曹代勇,魏迎春,王安民,王 路,劉志飛,秦榮芳,束振宇,陳高健
顯微組分大分子結(jié)構(gòu)演化差異性及其動(dòng)力學(xué)機(jī)制——研究進(jìn)展與展望
曹代勇1,2,魏迎春1,2,王安民1,2,王 路3,劉志飛2,秦榮芳2,束振宇2,陳高健2
(1. 中國(guó)礦業(yè)大學(xué)(北京) 煤炭資源與安全開(kāi)采國(guó)家重點(diǎn)實(shí)驗(yàn)室,北京 100083;2. 中國(guó)礦業(yè)大學(xué)(北京)地球科學(xué)與測(cè)繪工程學(xué)院,北京 100083;3. 重慶地質(zhì)礦產(chǎn)研究院,重慶 401120)
顯微組分物理化學(xué)性質(zhì)是影響煤炭清潔高效利用和煤儲(chǔ)層物性的重要因素,已經(jīng)認(rèn)識(shí)到?jīng)Q定顯微組分性質(zhì)的根本原因在于其大分子結(jié)構(gòu)。為了揭示顯微組分大分子結(jié)構(gòu)演化特征及其控制因素,從顯微組分大分子化學(xué)結(jié)構(gòu)與物理結(jié)構(gòu)、大分子結(jié)構(gòu)演化的構(gòu)造應(yīng)力效應(yīng)、煤變質(zhì)全階段大分子結(jié)構(gòu)演化特征等方面,總結(jié)了國(guó)內(nèi)外研究進(jìn)展,分析了存在的不足。指出由于富鏡質(zhì)組煤的廣泛分布和重要工業(yè)用途使之成為煤結(jié)構(gòu)研究的主要對(duì)象,惰質(zhì)組的研究則相對(duì)缺乏,阻礙了對(duì)煤特性的全面認(rèn)識(shí)。提出“煤變質(zhì)作用的熱–應(yīng)力條件決定顯微組分結(jié)構(gòu)演化、惰質(zhì)組與鏡質(zhì)組大分子結(jié)構(gòu)演化具有差異性”的研究思路,采用惰質(zhì)組/鏡質(zhì)組高溫高壓模擬和熱模擬實(shí)驗(yàn)并與自然序列變質(zhì)–變形煤對(duì)比,研究顯微組分結(jié)構(gòu)演化特征及其控制因素。定量刻畫(huà)顯微組分大分子結(jié)構(gòu)與溫壓條件的關(guān)系,揭示構(gòu)造應(yīng)力對(duì)顯微組分化學(xué)結(jié)構(gòu)和納米孔隙結(jié)構(gòu)的控制,確定煤變質(zhì)全過(guò)程中惰質(zhì)組大分子結(jié)構(gòu)的演化路徑,建立惰質(zhì)組大分子動(dòng)力學(xué)模型。上述研究成果將充實(shí)對(duì)煤微觀結(jié)構(gòu)演化及其控制因素的全面認(rèn)識(shí),為煤炭清潔高效利用和煤儲(chǔ)層物性評(píng)價(jià)提供基礎(chǔ)依據(jù)。
顯微組分;惰質(zhì)組;大分子結(jié)構(gòu);動(dòng)力學(xué)機(jī)制;研究進(jìn)展
煤大分子結(jié)構(gòu)包括化學(xué)結(jié)構(gòu)和物理結(jié)構(gòu)[1],在很大程度上決定了煤的物理化學(xué)性質(zhì)、工藝性能和煤儲(chǔ)層物性,從而影響煤炭清潔高效利用特性和煤層氣等清潔能源開(kāi)發(fā)效率。近年來(lái),煤大分子結(jié)構(gòu)研究取得一系列重要進(jìn)展,成為國(guó)際煤地質(zhì)學(xué)研究前沿和熱點(diǎn)之一[2-3]。由于富鏡質(zhì)組煤的廣泛分布和重要工業(yè)用途,使其成為當(dāng)前煤大分子結(jié)構(gòu)研究的主要對(duì)象。然而,由于惰質(zhì)組與鏡質(zhì)組的物理化學(xué)特征和工藝性能等存在明顯差異[1,4-5],以鏡質(zhì)組大分子結(jié)構(gòu)作為煤結(jié)構(gòu)的整體特征顯然具有片面性和局限性,從而阻礙了對(duì)煤炭清潔高效利用和煤儲(chǔ)層評(píng)價(jià)的全面、科學(xué)認(rèn)識(shí)。我國(guó)西北早中侏羅世煤以富惰質(zhì)組著稱[6-7],西北地區(qū)豐富的優(yōu)質(zhì)煤炭資源開(kāi)發(fā)利用,更加凸顯惰質(zhì)組分大分子結(jié)構(gòu)研究的重要性和緊迫性。中國(guó)煤田地質(zhì)的顯著特點(diǎn)之一是煤盆地構(gòu)造–熱演化史復(fù)雜,疊加變質(zhì)作用顯著[8]、高煤級(jí)煤分布廣泛[9]、煤變形強(qiáng)烈、構(gòu)造煤發(fā)育[10-11],構(gòu)成制約煤層氣連續(xù)排采和礦井煤與瓦斯突出的重要控制因素[12-13]。已經(jīng)認(rèn)識(shí)到瓦斯賦存狀態(tài)與煤巖組成和變質(zhì)–變形程度有關(guān),然而,目前對(duì)構(gòu)造應(yīng)力作用下惰質(zhì)組與鏡質(zhì)組大分子結(jié)構(gòu)演化差異性特征卻知之甚少。
因此,從微觀角度深入探討鏡質(zhì)組與惰質(zhì)組的結(jié)構(gòu)差異性,在理論上可以豐富對(duì)煤巖組分大分子結(jié)構(gòu)演化和煤變質(zhì)作用進(jìn)程的全面認(rèn)識(shí),在實(shí)踐上可為煤炭清潔高效利用、煤與瓦斯突出防治和煤層氣評(píng)價(jià)開(kāi)發(fā)提供科學(xué)依據(jù)。
煤是由無(wú)機(jī)礦物質(zhì)和有機(jī)組分組成的復(fù)雜固體有機(jī)巖[4,6],有機(jī)顯微組分包括鏡質(zhì)組、惰質(zhì)組和殼質(zhì)組3大類,除極少量的特殊煤種如殘植煤之外,鏡質(zhì)組和惰質(zhì)組通常占有機(jī)組分的90%以上。其中,歐美和我國(guó)石炭–二疊紀(jì)等時(shí)代的煤以鏡質(zhì)組為主,中國(guó)西北侏羅紀(jì)煤[6-7]及著名的岡瓦納煤[4]則以惰質(zhì)組富集為特征。
煤的化學(xué)結(jié)構(gòu)是煤的芳香層大小、縮合程度、芳香性、雜原子含量、側(cè)鏈和官能團(tuán)特征以及不同結(jié)構(gòu)單元鍵合類型和作用方式的綜合反映,煤顯微組分的化學(xué)結(jié)構(gòu)具有不均一性和多樣性等特點(diǎn)。鏡質(zhì)組是植物木質(zhì)纖維組織在成煤過(guò)程中經(jīng)歷不同程度凝膠化作用的產(chǎn)物,氧含量高、碳含量略低,其大分子化學(xué)結(jié)構(gòu)在煤變質(zhì)作用進(jìn)程中演化規(guī)律明顯[4,9]。由于鏡質(zhì)組通常在煤中占較大比例及其規(guī)律性演化特點(diǎn),煤大分子結(jié)構(gòu)模型絕大多數(shù)都是以富鏡質(zhì)組煤為基礎(chǔ)建立的[14-15]。惰質(zhì)組以成煤母質(zhì)在泥炭化階段經(jīng)歷了不同程度氧化作用為特色,其主要組分絲質(zhì)體多被認(rèn)為屬于火焚成因[16],半絲質(zhì)體則可以形成于成巖階段的氧化作用[4,17]。由于惰質(zhì)組在成煤作用初期就發(fā)生了較顯著變化,具有富碳、貧氫、高芳香性等特點(diǎn),隨煤變質(zhì)進(jìn)程的演化速率較小,通常認(rèn)為惰質(zhì)組分在加工轉(zhuǎn)化過(guò)程中具“惰性”性質(zhì)[6]。
