• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Commentary review on peripapillary morphological characteristics in high myopia eyes with glaucoma:diagnostic challenges and strategies

    2021-03-25 14:50:19YanHuiChenRuiHuaWeiYanNianHui

    Yan-Hui Chen, Rui-Hua Wei, Yan-Nian Hui

    1Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science, Tianjin 300070, China 2Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, China

    3Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi’an 710023, Shaanxi Province,China

    Abstract

    ● KEYWORDS: high myopia; open angle glaucoma;parapapillary atrophy; parapapillary microvasculature; optic disc; lamina cribrosa; optical coherence tomography

    INTRODUCTION

    Cross-sectional, population-based studies have demonstrated a relatively high incidence of open angle glaucoma(OAG) in individuals with myopia, compared with nonmyopic individuals[1-2]. The Blue Mountains Eye Study demonstrated a two-fold to three-fold increased risk of glaucoma in individuals with myopia[1]. The Beijing Eye Study reported that ≤-6 diopters of myopia may be a risk factor for glaucomatous optic neuropathy[2]. Considering the aging population and concurrent rapid increase in the number of individuals with myopia, particularly in Asia[3], the risk of visual defects caused by highly myopic OAG is likely to increase dramatically over the next few decades[4-5]. Timely diagnosis of OAG in highly myopic eyes in the early stage of the disease is essential for the proper management and prevention of visual loss.

    STRUCTURAL CHALLENGES INVOLVING THE MYOPIC DISC

    Characteristic thinning of both neuroretinal rim and peripapillary retinal nerve fiber layer thickness (RNFLT) are hallmarks of glaucomatous optic neuropathy. The identification of glaucomatous damages is challenging in eyes with high myopia[6-8]because it is difficult to distinguish myopia-related structural and functional defects from defects caused by glaucoma[9]. Progressive axial elongation may cause deviations in nerve fiber bundle trajectories[1]. Bedggood et al[10]found low concordance with the ISNT rule (i.e., for peripapillary RNFLT, inferior quadrant ≥ superior quadrant ≥ nasal quadrant≥ temporal quadrant) in myopia. Qiu et al[11]reported that 88.4% and 37% of eyes with healthy myopia did not follow the ISNT rule with respect to RNFLT and rim area, respectively,in a cross-sectional population study in Shantou, China. Thus,application of the ISNT rule to the RNFLT and rim area has limited utility in distinguishing OAG from high myopia[11].Structural evaluation of eyes with high myopia is complicated by unusually large or skewed sclera canal shape, optic disc tilt and rotation, and extensive β-zone parapapillary atrophy(βPPA)[9,12-13].

    RELATIONSHIP BETWEEN STRUCTURAL AND FUNCTIONAL DAMAGE IN MYOPIC GLAUCOMA

    A correct understanding of the relationship between structural and functional damage helps to accurately distinguish glaucomatous optic neuropathy from high myopia. However,relevant investigations have been limited by two key factors.First, the relationship between RNFLT and visual field (VF)defects is relatively weak due to structural alterations in the optic nerve head (ONH)/RNFLT distribution in eyes with myopic glaucoma[14]. The poor visibility of the RNFLT in redfree photography and the large area of βPPA beyond the optical coherence tomography (OCT) scan circle prevent an accurate optimal OCT scanning[6]. Second, VF defects in eyes with highly myopic glaucoma are often confusing, due to concurrent myopic chorioretinopathy in eyes with high myopia[15]and/or intraindividual/intertest variability involving both structural and functional evaluations[16]. Elevated intraocular pressure(IOP) is a major risk factor for glaucoma; moreover, IOP is positively associated with increasing myopia[17]. However,the broad range of risk factors for elevated IOP indicates that the biomechanics of the ONH play a key role in the development of highly myopic OAG, whereas they may contribute less robustly to changes in IOP. Lan et al[18]showed that the association between myopia and glaucoma was more robust at lower levels of IOP. Therefore, microstructural and functional analysis of the optic disc is helpful for exploring the pathogenesis of highly myopic OAG.

    DISC CHARACTERISTICS ASSOCIATED WITH HIGHLY MYOPIC OAG

    Optic disc tilt and torsion represent skewed insertion of the optic nerve into the eyeballs and may increase IOP-related stress exposure for a subset of retinal ganglion cell axons[8].To explore the relationship between functional impairment and structural changes in the optic disc, prospective and retrospective studies have been conducted in eyes with different degrees of myopia. Park et al[19]found that the degree of disc tilt and torsion was significantly different between eyes with OAG and normal eyes with similar axial lengths. Choi et al[20]found that the direction of optic disc tilt was consistent with the location of initial glaucomatous VF defects. The findings of a recent study indicated that superior disc torsion was predictive of an upper wedge-shaped retinal nerve fiber layer defect and lower VF damage in eyes with highly myopic OAG; eyes that had normal-tension glaucoma with high myopia exhibited smaller discs, lower tilt ratios,and greater disc tilt, relative to eyes without high myopia[18].Considering the influences of mechanical factors on axons,axial elongation-induced RNFLT thinning may be the anatomical basis for glaucoma-related functional damage in eyes with high myopia. In addition to mechanical factors, there remains uncertainty regarding the roles of optic disc-associated hemodynamic mechanisms in the development of myopiarelated OAG. Furthermore, longitudinal observations of peripapillary microvasculature and microstructure are helpful for revealing relationships between axial elongation and highly myopic OAG.

