av| 高潮久久久久久久久久久不卡| 黄色视频,在线免费观看| 国产精品99久久99久久久不卡| 麻豆成人午夜福利视频| 久久人人精品亚洲av| av黄色大香蕉| 亚洲av日韩精品久久久久久密| 国内精品一区二区在线观看|