相對(duì)于鏡質(zhì)組而言,惰質(zhì)組大分子化學(xué)結(jié)構(gòu)的研究程度要低得多。羅隕飛[18](2002)研究了我國(guó)中低變質(zhì)程度5種典型煤種的惰質(zhì)組化學(xué)結(jié)構(gòu),表明惰質(zhì)組的芳構(gòu)化程度大于鏡質(zhì)組,其芳環(huán)上的側(cè)鏈長(zhǎng)度不及鏡質(zhì)組,總氧含量低于鏡質(zhì)組,結(jié)構(gòu)變化規(guī)律性不如鏡質(zhì)組,二者化學(xué)結(jié)構(gòu)演化機(jī)制不同,因此認(rèn)為,以鏡質(zhì)組為基礎(chǔ)的經(jīng)典煤化進(jìn)程理論似乎不適合于惰質(zhì)組。D. V. Niekerk等[14](2010)率先建立了南非(岡瓦納)富惰質(zhì)組煤和富鏡質(zhì)組煤的大分子化學(xué)結(jié)構(gòu)模型,富惰質(zhì)組Highveld煤模型芳香度高、具有較大比例的芳香碳,富鏡質(zhì)組Waterberg煤模型脂肪碳含量高,包含更多的脂肪側(cè)鏈和更長(zhǎng)的脂肪交聯(lián)。O. M. Moroeng等[19](2018)對(duì)南非Witbank煤田的富惰質(zhì)組煤樣進(jìn)行電子自旋共振(ESR)研究,發(fā)現(xiàn)富惰質(zhì)組樣品具有較高的自由基濃度。藺華林等[20](2013)構(gòu)建了神東上灣煤礦低變質(zhì)煤的惰質(zhì)組富集物化學(xué)結(jié)構(gòu)模型,發(fā)現(xiàn)結(jié)構(gòu)中的芳香單元主要是通過(guò)飽和環(huán)連接,后者在煤液化過(guò)程中比較容易斷裂,據(jù)此解釋惰質(zhì)組含量較高的神東煤液化性能優(yōu)良的原因,提出惰質(zhì)組非“惰性”的新認(rèn)識(shí)。
鏡質(zhì)組與惰質(zhì)組在物理化學(xué)性質(zhì)和工藝性能上的差異性顯然與大分子結(jié)構(gòu)有關(guān),然而,目前人們對(duì)惰質(zhì)組大分子結(jié)構(gòu)及其演化特征知之甚少,有限的研究?jī)H限于中、低煤級(jí),限制了對(duì)煤變質(zhì)全過(guò)程大分子結(jié)構(gòu)演化的全面認(rèn)識(shí)。
煤的物理結(jié)構(gòu)是指煤大分子之間的相互關(guān)系和分子間隙構(gòu)成的納米孔隙結(jié)構(gòu)[1,9,21-23],近年來(lái)煤納米孔隙研究取得眾多進(jìn)展,發(fā)現(xiàn)煤巖納米級(jí)孔隙構(gòu)成煤層氣(瓦斯)有利賦存空間[24],因而被認(rèn)為是決定煤體吸附性的根本因素[25-26]。煤體吸附性能是煤層氣資源(儲(chǔ)層)評(píng)價(jià)和礦井瓦斯突出危險(xiǎn)性預(yù)測(cè)的重要指標(biāo),已經(jīng)認(rèn)識(shí)到煤體吸附性能與顯微組分類型有關(guān)[27-30],不同顯微組分納米孔隙結(jié)構(gòu)研究則為揭示煤體吸附性特性打開(kāi)了一個(gè)窗口。
劉常洪[31](1991)用壓汞法和低溫氮吸附法研究撫順長(zhǎng)焰煤,發(fā)現(xiàn)絲炭的總孔容高出鏡煤6~7倍,主要由>50 nm和<10 nm的孔構(gòu)成,前者相當(dāng)于絲質(zhì)體的細(xì)胞腔孔隙、后者為絲質(zhì)體細(xì)胞壁內(nèi)由“微晶”間隙形成的分子間孔,類似于R. E. Franklin[21](1951)描述的極富微孔(分子間孔)的非石墨化碳結(jié)構(gòu)。劉宇[32](2019)基于自然演化序列樣品和人工熱模擬實(shí)驗(yàn)樣品研究了煙煤—無(wú)煙煤階段鏡質(zhì)組納米微孔演化規(guī)律,認(rèn)為納米級(jí)孔主要受控于鏡質(zhì)組大分子結(jié)構(gòu)演化,具有與前人研究一致的“三段式”演化特征[33-34]。Wang Anmin[35](2020)開(kāi)展的工作初步揭示了惰質(zhì)組與鏡質(zhì)組納米孔隙結(jié)構(gòu)特征存在顯著差異,前者與熱演化程度的相關(guān)性明顯低于后者,但受亞組分組成的影響顯著。
由于不同顯微組分的宏觀孔隙以及由大分子物理結(jié)構(gòu)所決定的微觀孔隙特征具有顯著差異性,煤體吸附性的實(shí)際變化要復(fù)雜得多。多數(shù)學(xué)者認(rèn)為富鏡質(zhì)組鏡煤相對(duì)于富惰質(zhì)組暗煤有著更強(qiáng)的甲烷吸附能力[27-30],鏡質(zhì)組含量對(duì)甲烷吸附能力的影響隨著煤級(jí)的升高而逐漸增大,高煤級(jí)煤中鏡質(zhì)組吸附能力明顯大于其他組分[36-37]。但也有研究者持不同觀點(diǎn):張麗萍等[38](2006)發(fā)現(xiàn)在惰質(zhì)組含量較低時(shí),煤對(duì)甲烷的吸附能力與鏡質(zhì)組含量呈明顯正相關(guān)關(guān)系,但當(dāng)惰質(zhì)組中絲質(zhì)體含量高時(shí),暗煤的吸附量將大于鏡煤;李振濤等[29](2012)研究表明,中、低煤級(jí)煤的甲烷吸附能力隨著鏡質(zhì)組含量增加而增加,高煤級(jí)煤的甲烷吸附量隨惰質(zhì)組含量增加而增大。
煤大分子物理結(jié)構(gòu)/納米孔隙研究極大地深化了對(duì)煤吸附性的認(rèn)識(shí),成為當(dāng)前煤層氣儲(chǔ)層評(píng)價(jià)和瓦斯地質(zhì)研究的熱點(diǎn)之一,但不區(qū)分顯微組分或主要針對(duì)鏡質(zhì)組的研究顯然具有片面性和局限性,甚至導(dǎo)致相互矛盾的結(jié)果。加強(qiáng)惰質(zhì)組大分子物理結(jié)構(gòu)/納米孔隙特征及其演化規(guī)律研究,是從微觀結(jié)構(gòu)角度全面查明煤吸附性特征的基礎(chǔ)性工作。