    LAMINA CRIBROSA MORPHOLOGY ASSOCIATED WITH HIGHLY MYOPIC OAG

    At the ONH, retinal ganglion cell axons converge and pass through the lamina cribrosa (LC), a porous connective tissue structure. The LC is a discontinuity (i.e., “weak spot”) in the corneoscleral envelope, which supports and nourishes the axons. Posterior bowing or compression of the LC and/or the dislocation of laminar sheets in the LC (caused by IOP elevation or tissue deformation) may impose shear stress on the retinal ganglion cell axons, thereby impeding axonal transport[21]. The LC is considered the primary site of glaucomatous axonal damage. Swept-source OCT facilitates rapid scanning and deep penetration for the evaluation of LC morphology and LC pores. Multiple aspects of the LC have been evaluated to investigate the close relationship between LC morphology and glaucomatous functional impairment.Thus far, large curvature, reduced thickness, tortuous LC pore paths, and the presence of focal lamina cribrosa defects(FLCDs) have been shown to correlate with glaucoma or highly myopic glaucoma[22-24]. Notably, Yoshikawa et al[25]compared the mobility of LC depth in a longitudinal study;they found that LC depth significantly decreased 3mo after glaucoma surgery and that the degree of change in LC depth was associated with the degree of change in IOP. In addition to mechanical factors, the axial elongation-related deformation and compression of LC may induce capillary collapse before or inside laminar layers, resulting in ONH ischemia. Suh et al[26]reported that circumpapillary vessel density extracted from the retinal nerve fiber layer was significantly lower in OAG eyes with FLCDs than in OAG eyes without FLCDs. In addition,the reduction of vessel density was spatially correlated with the locations of FLCDs[26]. Suh et al[27]investigated parapapillary microvasculature dropout (MvD), defined as a complete loss of microvasculature within the choroid or scleral flange, in patients with OAG. They found that higher FLCD prevalence(odds ratio, 6.27; P=0.012) and reduced circumpapillary vessel density (odds ratio, 1.27; P=0.002) were significantly associated with MvD. These studies have shown that the LC provides critical information regarding glaucomatous optic neuropathy. Both myopia and glaucoma can cause connective tissue remodeling microvasculature abnormalities within the ONH. There remains uncertainty regarding the relationships of LC morphology with both circulatory disorders within the ONH (e.g., prelaminar, LC, and retrolaminar regions) and glaucomatous damage. Population-based epidemiological surveys and longitudinal research (involving LC morphology,VF, and peripapillary microstructure and microvasculature)may aid in elucidating the pathogenesis of highly myopic OAG.

    PARAPAPILLARY ATROPHY ASSOCIATED WITH HIGHLY MYOPIC OAG

    Microstructure Changes in Eyes with OAG and Parapapillary AtrophyβPPA is a visible region lacking retinal pigment epithelium[28]. Teng et al[29]found that βPPA was correlated spatially with locations of future VF defect progression, in patients with OAG who exhibited βPPA and VF defect progression. Jonas et al[7]confirmed that the presence of βPPA was more sensitive for detection of glaucomatous optic neuropathy, compared with cup-to-disc ratio. Moreover,a larger βPPA area was associated with greater prevalence of tilted optic disc[30], as well as thinner LC and deeper anterior LC surface[28]. Thus far, the clinical implications of βPPA in OAG have been described in multiple studies[7,28-29],but the pathogenesis of βPPA remains poorly understood.Notably, there is uncertainty regarding the mechanism of retinal ganglion cell axonal damage. Recent advances in OCT technology have provided additional insights into the mechanisms underlying highly myopic OAG. By using OCT,the presence or absence of Bruch’s membrane (BM) can be determined; βPPA can then be histologically subclassified into βPPA+BMor βPPA-BM[28]. To investigate the relationship between βPPA and glaucomatous progression, Yamada et al[31]conducted a retrospective cohort study with a follow-up period of ≥2y. They reported that patients with larger βPPA+BMwidth had more rapid VF progression, compared with patients who did not have βPPA+BM. Sung et al[32]demonstrated that the width of βPPA+BMwas significantly associated with axial length, tilt angle, and optic disc rotation. Meanwhile, Sung et al[32]found that larger optic disc tilt, more inferior optic disc rotation, and lower peripapillary vessel density were all factors related to larger βPPA+BMwidth; none of these factors were related to βPPA-BM. Some researchers have suggested that the βPPA+BMis caused by age-related atrophy of the retinal pigment epithelium and is associated with OAG[7,33],whereas βPPA-BMmay be caused by axial elongation and have a protective effect in eyes with OAG[28,31,34]. Conversely, some studies have reported that βPPA+BMis present in teenagers and children with myopia[28,35]. These findings suggest that the effects of βPPA on glaucomatous injuries may be associated with changes in optic disc morphology and hemodynamics.There remains a lack of clarity regarding βPPA pathogenesis and the mechanism by which βPPA causes damage to the retinal nerve fiber layer. Several factors (e.g., the LC and optic disc) might contribute to highly myopic OAG during βPPA development, but the effect of BM presence or absence on OAG remains elusive thus far.