溫度、壓力是煤變質(zhì)作用的基本地質(zhì)因素,溫度對(duì)有機(jī)質(zhì)演化起主導(dǎo)作用的觀點(diǎn)得到普遍認(rèn)同,而壓力因素的意義則存在較大的爭(zhēng)議。早在20世紀(jì)20年代,White(1925)就曾用動(dòng)力因素解釋美國(guó)東部煤變質(zhì)問(wèn)題,蘇聯(lián)的一些學(xué)者也強(qiáng)調(diào)煤的動(dòng)力變質(zhì)作用;隨著研究的深入,一些典型的動(dòng)力變質(zhì)實(shí)例相繼被否定,多數(shù)學(xué)者認(rèn)為壓力延緩有機(jī)質(zhì)的化學(xué)反應(yīng)速率、抑制化學(xué)煤化作用,僅對(duì)壓實(shí)和脫水等物理煤化作用有貢獻(xiàn)[4,39]。實(shí)際上,地質(zhì)條件下的壓力因素包括地層壓力和構(gòu)造應(yīng)力兩大類,二者對(duì)煤變質(zhì)作用的影響有本質(zhì)的區(qū)別[40]。地層壓力具有各向同性特點(diǎn)(靜水壓力),增加了化學(xué)反應(yīng)的穩(wěn)定性;構(gòu)造應(yīng)力則屬于各向異性的定向壓力,可促進(jìn)大分子化學(xué)結(jié)構(gòu)和物理結(jié)構(gòu)變化,尤其是在高煤級(jí)階段氧和其他空間位阻官能團(tuán)消失之后更是如此[4]。
構(gòu)造應(yīng)力提供了大分子聚合和側(cè)鏈斷裂所需要的能量,以應(yīng)力降解和應(yīng)力縮聚[40]或力化學(xué)降解和力化學(xué)縮聚的形式[41]影響煤大分子化學(xué)結(jié)構(gòu)和物理結(jié)構(gòu),使之具有超前演化的特點(diǎn)。我國(guó)煤田構(gòu)造格局復(fù)雜,煤層變形時(shí)空差異顯著[42],不同類型的構(gòu)造煤發(fā)育,構(gòu)成發(fā)生瓦斯突出災(zāi)害和制約煤層氣連續(xù)排采的主要因素。由于產(chǎn)業(yè)需求的推動(dòng),國(guó)內(nèi)外尤其是我國(guó)地質(zhì)工作者對(duì)構(gòu)造煤開(kāi)展了大量研究工作,取得豐碩成果[10,12-13,43-45],研究視野已經(jīng)從煤體宏觀破壞和物理化學(xué)性質(zhì)改變、深入到構(gòu)造煤的大分子結(jié)構(gòu)尺度[12,24,46-47]。LiuHewu等[48](2019)采用分子動(dòng)力學(xué)方法,建立了低–中煤級(jí)脆性變形煤和韌性變形煤的大分子結(jié)構(gòu)模型,認(rèn)為構(gòu)造變形強(qiáng)度和變形行為可以影響煤的大分子結(jié)構(gòu),韌性變形促進(jìn)小的無(wú)序單元嵌入結(jié)構(gòu)缺陷中增加了芳烴層的縮聚程度,還可以提高芳香層的有序度和堆疊度。Li Xiaoshi等[46](2012)研究表明,構(gòu)造變形作用導(dǎo)致的化學(xué)結(jié)構(gòu)變化、次生結(jié)構(gòu)缺陷,是造成構(gòu)造煤與原生結(jié)構(gòu)煤大分子結(jié)構(gòu)變化差異的主要原因。
構(gòu)造應(yīng)力效應(yīng)研究進(jìn)展深化了對(duì)煤變質(zhì)作用因素的認(rèn)識(shí),為煤顯微組分大分子結(jié)構(gòu)研究增添了新內(nèi)容。然而,正如不同顯微組分熱演化特征存在明顯差異性,惰質(zhì)組與鏡質(zhì)組大分子結(jié)構(gòu)對(duì)構(gòu)造應(yīng)力的響應(yīng)必然也不相同,顯微組分在應(yīng)力作用下的演化途徑是否具有與熱演化相似的階躍性?尤其惰質(zhì)組在應(yīng)力作用下是否依然呈現(xiàn)“惰性”?這些問(wèn)題的研究,必將促進(jìn)對(duì)煤顯微組分微觀結(jié)構(gòu)演化應(yīng)力響應(yīng)的全面理解。
煤變質(zhì)演化的總體趨勢(shì)是富碳、去氫、脫氧,其大分子結(jié)構(gòu)演化表現(xiàn)為芳構(gòu)化、稠環(huán)化、拼疊作用和秩理化增強(qiáng)、石墨結(jié)構(gòu)逐漸形成,終極端元為三維有序的石墨晶體[4,8]。廣義的煤變質(zhì)作用可以劃分為從褐煤至無(wú)煙煤的煤化作用階段和從石墨化無(wú)煙煤(超無(wú)煙煤)至石墨的石墨化階段[49](圖1)。
圖1 煤變質(zhì)作用階段劃分與大分子結(jié)構(gòu)演化
由煤的工業(yè)利用價(jià)值所決定,迄今對(duì)煤化作用階段的研究比較深入,認(rèn)識(shí)到煤化作用演化具有階段性和躍變性特點(diǎn),3大類顯微組分具有不同的演化途徑[4,6,9]。國(guó)內(nèi)外學(xué)者建立的煤大分子結(jié)構(gòu)模型也大多基于煤化作用階段,煤變質(zhì)高級(jí)階段即煤成石墨化階段的研究則十分薄弱。
已經(jīng)認(rèn)識(shí)到石墨化階段的控制因素與由熱變質(zhì)主導(dǎo)的煤化作用階段不同,構(gòu)造應(yīng)力在煤成石墨中具有不可替代的作用。在石墨化階段,煤大分子結(jié)構(gòu)的側(cè)鏈和官能團(tuán)脫落殆盡,基本結(jié)構(gòu)單元(BSU)之間相互聯(lián)結(jié)使大分子局部定向域(LMO)范圍增大的拼疊作用和秩理化作用,是石墨結(jié)構(gòu)形成的主要機(jī)制。人工熱模擬實(shí)驗(yàn)表明,需要把碳物質(zhì)加熱到2 800℃才能形成石墨結(jié)構(gòu)[50],顯然與天然石墨形成溫度分布于400~800℃范圍的地質(zhì)研究成果相矛盾[51-52]。M. Bonijoly等[53](1982)基于Franklin(1951)的大分子交聯(lián)結(jié)構(gòu)模型,提出石墨結(jié)構(gòu)形成的應(yīng)力作用機(jī)制,即應(yīng)力在交聯(lián)部位和孔隙接觸部位集中,造成孔隙壁破裂,促進(jìn)BSUs定向排列秩理化。R. M. Bustin等[54](1995)分析了靜水壓力、共軸壓力和剪切應(yīng)力影響石墨結(jié)構(gòu)演化的異同,指出剪切應(yīng)力在石墨化過(guò)程中的“催化”效果顯著。受變形礦物晶格位錯(cuò)機(jī)制的啟發(fā),作者曾提出“應(yīng)力集中→BSUs局部定向→整體秩理化擴(kuò)展”的變形煤微觀結(jié)構(gòu)演化機(jī)制[40],以及應(yīng)變誘導(dǎo)石墨化機(jī)制:由局部應(yīng)力集中導(dǎo)致基本結(jié)構(gòu)單元BSUs定向排列,形成局部定向域LMO,碳層中的結(jié)構(gòu)缺陷隨之調(diào)整、遷移,短程有序疇逐步擴(kuò)展,形成長(zhǎng)程有序的石墨結(jié)構(gòu)[55]。
自20世紀(jì)80年代以來(lái),高溫高壓模擬實(shí)驗(yàn)成為研究煤變形–變質(zhì)作用的重要手段,在構(gòu)造煤結(jié)構(gòu)演化、變形生烴作用、納米孔隙發(fā)育、煤化作用和石墨化作用等方面取得一系列重要成果[56-59]。模擬實(shí)驗(yàn)研究支持構(gòu)造應(yīng)力和應(yīng)變能在碳物質(zhì)石墨化過(guò)程中起到重要作用[53,60],在剪切變形條件下局部石墨結(jié)構(gòu)出現(xiàn)的起始溫度可低至600℃[54,61]。不足之處是現(xiàn)有高溫高壓模擬實(shí)驗(yàn)均采用全組分煤樣,迄今未見(jiàn)到單一組分的高溫高壓模擬實(shí)驗(yàn)成果報(bào)道。
不同顯微組分的可石墨化性不同,通常認(rèn)為鏡質(zhì)組相對(duì)于惰質(zhì)組更易于石墨化[9,62]。富鏡質(zhì)組和富惰質(zhì)組人工熱模擬對(duì)比實(shí)驗(yàn)表明,惰質(zhì)組所需的石墨化溫度較高,2 600℃之后結(jié)構(gòu)缺陷才迅速減小,芳香碳層瞬間平直化,結(jié)構(gòu)演化呈不連續(xù)的突變[63]。盡管鏡質(zhì)組芳層結(jié)構(gòu)的有序化速率總體上高于惰質(zhì)組,但在高溫階段(>2 300℃),惰質(zhì)組結(jié)構(gòu)演化同樣趨于明顯(圖2)。張曉欠[64]對(duì)我國(guó)神府煤進(jìn)行2 500℃高溫處理,認(rèn)為惰質(zhì)組比鏡質(zhì)組更易石墨化。
圖2 富鏡質(zhì)組煤樣(GL)和富惰質(zhì)組煤樣(GY)熱模擬實(shí)驗(yàn)芳層間距(d002)演化曲線[63]
秦勇[9](1994)討論了惰質(zhì)組石墨化的可能性,基于R. E. Franklin[21](1951)的石墨化碳和非石墨化碳大分子物理結(jié)構(gòu)模型,認(rèn)為富微孔的惰質(zhì)組分形成以微孔為中心的“類殼結(jié)構(gòu)”,在壓力作用下孔隙邊緣應(yīng)力集中使殼層發(fā)生破裂拉直變平,從而有可能形成石墨層。作者研究煤系石墨成礦機(jī)制時(shí),發(fā)現(xiàn)韌性變形的石墨化程度明顯高于脆性變形樣品[65-67],與構(gòu)造煤研究得出韌性變形大分子結(jié)構(gòu)變化顯著的結(jié)論一致[11,46,68-70];另一方面,劉俊來(lái)等[71](2005)開(kāi)展的高溫高壓煤巖流變實(shí)驗(yàn)發(fā)現(xiàn),晶質(zhì)塑性變形主要發(fā)育于惰質(zhì)組而不是鏡質(zhì)組。上述現(xiàn)象是否暗示石墨化階段的惰質(zhì)組在高壓–高溫耦合作用下,其大分子結(jié)構(gòu)可能呈現(xiàn)不同于熱作用的動(dòng)力“活性”性質(zhì)?
由于高變質(zhì)階段顯微組分的變化及其光學(xué)特征的趨同性,難以開(kāi)展自然演化序列樣品的惰質(zhì)組和鏡質(zhì)組微觀結(jié)構(gòu)對(duì)比研究,阻礙了對(duì)煤變質(zhì)全階段顯微組分大分子結(jié)構(gòu)演化規(guī)律性的全面認(rèn)識(shí)。單組分的高溫高壓實(shí)驗(yàn)技術(shù),則提供了“正演”研究煤變質(zhì)高級(jí)演化階段(石墨化作用)顯微組分大分子結(jié)構(gòu)演化差異性的可行途徑。
針對(duì)顯微組分大分子結(jié)構(gòu)演化研究存在的不足,認(rèn)為應(yīng)開(kāi)展以下4方面工作。
(1) 自然演化變質(zhì)–變形序列顯微組分大分子結(jié)構(gòu)研究?;诓煌冑|(zhì)程度系列原生結(jié)構(gòu)煤樣和相同煤級(jí)不同變形程度煤樣,采用系統(tǒng)測(cè)試技術(shù)方法,查明惰質(zhì)組和鏡質(zhì)組大分子結(jié)構(gòu)并對(duì)比二者的差異性;結(jié)合測(cè)試煤樣的構(gòu)造–熱地質(zhì)環(huán)境條件分析和變形–變質(zhì)特征分析,定性探討控制顯微組分結(jié)構(gòu)演化的地質(zhì)因素。
(2) 人工熱模擬和高溫高壓模擬實(shí)驗(yàn)研究。選用低變質(zhì)原生結(jié)構(gòu)煤樣,分離制備富惰質(zhì)組和富鏡質(zhì)組樣品,設(shè)計(jì)人工熱模擬實(shí)驗(yàn)和高溫–高壓模擬實(shí)驗(yàn),對(duì)比研究惰質(zhì)組和鏡質(zhì)組在熱作用和應(yīng)力–熱耦合作用下大分子結(jié)構(gòu)演化特征及其差異性,定量評(píng)價(jià)溫度和構(gòu)造應(yīng)力對(duì)不同顯微組分結(jié)構(gòu)演化的控制作用。
(3) 顯微組分大分子結(jié)構(gòu)演化動(dòng)力學(xué)模式。綜合自然演化和模擬實(shí)驗(yàn)結(jié)果,查明煤變質(zhì)作用全過(guò)程顯微組分大分子結(jié)構(gòu)演化途徑,著重探究惰質(zhì)組結(jié)構(gòu)演化與鏡質(zhì)組結(jié)構(gòu)演化的異同及其控制因素,建立不同煤變質(zhì)階段典型鏡質(zhì)組和惰質(zhì)組三維大分子結(jié)構(gòu)模型,揭示顯微組分大分子結(jié)構(gòu)演化的動(dòng)力學(xué)機(jī)制。
(4) 不同顯微組分大分子結(jié)構(gòu)對(duì)煤加工轉(zhuǎn)化行為和儲(chǔ)層物性差異的影響。選擇不同變質(zhì)/變形階段的煤巖樣品,根據(jù)上述鏡質(zhì)組和惰質(zhì)組化學(xué)結(jié)構(gòu)和物理結(jié)構(gòu)研究結(jié)果,開(kāi)展單一組分焦化、液化和氣化等加工轉(zhuǎn)化實(shí)驗(yàn),孔滲及甲烷吸附性測(cè)試分析,從顯微組分大分子結(jié)構(gòu)層面闡明煤巖組分理化性質(zhì)和儲(chǔ)層特征差異性的作用機(jī)理和基本規(guī)律。