    Microvascular Changes in Eyes with OAG and Parapapillary AtrophyIn addition to morphologic changes in βPPA, ischemia around the ONH is presumably involved in the pathogenesis of highly myopic OAG[36]. The microvasculature in deep retinal layers and the choroid around the optic disc is of particular clinical interest because these vascular regions are both downstream from the short posterior ciliary artery[27,37], which perfuses the prelaminar tissue and LC[38]. OCT angiography (OCTA) facilitates noninvasive evaluation of the microvasculature located within various retinal[27]and choroidal layers[39]. Hu et al[40]investigated the superficial radial peripapillary capillary and choroidal microvascular density in eyes with healthy myopia and βPPA.Compared with eyes that had βPPA-BM, eyes that had βPPA+BMexhibit lower superficial radial peripapillary capillary and choroidal microvascular densities[40]. MvD has been defined as a focal sectoral filling defect without any visible microvascular network identified in parapapillary deep-layer en face images.Lee et al[41]demonstrated that MvD accurately coincided with perfusion defects observed by indocyanine green angiography.Recent OCTA studies frequently showed deep-layer MvD within the ONH in eyes with primary OAG and βPPA[27,36,42].These findings implied that parapapillary MvD represents a true peripapillary perfusion defect in the choroid or inner sclera, which causes reduced blood supply to the ONH[37].OAG eyes with MvD had significantly thinner RNFLT, worse VF mean deviation, and larger βPPA-BMthan OAG eyes without MvD[43]. The presence of MvD was proposed to serve as a strong predictor for an initial parafoveal scotoma[44]and a strong prognostic factor for progressive retinal nerve fiber layer thinning[45]. βPPA-BMzone is characterized by an oblique scleral flange and MvD in this region develops by stretching of the microvasculature in the scleral flange during axial elongation[46]. The choroidal and peripapillary scleral flange both supplies the prelaminar and LC via the circle Zinn-Haller.The circle of Zinn-Haller in myopic eyes without scleral flange exposure (βPPA-BMzone) is located at the end of the peripapillary scleral flange where the dura mater merges with the sclera. The scleral flange exposure and displacement is considered a product resulting from temporal stretching of the peripapillary tissues during axial elongation[46]. Meanwhile,the circle of Zinn-Haller location in scleral flange undergoes stretching and shearing forces; given that circle of Zinn-Haller insufficiency would decrease the vascular support of prelaminar and LC, the development of βPPA-BMzone could hamper the axonal transport[46]. Recent studies with OCTA frequently detected deep-layer MvD in the ONH in primary OAG with βPPA-BM[27,36,42]. Notably, precisely recognizing and segmentation in BM, choroid and sclera is a prerequisite to evaluate the microvasculature within βPPA zone. As the presentation of choroidal atrophy, BM rupture, and posterior staphyloma accompanied by axial elongation are serious obstacles of automatic segmentation provided by OCT or OCTA, up to now, research on microvasculature is limited to patients with non-pathological myopia[26,36-37,39-41].

    Both microstructure and microvasculature around the ONH provide some clues concerning the presence and location of glaucomatous damage in eyes with high myopia. We speculate that the pathogenesis of glaucomatous optical neuropathy induced by βPPA-BMdiffers from those eyes with βPPA+BM,basing on the differences of deep ONH structures (i.e., LC and deep-layer microvasculature). However, the precise relationships of juxtapapillary microvasculature with the ONH and/or LC topography require further investigation. The pathogenesis of optic neuropathy induced by microcirculatory deficiency, independent of IOP, is incompletely understood.A targeted understanding of BM, rather than βPPA, may aid in revealing the essential etiology and pathogenesis of highly myopic OAG.

    EXPLORATION OF DIAGNOSTIC AND THERAPEUTIC STRATEGIES

    A common diagnostic dilemma of myopic OAG in clinical practice is the presentation of a patient with ONH changes and borderline high or normal IOP. Even if there are VF defects, it may be difficult to determine if the defects are due primarily to myopia or OAG. Based on these facts that myopic ONH appearance and MvD represents the LC shifting and a true peripapillary perfusion defect, respectively, it seems reasonable to posit that the development or progression of optic disc ovality, βPPA-BMzone, and MvD could provide some clues to diagnosis of myopic OAG. Ophthalmologists should carefully assess the functional damages in patients with significant optic disc tilt and MvD regardless of IOP. As some myopes with VF defects may not show characteristic progression of OAG,necessary nutritional support and glaucoma medications may be considerable to improve blood circulation around the ONH and prevent the progression of glaucomatous optic neuropathy in such patients with borderline high IOP values. It remains uncertain, although, whether or not short-term or long-term IOP fluctuations are independent risk factors for development or progression of myopic OAG, monitoring IOP fluctuation and establishment baseline data are important in management myopic OAG[47]. In addition, longitudinal follow-up in the setting of high myopia with ONH changes may be necessary to confirm the diagnosis.

    CONCLUSION

    In summary, we focused on current findings of microvasculature and microstructure around and within the ONH, and described the detection of highly myopic OAG by both OCT and OCTA. βPPA has been found to influence the outcome of high myopic glaucoma, whereas the influence of BM on the ONH in eyes with high myopia requires further investigation. The diagnostic utility of OCT and OCTA for glaucomatous optic nerve damages and peripapillary microvascular perfusion defect is promising; it is considerable that nutritional support and glaucoma medications for some myopes with βPPA, MvD,borderline high IOP values and atypical VF defects. However,accurate alignment of the OCT scan beam, as well as adequate centering of the scan circle remains difficult in eyes with pathological myopia resulting in improper image acquisition and structural segmentation[6]. Moreover, there remain obstacles to consistently distinguishing structures and complex lesions among individuals. Improvements regarding image capture,picture recognition, standardized nomenclature and automated calculation, by means of software development and machine learning, are important considerations for future research. For note, the diagnosis of OAG remains to be determined with the longitudinal changes of functional damages (e.g., VF defects,visual electrophysiological changes).

    ACKNOWLEDGEMENTS

    We thank Jian Ji, MD, and Wei Liu, MD, both from the Tianjin Medical University Eye Hospital, Tianjin, China, for their invaluable comments, editing and expertise.

    Foundation:Supported by National Natural Science Foundation of China (No.81770901).

    Conflicts of Interest: Chen YH,None;Wei RH,None;Hui YN,None.