從“熱–應(yīng)力條件決定顯微組分大分子結(jié)構(gòu)演化、惰質(zhì)組與鏡質(zhì)組結(jié)構(gòu)演化具有差異性”研究思路出發(fā),開(kāi)展惰質(zhì)組和鏡質(zhì)組樣品人工熱模擬和高溫高壓模擬實(shí)驗(yàn)、并與自然序列變質(zhì)–變形煤樣對(duì)比,研究惰質(zhì)組和鏡質(zhì)組大分子結(jié)構(gòu)演化特征及其控制因素。定量刻畫(huà)顯微組分大分子結(jié)構(gòu)與溫度、壓力的關(guān)系,揭示構(gòu)造應(yīng)力對(duì)顯微組分化學(xué)結(jié)構(gòu)和納米孔隙結(jié)構(gòu)的控制;在對(duì)比惰質(zhì)組與鏡質(zhì)組結(jié)構(gòu)演化異同的基礎(chǔ)上,查明煤變質(zhì)作用全過(guò)程中惰質(zhì)組大分子結(jié)構(gòu)演化途徑,建立顯微組分大分子結(jié)構(gòu)演化動(dòng)力學(xué)模式。以期深化對(duì)顯微組分大分子結(jié)構(gòu)演化及其控制因素的全面認(rèn)識(shí),從顯微組分大分子結(jié)構(gòu)差異層面探討煤巖組分理化性質(zhì)和儲(chǔ)層特征的形成機(jī)理,為煤炭清潔高效利用、煤層氣開(kāi)發(fā)和煤礦瓦斯防治評(píng)價(jià)提供科學(xué)依據(jù)(圖3)。
圖3 技術(shù)路線圖
a.近年來(lái),從煤巖顯微組分大分子結(jié)構(gòu)層次研究煤的加工轉(zhuǎn)化性質(zhì)和煤儲(chǔ)層物性取得顯著進(jìn)展,成為煤地質(zhì)學(xué)研究熱點(diǎn)之一,顯微組分物理化學(xué)特征和工藝性能的差異也必然應(yīng)該從大分子結(jié)構(gòu)的差異性尋找答案。然而,當(dāng)前煤大分子結(jié)構(gòu)研究主要針對(duì)鏡質(zhì)組或不區(qū)分顯微組分,從而阻礙了對(duì)煤巖大分子結(jié)構(gòu)的全面認(rèn)識(shí)。煤大分子結(jié)構(gòu)熱演化特征研究成果豐富,相對(duì)而言,對(duì)構(gòu)造應(yīng)力效應(yīng)及結(jié)構(gòu)演化動(dòng)力學(xué)機(jī)制的研究重視不夠,尤其是煤變質(zhì)高級(jí)階段在熱–應(yīng)力耦合作用下不同顯微組分大分子結(jié)構(gòu)演化差異性知之甚少。
b. 從微觀角度深入探討鏡質(zhì)組與惰質(zhì)組的結(jié)構(gòu)差異性,加強(qiáng)惰質(zhì)組大分子結(jié)構(gòu)特征研究,尤其是揭示溫度–應(yīng)力耦合作用下惰質(zhì)組大分子結(jié)構(gòu)的演化規(guī)律,在理論上可以豐富對(duì)煤巖組分大分子結(jié)構(gòu)演化和煤變質(zhì)作用進(jìn)程的全面認(rèn)識(shí),在實(shí)踐上可為煤炭清潔高效利用、煤與瓦斯防治和煤層氣評(píng)價(jià)開(kāi)發(fā)提供科學(xué)依據(jù)。
c. 加強(qiáng)煤巖顯微組分大分子結(jié)構(gòu)演化差異性及其動(dòng)力學(xué)機(jī)制研究,重點(diǎn)要解決以下三方面科學(xué)問(wèn)題:惰質(zhì)組與鏡質(zhì)組大分子結(jié)構(gòu)的差異性及其量化表征;高溫背景下構(gòu)造應(yīng)力性質(zhì)和強(qiáng)度影響惰質(zhì)組大分子結(jié)構(gòu)的作用機(jī)制;惰質(zhì)組大分子結(jié)構(gòu)演化是否存在與鏡質(zhì)組結(jié)構(gòu)演化相似的階躍性特征。
[1] 謝克昌. 煤的結(jié)構(gòu)與反應(yīng)性[M]. 北京:科學(xué)出版社,2002. XIE Kechang. Coal structure and its reactivity[M]. Beijing:Science Press,2002.
[2] 曾凡桂,謝克昌. 煤結(jié)構(gòu)化學(xué)的理論體系與方法論[J]. 煤炭學(xué)報(bào),2004,29(4):443–447. ZENG Fangui,XIE Kechang. Theoretical system and methodology of coal structural chemistry[J]. Journal of Coal Society,2004,29(4):443–447.
[3] MATHEWS J P,CHAFFEE A L. The molecular representations of coal:A review[J]. Fuel,2012,96:1–14.
[4] STACH E,MACKOWSKY M T H,TECHMULLER M,et al. Stach’s textbook of coal petrology,3rd ed[M]. Berlin:Gebruder Borntraeger,1982.
[5] 李國(guó)玲,秦志宏,倪中海. 煤巖顯微組分的性質(zhì)研究進(jìn)展[J]. 遼寧大學(xué)學(xué)報(bào)(自然科學(xué)版),2013,40(1):54–61. LI Guoling,QIN Zhihong,NI Zhonghai. Advances in the characteristics of coal macerals[J]. Journal of Liaoning University(Natural Sciences Edition),2013,40(1):54–61.
[6] 韓德馨. 中國(guó)煤巖學(xué)[M]. 徐州:中國(guó)礦業(yè)大學(xué)出版社,1996. HAN Dexin. Coal petrology of China[M]. Xuzhou:China University of Mining and Technology Press,1996.
[7] 黃文輝,唐書(shū)恒,唐修義,等. 西北地區(qū)侏羅紀(jì)煤的煤巖學(xué)特征[J]. 煤田地質(zhì)與勘探,2010,38(4):1–6. HUANG Wenhui,TANG Shuheng,TANG Xiuyi,et al. The Jurassic coal petrology and the research significance of Northwest China[J]. Coal Geology & Exploration,2010,38(4):1–6.
[8] 楊起,吳沖龍,湯達(dá)禎,等. 中國(guó)煤變質(zhì)作用[M]. 北京:煤炭工業(yè)出版社,1996. YANG Qi,WU Chonglong,TANG Dazhen,et al. Coal metamorphism in China[M]. Beijing:China Coal Industry Publishing House,1996.