    亚洲av五月六月丁香网| 嫩草影视91久久| 国产精品野战在线观看| 久久午夜综合久久蜜桃| 久久久久久亚洲精品国产蜜桃av| 亚洲av熟女| 丰满的人妻完整版| 波多野结衣高清无吗| 在线a可以看的网站| 亚洲av片天天在线观看| 欧美大码av| 中文字幕最新亚洲高清| 欧美另类亚洲清纯唯美| 亚洲一卡2卡3卡4卡5卡精品中文| 99国产精品一区二区蜜桃av| 久久久久久久精品吃奶| 久久中文字幕一级| 亚洲中文字幕日韩| 动漫黄色视频在线观看| 国产成人av激情在线播放| 亚洲欧美精品综合久久99| 不卡一级毛片| 香蕉久久夜色| 欧美乱色亚洲激情| 国产午夜精品论理片| 免费在线观看日本一区| 国产激情偷乱视频一区二区| 精品久久久久久久人妻蜜臀av| 在线播放国产精品三级| 亚洲男人的天堂狠狠| www国产在线视频色| 亚洲男人的天堂狠狠| 国内久久婷婷六月综合欲色啪| 亚洲国产中文字幕在线视频| 蜜桃久久精品国产亚洲av| 日本三级黄在线观看| 丰满人妻熟妇乱又伦精品不卡| svipshipincom国产片| 国产精品 欧美亚洲| 国产人伦9x9x在线观看| 一卡2卡三卡四卡精品乱码亚洲| 免费看日本二区| 欧美中文日本在线观看视频| 亚洲人成伊人成综合网2020| 1024手机看黄色片| 久久午夜亚洲精品久久| 久久久久九九精品影院| 亚洲欧美日韩高清专用| 国产精品 国内视频| 啪啪无遮挡十八禁网站| 人成视频在线观看免费观看| 一夜夜www| 亚洲国产精品成人综合色| 亚洲欧美一区二区三区黑人| 日韩欧美免费精品| 制服丝袜大香蕉在线| 国内毛片毛片毛片毛片毛片| 最近视频中文字幕2019在线8| 露出奶头的视频| 一个人免费在线观看电影 | 身体一侧抽搐| 天天一区二区日本电影三级| 国产精品 欧美亚洲| 欧美日韩一级在线毛片| 最近在线观看免费完整版| 亚洲人成电影免费在线| 久久这里只有精品19| 免费在线观看黄色视频的| 亚洲人成伊人成综合网2020| 国产单亲对白刺激| 精品久久蜜臀av无| 人妻久久中文字幕网| 狂野欧美激情性xxxx| 亚洲精品国产一区二区精华液| 中出人妻视频一区二区| 熟女少妇亚洲综合色aaa.| svipshipincom国产片| 91大片在线观看| 淫妇啪啪啪对白视频| 91老司机精品| 男男h啪啪无遮挡| 亚洲av成人一区二区三| 国产亚洲精品综合一区在线观看 | 在线观看一区二区三区| 男女下面进入的视频免费午夜| 在线观看一区二区三区| 88av欧美| 女生性感内裤真人,穿戴方法视频| 听说在线观看完整版免费高清| 最近视频中文字幕2019在线8| 午夜福利免费观看在线| 日韩欧美免费精品| 免费人成视频x8x8入口观看| 国产精品久久久久久人妻精品电影| 亚洲精品中文字幕一二三四区| av在线天堂中文字幕| 免费观看人在逋| 大型av网站在线播放| www.www免费av| 给我免费播放毛片高清在线观看| 俺也久久电影网| 无人区码免费观看不卡| 免费看日本二区| 黑人欧美特级aaaaaa片| 中文字幕最新亚洲高清| 99久久国产精品久久久| 日韩大码丰满熟妇| 香蕉丝袜av| 色播亚洲综合网| 十八禁人妻一区二区| 毛片女人毛片| 欧美日韩福利视频一区二区| 美女 人体艺术 gogo| 最新在线观看一区二区三区| 亚洲欧美精品综合久久99| 日本在线视频免费播放| xxx96com| 韩国av一区二区三区四区| 久久久久久久久中文| 超碰成人久久| 国产精品亚洲美女久久久| 欧美精品啪啪一区二区三区| 久久久久国产精品人妻aⅴ院| 在线a可以看的网站| 日本免费一区二区三区高清不卡| 人人妻,人人澡人人爽秒播| 美女午夜性视频免费| 在线免费观看的www视频| 最近视频中文字幕2019在线8| 男女之事视频高清在线观看| 男女之事视频高清在线观看| 久久久久九九精品影院| 无人区码免费观看不卡| 国产单亲对白刺激| 校园春色视频在线观看| 色综合欧美亚洲国产小说| 黑人欧美特级aaaaaa片| 香蕉久久夜色| av福利片在线观看| 国内少妇人妻偷人精品xxx网站 | 亚洲国产高清在线一区二区三| 色哟哟哟哟哟哟| 精品人妻1区二区| av在线播放免费不卡| 在线免费观看的www视频| 久久精品综合一区二区三区| 18禁美女被吸乳视频| 亚洲精华国产精华精| 无人区码免费观看不卡| 国产v大片淫在线免费观看| 国产高清videossex| www.熟女人妻精品国产| 国产成人av激情在线播放| 国产激情欧美一区二区| 成人国产综合亚洲| 久久精品亚洲精品国产色婷小说| 好看av亚洲va欧美ⅴa在| 国产成人av激情在线播放| 精品国内亚洲2022精品成人| 久久精品亚洲精品国产色婷小说| 12—13女人毛片做爰片一| 不卡一级毛片| 午夜福利18| 婷婷六月久久综合丁香| 黄色女人牲交| 亚洲18禁久久av| 欧美日韩亚洲综合一区二区三区_| 亚洲国产欧美一区二区综合| 无人区码免费观看不卡| √禁漫天堂资源中文www| 日日爽夜夜爽网站| 欧美高清成人免费视频www| 婷婷亚洲欧美| 免费在线观看影片大全网站| 国产精品久久久av美女十八| 在线免费观看的www视频| 免费观看人在逋| 成人手机av| 午夜激情福利司机影院| 精品久久久久久成人av| 国产1区2区3区精品| av免费在线观看网站| 精品人妻1区二区| 精品乱码久久久久久99久播| 国产伦人伦偷精品视频| 亚洲色图 男人天堂 中文字幕| 精品久久久久久成人av| 9191精品国产免费久久| 成人国产综合亚洲| 伊人久久大香线蕉亚洲五| 久久婷婷人人爽人人干人人爱| 国产黄a三级三级三级人| 51午夜福利影视在线观看| 久久午夜亚洲精品久久| 狂野欧美激情性xxxx| 亚洲第一电影网av| 在线观看舔阴道视频| 欧美日韩黄片免| 日韩欧美一区二区三区在线观看| 久久久久久国产a免费观看| 久久亚洲真实| 国内精品久久久久久久电影| 久久久久精品国产欧美久久久| 女人爽到高潮嗷嗷叫在线视频| 欧美成人午夜精品| 欧美在线黄色| 淫秽高清视频在线观看| 两性夫妻黄色片| 91麻豆av在线| 天堂av国产一区二区熟女人妻 | 日本黄大片高清| 天天躁夜夜躁狠狠躁躁| 色噜噜av男人的天堂激情| 九九热线精品视视频播放| a在线观看视频网站| 熟女少妇亚洲综合色aaa.| 人人妻人人看人人澡| 成人av一区二区三区在线看| 久久婷婷人人爽人人干人人爱| 成在线人永久免费视频| 国产精华一区二区三区| 美女扒开内裤让男人捅视频| 久久久久免费精品人妻一区二区| 亚洲 国产 在线| 哪里可以看免费的av片| 日韩高清综合在线| 老司机福利观看| 久久久久免费精品人妻一区二区| 国产一级毛片七仙女欲春2| 在线观看一区二区三区| 国产一区二区在线av高清观看| 精品免费久久久久久久清纯| 男人的好看免费观看在线视频 | 日韩欧美国产一区二区入口| 亚洲精品色激情综合| 亚洲aⅴ乱码一区二区在线播放 | 亚洲精品在线美女| 午夜a级毛片| 久久中文字幕一级| 国产成人一区二区三区免费视频网站| 欧美一级a爱片免费观看看 | 大型av网站在线播放| aaaaa片日本免费| 亚洲欧美日韩高清在线视频| 国内精品一区二区在线观看| 老熟妇仑乱视频hdxx| 久久99热这里只有精品18| 在线观看美女被高潮喷水网站 | 日韩精品免费视频一区二区三区| 亚洲国产欧美人成| 国产亚洲av嫩草精品影院| 国产v大片淫在线免费观看| 国产1区2区3区精品| www日本在线高清视频| 老汉色∧v一级毛片| 日韩欧美一区二区三区在线观看| 日本免费a在线| 99久久国产精品久久久| 一本精品99久久精品77| 亚洲av成人一区二区三| 婷婷精品国产亚洲av在线| 国产高清视频在线观看网站| 最近最新中文字幕大全免费视频| 亚洲人成伊人成综合网2020| 看免费av毛片| 亚洲中文字幕日韩| 婷婷六月久久综合丁香| 免费搜索国产男女视频| 久久久精品国产亚洲av高清涩受| 50天的宝宝边吃奶边哭怎么回事| 日本成人三级电影网站| 久久精品国产亚洲av香蕉五月| 日本精品一区二区三区蜜桃| 久久久久久国产a免费观看| 久久久久久久精品吃奶| 免费在线观看黄色视频的| 啦啦啦观看免费观看视频高清| 亚洲欧美精品综合一区二区三区| 国产高清激情床上av| 国产成人精品久久二区二区91| 成熟少妇高潮喷水视频| 日本熟妇午夜| 国产在线观看jvid| 久久中文字幕一级| 桃色一区二区三区在线观看| 韩国av一区二区三区四区| 日韩精品青青久久久久久| 听说在线观看完整版免费高清| 免费在线观看成人毛片| 高潮久久久久久久久久久不卡| 国产亚洲精品久久久久久毛片| 亚洲成人国产一区在线观看| 99久久无色码亚洲精品果冻| 久久久久久亚洲精品国产蜜桃av| 精品高清国产在线一区| 神马国产精品三级电影在线观看 | 欧美中文综合在线视频| 国产乱人伦免费视频| 国产av一区二区精品久久| 夜夜爽天天搞| 国产av一区在线观看免费| 精品福利观看| 他把我摸到了高潮在线观看| 日韩av在线大香蕉| 亚洲国产精品久久男人天堂| 国产精品亚洲一级av第二区| 久久精品国产清高在天天线| 国产亚洲av嫩草精品影院| 亚洲精品av麻豆狂野| 999久久久国产精品视频| 九九热线精品视视频播放| 久久久久性生活片| 久久精品国产综合久久久| 日韩成人在线观看一区二区三区| 日本免费a在线| www.