[9] 秦勇. 中國(guó)高煤級(jí)煤的顯微巖石學(xué)特征及結(jié)構(gòu)演化[M]. 徐州:中國(guó)礦業(yè)大學(xué)出版社,1994. QIN Yong. Micropetrology and structural evolution of high rank coals in P. R. China[M]. Xuzhou:China University of Mining and Technology Press,1994.
[10] CAO Yunxing,DAVIS A,LIU R,et al. The influence of tectonic deformation on some geochemical properties of coals a possible indication of outburst potential[J]. International Journal of Coal Geology,2003,53(2):69–79.
[11] 琚宜文,姜波,王桂梁,等. 構(gòu)造煤結(jié)構(gòu)及儲(chǔ)層物性[M]. 徐州:中國(guó)礦業(yè)大學(xué)出版社,2005. JU Yiwen,JIANG Bo,WANG Guiliang,et al. Structure of deformed-coal and reservoir properties[M]. Xuzhou:China University of Mining and Technology Press,2005.
[12] 姜波,秦勇,琚宜文,等. 構(gòu)造煤化學(xué)結(jié)構(gòu)演化與瓦斯特性耦合機(jī)理[J]. 地學(xué)前緣,2009,16(2):262–271. JIANG Bo,QIN Yong,JU Yiwen,et al. The coupling mechanism of the evolution of chemical structure with the characteristics of gas of tectonic coals[J]. Earth Science Frontiers,2009,16(2):262–271.
[13] HOU Quanlin,LI Huijun,F(xiàn)AN Junjia,et al.Structure and coalbed methane occurrence in tectonically deformed coals[J]. Science China:Earth Science,2012,55(11):1755–1763.
[14] NIEKERK D V,JONATHAN P,MATHEWS J P. Molecular representations of Permian-aged vitrinite-rich and inertinite-rich South African coals[J]. Fuel,2010,89(1):73–82.
[15] LIU Yu,ZHU Yanming,LIU Shimin,et al. Molecular structure controls on micropore evolution in coal vitrinite during coalification[J]. International Journal of Coal Geology,2018,199:19–30.
[16] RAJAK P K,SINGH V K,SINGH P K. Distribution of inertinites in the Early Paleogene lignites of western India:On the possibility of wildfire activities[J]. Journal of the Geological Society of India,2019,93(5):523–532.
[17] HUDSPITH V A,BELCHER C M. Some semifusinite in coal may form during diagenesis,not wildfires[J]. International Journal of Coal Geology,2020,218. doi:10.1016/j.coal.2019.103360.
[18] 羅隕飛. 煤的大分子結(jié)構(gòu)研究:煤中惰質(zhì)組結(jié)構(gòu)及煤中氧的賦存狀態(tài)[D]. 北京:煤炭科學(xué)研究總院,2002. LUO Yunfei. Macromolecular structure of coal:Structure of inertinite in coal and occurrence of oxygen in coal[D]. Beijing:China Coal Research Institute,2002.
[19] MOROENG O M,KEARTLAND J M,ROBERTS J,et al. Characterization of coal using electron spin resonance:Implications for the formation of inertinite macerals in the Witbank Coalfield,South Africa[J]. International Journal of Coal Science and Technology,2018,5(3):385–398.
[20] 藺華林,李克健,章序文. 上灣煤及其惰質(zhì)組富集物的結(jié)構(gòu)表征與模型構(gòu)建[J]. 燃料化學(xué)學(xué)報(bào),2013,41(6):641–648. LIN Hualin,LI Kejian,ZHANG Xuwen. Structure characterization and model construction of Shangwan coal and it’s inertinite concentrated[J]. Journal of Fuel Chemistry and Technology,2013,41(6):641–648.
[21] FRANKLIN R E. Crystallite growth in graphitizing and non-graphitizing carbons[J]. Proceedings of the Royal Society A,1951,209(1097):196–218.
[22] HIRSCH P B. X-ray Scattering from coals[J]. Proceedings of the Royal Society B:Biological Sciences,1954,226:143–169.
[23] GRIMES W R. The physical structure of coal[M]//GORBATY M L,LARSEN J W,WENDER I. Coal Science. New York:Academic Press,1982.
[24] 琚宜文,姜波,侯泉林,等. 煤巖結(jié)構(gòu)納米級(jí)變形與變質(zhì)變形環(huán)境的關(guān)系[J]. 科學(xué)通報(bào),2005,50(17):1884–1892. JU Yiwen,JIANG Bo,HOU Quanlin,et al. Relationship between nano-scale deformation of coal and rock structure and metamorphic deformation environment[J]. Chinese Science Bulletin,50(17):1884–1892.
[25] MASTALERZ M,DROBNIAK A,STR?PO? D,et al. Variations in pore characteristics in high volatile bituminous coals:Implications for coalbed gas content[J]. International Journal of Coal Geology,2008,76(3):205–216.
[26] OKOLO G N,EVERSON R C,NEOMAGUS H W J P. Comparing the porosity and surface areas of coal as measured by gas adsorption,mercury intrusion and SAXS techniques[J]. Fuel,2015,141:293–304.
[27] 鐘玲文,張新民. 煤的吸附能力與其煤化程度和煤巖組成間的關(guān)系[J]. 煤田地質(zhì)與勘探,1990,18(4):29–36. ZHONG Lingwen,ZHANG Xinmin. Relationship Between adsorption capacity of coal and the coalification degree and coal rock composition[J]. Coal Geology & Exploration,1990,18(4):29–36.
[28] CROSDALE P J,BEAMISH B B,VALIX M. Coalbed methane sorption related to coal composition[J]. International Journal of Coal Geology,1998,35(1/2/3/4):147–158.
[29] 李振濤,姚艷斌,周鴻璞,等. 煤巖顯微組成對(duì)甲烷吸附能力的影響研究[J]. 煤炭科學(xué)技術(shù),2012,40(8);125–128. LI Zhentao,YAO Yanbin,ZHOU Hongpu,et al. Study on coal and rock maceral composition affected to methane adsorption capacity[J]. Coal Science and Technology,2012,40(8);125–128.
[30] SHAN Chang’an,ZHANG Tingshan,LIANG Xing,et al. On the fundamental difference of adsorption-pores systems between vitrinite-and inertinite-rich anthracite derived from the southern Sichuan Basin,China[J]. Journal of Natural Gas Science & Engineering,2018,53:32–44.
[31] 劉常洪. 煤的孔隙結(jié)構(gòu)及其對(duì)甲烷的吸附特征[D]. 淮南:淮南礦業(yè)學(xué)院,1991. LIU Changhong. Pore structure of coal and its adsorption characteristics for methane[D]. Huainan:Huainan Mining Institute,1991.
[32] 劉宇. 煤鏡質(zhì)組結(jié)構(gòu)演化對(duì)甲烷吸附的分子級(jí)作用機(jī)理[D]. 徐州:中國(guó)礦業(yè)大學(xué),2019. LU Yu. Effect of coal vitrinite macromolecular structure evolution on methane adsorption capacity at molecular level[D]. Xuzhou:China University of Mining and Technology,2019.
[33] TODA Y,HATAMI M,TOYODA S,et al. Micropore structure of coal[J]. Fuel,1971,50(2):187–200.