精华液| 成人特级黄色片久久久久久久| 哪里可以看免费的av片| 成人av在线播放网站| 一区二区三区国产精品乱码| 好男人电影高清在线观看| 亚洲狠狠婷婷综合久久图片| 校园春色视频在线观看| 国产精品一区二区精品视频观看| 国产不卡一卡二| 一边摸一边抽搐一进一小说| 91大片在线观看| 天天躁夜夜躁狠狠躁躁| 久久久国产精品麻豆| 日本撒尿小便嘘嘘汇集6| 欧美绝顶高潮抽搐喷水| 午夜福利欧美成人| 国产成人影院久久av| 欧美最黄视频在线播放免费| 身体一侧抽搐| 露出奶头的视频| 精品无人区乱码1区二区| 欧美日本视频| 午夜a级毛片| 给我免费播放毛片高清在线观看| 男男h啪啪无遮挡| 日韩欧美精品v在线| 最近最新免费中文字幕在线| 欧美中文综合在线视频| 超碰成人久久| 他把我摸到了高潮在线观看| 亚洲成人久久爱视频| 欧美 亚洲 国产 日韩一| 少妇被粗大的猛进出69影院| 欧美乱妇无乱码| 午夜日韩欧美国产| 国产真人三级小视频在线观看| 免费搜索国产男女视频| 中文字幕最新亚洲高清| 老司机靠b影院| 亚洲无线在线观看| 国产单亲对白刺激| 搡老熟女国产l中国老女人| 成人国产一区最新在线观看| 性色av乱码一区二区三区2| 欧美中文综合在线视频| 三级男女做爰猛烈吃奶摸视频| a级毛片在线看网站| 免费在线观看日本一区| 国产三级在线视频| 99国产精品一区二区蜜桃av| 丰满人妻熟妇乱又伦精品不卡| 三级国产精品欧美在线观看 | 深夜精品福利| 真人一进一出gif抽搐免费| 99国产精品99久久久久| 少妇人妻一区二区三区视频| 精品免费久久久久久久清纯| 亚洲国产精品久久男人天堂| 欧美一区二区精品小视频在线| 我要搜黄色片| 欧美中文综合在线视频| 久久香蕉精品热| 久久中文看片网| 国产成人av教育| 亚洲欧美日韩东京热| 亚洲国产欧洲综合997久久,| 两人在一起打扑克的视频| 日韩国内少妇激情av| 欧美黄色片欧美黄色片| 欧美日韩一级在线毛片| 女人爽到高潮嗷嗷叫在线视频| 97人妻精品一区二区三区麻豆| 欧美黑人巨大hd| 精品久久久久久久人妻蜜臀av| 五月伊人婷婷丁香| 国产亚洲av嫩草精品影院| 一本大道久久a久久精品| 久久婷婷人人爽人人干人人爱| 欧美色视频一区免费| 久久精品国产综合久久久| 在线视频色国产色| 99久久无色码亚洲精品果冻| 午夜精品一区二区三区免费看| 久久人人精品亚洲av| 日本 欧美在线| 欧美高清成人免费视频www| 久久亚洲精品不卡| 欧美色视频一区免费| 日韩精品中文字幕看吧| 黄色视频不卡| 午夜成年电影在线免费观看| 国产精品一区二区精品视频观看| av有码第一页| 国产精品久久电影中文字幕| 九九热线精品视视频播放| 可以在线观看的亚洲视频| 欧美日韩精品网址| 天堂√8在线中文| 日本在线视频免费播放| 日韩欧美国产一区二区入口| 免费看十八禁软件| 国产亚洲精品综合一区在线观看 | 成年女人毛片免费观看观看9| 亚洲成人免费电影在线观看| 成在线人永久免费视频| 最近最新中文字幕大全电影3| 一进一出抽搐gif免费好疼| 69av精品久久久久久| 中文字幕高清在线视频| 国产精品,欧美在线| 又爽又黄无遮挡网站| 国产精品久久久久久久电影 | 99国产精品一区二区三区| 亚洲成人国产一区在线观看| 欧美3d第一页| 亚洲精品色激情综合| 欧美日韩中文字幕国产精品一区二区三区| 精品无人区乱码1区二区| 欧美成人午夜精品| 欧美日韩乱码在线| 人妻丰满熟妇av一区二区三区| 啦啦啦免费观看视频1| a在线观看视频网站| 久久久久久久久免费视频了| 亚洲熟女毛片儿| 色在线成人网| 亚洲美女视频黄频| 亚洲,欧美精品.