[34] 郭衛(wèi)坤. 煤鏡質(zhì)組納米孔隨煤化進(jìn)程演化規(guī)律及機(jī)制[D]. 徐州:中國(guó)礦業(yè)大學(xué),2016. GUO Weikun. Evolution law and mechanism of coal vitrinite nanopore with coalification process[D]. Xuzhou:China University of Mining and Technology,2016.
[35] WANG Anmin,CAO Daiying,WEI Yingchun,et al. Comparison of nanopore evolution in vitrinite and inertinite in coalbed methane reservoirs during coalification[J]. Journal of Natural Gas Science and Engineering,2020. Doi:10.1016/j.jngse. 2020.103289.
[36] LAXMINARAYANA C,CROSDALE P J. Role of coal type and rank on methane sorption characteristics of Bowen Basin,Australia coals[J]. International Journal of Coal Geology,1999,40(4):309–325.
[37] CHALMERS G R L,MARC BUSTIN R. On the effects of petrographic composition on coalbed methane sorption[J]. International Journal of Coal Geology,2007,69(4):288–304.
[38] 張麗萍,蘇現(xiàn)波,曾榮樹(shù). 煤體性質(zhì)對(duì)煤吸附容量的控制作用探討[J]. 地質(zhì)學(xué)報(bào),2006,80(6):910–915. ZHANG Liping,SU Xianbo,ZENG Rongshu. Discussion on the controlling effects of coal properties on coal adsorption capacity[J]. Acta Geologica Sinica,2006,80(6):910–915.
[39] SAJGO C S,MCEVOY J,WOLF G A. Influence of temperature and pressure on maturation process Ⅰ,preliminary report[J]. Organic Geochemistry,1986,10:331–337.
[40] CAO Daiyong,LI Xiaoming,ZHANG Shouren. Influence of tectonic stress on coalification:Stress degradation mechanism and stress polycondensation mechanism[J]. Science in China D:Earth Sciences,2007,50(1):43–54.
[41] 張玉貴,張子敏,張小兵,等. 構(gòu)造煤演化的力化學(xué)作用機(jī)制[J]. 中國(guó)煤炭地質(zhì),2008,20(10):11–13. ZHANG Yugui,ZHANG Zimin,ZHANG Xiaobing,et al. Mechanochemical action mechanism of tectonically deformed coal evolvement[J]. Coal Geology of China,2008,20(10):11–13.
[42] 曹代勇,寧樹(shù)正,郭愛(ài)軍,等. 中國(guó)煤田構(gòu)造格局與構(gòu)造控煤作用[M]. 北京:科學(xué)出版社,2018. CAO Daiyong,NING Shuzheng,GUO Aijun,et al. Tectonic framework of coalfields and tectonic control of coal seams in China[M]. Beijing:China Science Publishing,2018.
[43] 張玉貴,張子敏,曹運(yùn)興. 構(gòu)造煤結(jié)構(gòu)與瓦斯突出[J]. 煤炭學(xué)報(bào),2007,32(3):281–284. ZHANG Yugui,ZHANG Zimin,CAO Yunxing. Deformed-coal structure and control to coal-gas outburst[J]. Journal of Coal Society,2007,32(3):281–284.
[44] 王恩營(yíng),易偉欣,李運(yùn)波. 華北板塊構(gòu)造煤分布及成因機(jī)制[M]. 北京:科學(xué)出版社,2015. WANG Enying,YI Weixin,LI Yunbo. Distribution and genetic mechanism of tectonic coal in north China Plate[M]. Beijing:Science Press,2015.
[45] YAO Zheng,CAO Daiyong,WEI Yingchun,et al. Experimental analysis on the effect of tectonically deformed coal types on fines generation characteristics[J]. Journal of Petroleum Science and Engineering,2016,146:350–359.
[46] LI Xiaoshi,JU Yiwen,HOU Quanlin,et al. Spectra response from macromolecular structure evolution of tectonically deformed coal of different deformation mechanisms[J]. Science China:Earth Sciences,2012,55:1269–1279.
[47] SONG Yu,JIANG Bo,QU Meijun. Macromolecular evolution and structural defects in tectonically deformed coals[J]. Fuel,2019,236:1432–1445.
[48] LIU Hewu,JIANG Bo,SONGYu et al. The tectonic stress-driving alteration and evolution of chemical structure for low-to medium-rank coals-by molecular simulation method[J]. Arabian Journal of Geosciences,2019,12. Doi.org/10.1007/s 12517-019-4909-8.
[49] 曹代勇,王路,劉志飛,等. 我國(guó)煤系石墨研究及資源開(kāi)發(fā)利用前景[J]. 煤田地質(zhì)與勘探,2020,48(1):1–11. CAO Daiyong,WANG Lu,LIU Zhifei,et al. The research status and prospect of coal-based graphite in China[J]. Coal Geology & Exploration,2020,48(1):1–11.
[50] ROUZAUD J N,OBERLIN A. Structure,microtexture,and optical properties of anthracene and saccharose-based carbons[J]. Carbon,1989,27(4):517–529.
[51] 莫如爵,劉紹斌,黃翠蓉,等. 中國(guó)石墨礦床地質(zhì)[M]. 北京:中國(guó)建筑工業(yè)出版社,1989. MO Rujue,LIU Shaobin,HUANG Cuirong,et al. Geology of graphite deposits in China[M]. Beijing:China Architecture & Building Press,1989.
[52] BUSECK P R,BEYSSAC O. From organic matter to graphite:Graphitization[J]. Elements,2014,10:421–426.
[53] BONIJOLY M,OBERLIN M,OBERLIN. A possible mechanism for natural graphite formation[J]. International Journal of Coal Geology,1982,1(4):283–312.
[54] BUSTIN R M,ROUZAUD J N,ROSS J V. Natural graphitization of anthracite:Experimental considerations[J]. Carbon,1995,33(5):679–691.
[55] WANG Lu,CAO Daiyong,PENG Yangwen,et al. Strain-induced graphitization mechanism of coal-based graphite from Lutang,Hunan Province,China[J]. Minerals,2019,9(10):617.
[56] BUSTIN R M,ROSS J V,MOFFAT I. Vitrinite anisotropy under differential stress and high confining pressure and temperature:Preliminary observations[J]. International Journal of Coal Geology,1986,6(4):343–351.
[57] 周建勛,邵震杰,王桂梁. 煤光性組構(gòu)的實(shí)驗(yàn)變形研究[J]. 科學(xué)通報(bào),1993,38(2):147–150. ZHOU Jianxun,SHAO Zhenjie,WANG Guiliang. Study on the deformation experimental of optical fabric of coal[J]. Chinese Science Bulletin,1993,38(2):147–150.
[58] 姜波,秦勇,金法禮. 煤變形的高溫高壓實(shí)驗(yàn)研究[J]. 煤炭學(xué)報(bào),1997,22(1):80–84. JIANG Bo,QIN Yong,JIN Fali. Coal deformation test under high temperature and confining pressure[J]. Journal of Coal Society,1997,22(1):80–84.
[59] 侯泉林,雒毅,宋超,等. 中煤級(jí)煤變形產(chǎn)氣過(guò)程及其機(jī)理探討[J]. 煤炭學(xué)報(bào),2014,39(8):1675–1682. HOU Quanlin,LUO Yi,SONG Chao,et al.Gas generation during middle-rank coal deformation and the preliminary discussion of the mechanism[J]. Journal of Coal Society,2014,39(8):1675–1682.