| 变态另类丝袜制服| 少妇裸体淫交视频免费看高清 | 色播亚洲综合网| 国产精品一区二区免费欧美| 国产av在哪里看| 午夜精品在线福利| 亚洲色图av天堂| 99国产综合亚洲精品| 色综合站精品国产| 日本撒尿小便嘘嘘汇集6| 日本成人三级电影网站| 国内毛片毛片毛片毛片毛片| 精品一区二区三区av网在线观看| 国产精品香港三级国产av潘金莲| x7x7x7水蜜桃| 动漫黄色视频在线观看| 久久久久久久精品吃奶| 一级毛片精品| 国产精品一及| 日本一区二区免费在线视频| 欧美乱码精品一区二区三区| 99热只有精品国产| 亚洲免费av在线视频| 99久久久亚洲精品蜜臀av| 久久精品国产亚洲av高清一级| 成人欧美大片| 1024香蕉在线观看| 色综合欧美亚洲国产小说| 国产精品久久久久久亚洲av鲁大| 黄片大片在线免费观看| 特级一级黄色大片| 91成年电影在线观看| 久久午夜综合久久蜜桃| 人人妻人人澡欧美一区二区| 最近在线观看免费完整版| av免费在线观看网站| 亚洲av熟女| 国产精品亚洲美女久久久| 琪琪午夜伦伦电影理论片6080| 欧美久久黑人一区二区| 亚洲精品久久成人aⅴ小说| 两人在一起打扑克的视频| 嫩草影视91久久| 91av网站免费观看| 真人做人爱边吃奶动态| 亚洲av美国av| 久久午夜综合久久蜜桃| 日本 av在线| 国产亚洲欧美98| 日韩免费av在线播放| 麻豆国产av国片精品| 女同久久另类99精品国产91| 69av精品久久久久久| 成人永久免费在线观看视频| 日韩三级视频一区二区三区| 欧美久久黑人一区二区| 国产av一区二区精品久久| 黄色片一级片一级黄色片| 国产一区二区三区视频了| 麻豆av在线久日| 欧美日韩精品网址| 成人午夜高清在线视频| 91九色精品人成在线观看| 91成年电影在线观看| 啦啦啦韩国在线观看视频| 免费在线观看完整版高清| 亚洲第一电影网av| 国内揄拍国产精品人妻在线| 日本撒尿小便嘘嘘汇集6| 999久久久精品免费观看国产| 国产精品久久视频播放| 国产精品99久久99久久久不卡| 欧美成人性av电影在线观看| 超碰成人久久| 免费观看人在逋| 熟妇人妻久久中文字幕3abv| 成在线人永久免费视频| 99国产精品99久久久久| 久久精品综合一区二区三区| 成人欧美大片| 麻豆国产97在线/欧美 | 小说图片视频综合网站| 精品久久久久久久末码| xxx96com| 色综合亚洲欧美另类图片| 国产精品永久免费网站| 国产一区二区在线观看日韩 | 两个人的视频大全免费| 午夜精品在线福利| 不卡一级毛片| 亚洲欧美日韩高清专用| 亚洲中文字幕一区二区三区有码在线看 | 国产黄片美女视频| 日韩av在线大香蕉| 国产精品一区二区精品视频观看| 国产亚洲精品久久久久5区| 麻豆一二三区av精品| 19禁男女啪啪无遮挡网站| 午夜精品一区二区三区免费看| 亚洲男人天堂网一区| 99热这里只有是精品50| 免费在线观看完整版高清| 最近最新中文字幕大全电影3| 丰满人妻一区二区三区视频av | 又粗又爽又猛毛片免费看| 午夜福利视频1000在线观看| 欧美三级亚洲精品| 真人一进一出gif抽搐免费| 亚洲精品中文字幕在线视频| tocl精华| 悠悠久久av| 国产麻豆成人av免费视频| 好男人电影高清在线观看| 久久久精品国产亚洲av高清涩受| 99国产极品粉嫩在线观看| 桃色一区二区三区在线观看| 亚洲美女黄片视频| 狂野欧美激情性xxxx| 巨乳人妻的诱惑在线观看| 校园春色视频在线观看| 久久精品aⅴ一区二区三区四区| 国产片内射在线| 久久久久久久久久黄片| 黄色a级毛片大全视频| 19禁男女啪啪无遮挡网站| 男男h啪啪无遮挡| 亚洲九九香蕉| 韩国av一区二区三区四区| 丝袜美腿诱惑在线| 国产免费男女视频| 狠狠狠狠99中文字幕| 黄色成人免费大全| 久久精品成人免费网站| 999久久久精品免费观看国产| 久9热在线精品视频| 好男人电影高清在线观看| 最新在线观看一区二区三区| 五月伊人婷婷丁香| 日韩欧美在线二视频| 午夜免费观看网址| 国产99久久九九免费精品| 亚洲av日韩精品久久久久久密| 国产熟女xx| 岛国在线免费视频观看| 久久国产精品影院| 欧美色视频一区免费| 神马国产精品三级电影在线观看 | 12—13女人毛片做爰片一| 国产成人av教育| 国产在线观看jvid| 久久伊人香网站| 精品国产美女av久久久久小说| 亚洲人成网站高清观看| av有码第一页| 一本大道久久a久久精品| 欧美黑人巨大hd| 精品国产超薄肉色丝袜足j| 欧美日韩福利视频一区二区| 天天躁夜夜躁狠狠躁躁| 精品久久蜜臀av无| 久久精品国产亚洲av香蕉五月| 两个人看的免费小视频| 亚洲熟妇熟女久久| 韩国av一区二区三区四区| 亚洲精品中文字幕一二三四区| 国产精品免费视频内射| 毛片女人毛片| 欧美一区二区精品小视频在线| 亚洲免费av在线视频| 美女午夜性视频免费| 国产久久久一区二区三区|