[60] ROSS J V,BUSTIN R M. The role of strain energy in creep graphitization of anthracite[J]. Nature,1990,343:58–60.
[61] WILKS K R,MASTALERZ M,BUSTIN R M,et al. The role of shear strain in the graphitization of a high-volatile bituminous and an anthracitic coal[J]. International Journal of Coal Geology,1993,22(3/4):247–277.
[62] TEICHMULLER M. Coalification[M]//FREY M,ed. Low temperature metarmorphism. Blackie:New York,1987.
[63] WANG Lu,QIN Rongfang,LI Yu,et al. On the difference of graphitization behavior between vitrinite-and inertinite-rich anthracites during heat treatment[J]. Energy Sources,Part A,2019b. Doi:10.1080/15567036.2019.1656681.
[64] 張曉欠. 神府煤及其煤巖組分催化石墨化研究[D]. 西安:西安科技大學(xué),2014. ZHANG Xiaoqian. Study on catalytic graphitization of Shenfu coal and macerals[D]. Xi’an:Xi’an University of Science and Technology,2014.
[65] 曹代勇,李小明,占文峰,等. 大別山北麓楊山煤系高煤級(jí)煤的變形變質(zhì)作用研究[M]. 北京:地質(zhì)出版社,2012. CAO Daiyong,LI Xiaoming,ZHAN Wenfeng,et al. Study on deformation and metamorphism of high rank coal of Yangshan coal measures in the north of Dabie Mountains[M]. Beijing:Geological Publishing House,2012.
[66] CAO Daiyong,ZHANG He,DONG Yeji,et al. Nanoscale microscopic features and evolution sequence of coal-based graphite[J]. Journal of Nanoscience and Nanotechnology,2017,17:6276–6283.
[67] 王路,曹代勇,丁正云,等. 閩西南地區(qū)煤成石墨的控制因素與成礦區(qū)帶劃分[J]. 煤炭學(xué)報(bào),2020,45(8):2865–2871. WANG Lu,CAO Daiyong,DING Zhengyun,et al. Controlling factors and metallogenic belts of coal-based graphite in the south-western Fujian Province[J]. Journal of Coal Society,2020,45(8):2865–2871.
[68] 曹代勇,張守仁,任德貽. 構(gòu)造變形對(duì)煤化作用進(jìn)程的影響[J]. 地質(zhì)論評(píng),2002,8(3):313–317. CAO Daiyong,ZHANG Shouren,REN Deyi. The influence of structural deformation on coalification[J]. Geological Review,2002,8(3):313–317.
[69] LIU Xianfeng,SONG Dazhao,HE Xueqiu,et al. Insight into the macromolecular structural differences between hard coal and deformed soft coal[J]. Fuel,2019,245:188–197.
[70] 范順利,李云波,宋黨育,等. 不同變形機(jī)制下構(gòu)造煤大分子結(jié)構(gòu)演化機(jī)理[J]. 煤炭科學(xué)技術(shù),2019,47(11):239–246. FAN Shunli,LI Yunbo,SONG Dangyu,et al.Macromolecular structure evolution mechanism of tectonically deformed coal under different deformation mechanisms[J]. Coal Science and Technology,2019,47(11):239–246.
[71] 劉俊來(lái),楊光,馬瑞. 高溫高壓實(shí)驗(yàn)變形煤流動(dòng)的宏觀與微觀力學(xué)表現(xiàn)[J]. 科學(xué)通報(bào),2005,50(增刊1):56–63. LIU Junlai,YANG Guang,MA Rui. Macroscopic and micromechanics behavior of deformed coal flow at high temperature and high pressure[J]. Chinese Science Bulletin,2005,50(Sup.1):56–63.
The evolution difference of macromolecular structures and its dynamic mechanism of coal macerals:Research status and prospect
CAO Daiyong1,2, WEI Yingchun1,2, WANG Anmin1,2, WANG Lu3, LIU Zhifei2, QIN Rongfang2, SHU Zhenyu2, CHEN Gaojian2
(1. State Key Laboratory of Coal Resources and Safe Mining, China University of Mining andTechnology(Beijing), Beijing 100083, China; 2. College of Geoscience and Surveying Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China; 3. Chongqing Institute of Geology and Mineral Resources, Chongqing 401120, China)
The physical and chemical properties of macerals are important factors affecting the clean and efficient utilization of coal and the physical properties of coal reservoirs. It has been recognized that the essential cause of determining the properties of macerals lies in their macromolecular structure. In order to reveal the evolution characteristics of macromolecular structure of macerals and its controlling factors, the research progresses at home and abroad were summarized and the shortcomings were analyzed from several aspects, such as the chemical and physical structure of macromolecules, the tectonic stress effect on the macromolecular evolution, and the evolution characteristics of macromolecules in the whole stage of coal metamorphism. The extensive distribution and important industrial use of vitrinite-rich coal make it the main research object of coal macromolecular structure, while reach on inertinite is relatively less, which hinders the comprehensive understanding of coal characteristics. Putting forward an research idea that the thermal-stress condition of coal metamorphism determines the microstructure evolution of macerals, and the macromolecular structure evolution of inertinite and vitrinite is different. Then, the high temperature and pressure simulation, artificial thermal simulation experiments of vitrinite / inertinite were carried out and compared with the natural evolution sequence of metamorphic-deformed coal, to study the microstructure evolution characteristics and their controlling factors of macerals. The objectives of the study are to characterize quantitatively the relationship between macromolecular structure of macerals and temperature / pressure conditions, to reveal the tectonic stress control on the chemical structure and nanopore structure of macerals, to identify the evolution path of macromolecular structure of inertinite in the whole process of coal metamorphism, and to establish the dynamic model of macromolecular dynamics of inertinite. The above results will enrich the overall understanding of microstructure evolution and its controlling factors, and provide the scientific basis for clean and efficient utilization of coal and evaluation of physical properties of coal reservoir.
macerals; inertinite; macromolecular structures; dynamic mechanism; research progress
移動(dòng)閱讀
語(yǔ)音講解
P618.11
A
1001-1986(2021)01-0012-09
2020-10-27;
2020-11-19
國(guó)家自然科學(xué)基金項(xiàng)目(42072197,41772156)
曹代勇,1955年生,男,重慶人,教授,博士生導(dǎo)師,從事盆地構(gòu)造和礦產(chǎn)地質(zhì)研究. E-mail:cdy@cumtb.edu.cn
曹代勇,魏迎春,王安民,等. 顯微組分大分子結(jié)構(gòu)演化差異性及其動(dòng)力學(xué)機(jī)制——研究進(jìn)展與展望[J]. 煤田地質(zhì)與勘探,2021,49(1):12–20. doi: 10.3969/j.issn.1001-1986.2021.01.002
CAO Daiyong,WEI Yingchun,WANG Anmin,et al. The evolution difference of macromolecular structures and its dynamic mechanism of coal macerals:Research status and prospect[J]. Coal Geology & Exploration,2021,49(1):12–20. doi: 10.3969/j.issn.1001-1986.2021.01.002
(責(zé)任編輯 范章群)