• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A primary model of decoherence in neuronal microtubules based on the interaction Hamiltonian between microtubules and plasmon in the neurons

    2019-04-13 01:14:48ZuoxianXiang向左鮮ChuanxiangTang唐傳祥andLixinYan顏立新
    Chinese Physics B 2019年4期

    Zuoxian Xiang(向左鮮),Chuanxiang Tang(唐傳祥),and Lixin Yan(顏立新)

    Department of Engineering Physics,Tsinghua University,Beijing 100084,China

    1.Introduction

    Quantum theory is one of the greatest discoveries of the twentieth century. In recent years,quantum effects in biological systems have been discovered in several areas,including olfaction,[1,2]avian magnetoreception,[3,4]photosynthesis,[5–9]quantum entanglement in living bacteria,[10]and so on.[11]Theoretical study of quantum effect in bio-systems and its possible relevance to explaining the functional properties of these systems are also drawing rapid attention,such as consciousness in the brain.

    How to explain consciousness? Classical or quantum? It is so mysterious and researchers have proposed many models.[12–24]Some studies suggested that the quantum effect might play an important role in the functioning of the brain.[16–24]Penrose and Hameroff proposed the orchestrated objective reduction(Orch OR)model,which suggests that microtubules(MTs)in neurons act as a quantum computer,[18–20,24]Fisher proposed that quantum entanglement may exist between two neurons.[23]

    Decoherence is an important phenomenon in quantum information.The“warm,wet,and noisy”environment might destroy the quantum state,[26–29]thus the decoherence time scale τ is an important parameter to the quantum model.

    To study the decoherence process in MTs,researchers determined this parameter according to different mechanisms of decoherence,including quantum gravity,[18]cavity quantum electrodynamics(QED)model,[25,26]and single ion-MT interactions;these results are listed in Table 1 and the value of decoherence time varies greatly.

    Table 1.Decoherence time scales and their mechanisms.

    Decoherence mainly derives from the interaction between quantum systems and the environment.There are 4 basic interactions that have been discovered in nature;in the range of molecule interactions,the main interaction between environment and tubulin dimers is electromagnetic interaction.In this paper,a model based on the electromagnetic interaction Hamiltonian between microtubules and plasmon in the neurons is proposed.Previous studies considered the effect of a single ion on the decoherence process in MTs;however,cells are known to contain different kinds of ions that have different charges and masses,i.e.,some ions have positive charge,whereas others have negative charge.Over a long time scale,cells can be considered to be electrically neutral;however,this is not true over very short time scales.Therefore,the decoherence rates cannot be calculated only considering the effect of a single ion since decoherence is a result of the interaction between tubulin dimers and cellular fluid environment.In this paper,the interaction Hamiltonian is constructed by using the second quantization method,and the decoherence time is estimated according to the interaction Hamiltonian.

    This article is organized as follows.Section 2 includes the introduction for decoherence mechanisms in our model,as well as the total Hamiltonian of tubulin dimers and cell fluid environment;the decoherence timescale τ are computed and howτ changes with environment parameters will be discussed.In Section 3,other mechanisms of decoherence will be discussed,and some important formulas and their derivations are given in the appendix.

    2.Decoherence rates

    In this section,the decohenrence mechanisms in MTs will be discussed.MT is a hollow cylinder with an outer diameter of 24 nm and an inner diameter of 15 nm.The basic unit of MT is tubulin dimer which has two subunits(denoted by α and β);all of the tubulin dimers form MT crystal lattice by helical encircle.The tubulin dimers have different kinds of conformational states which are regarded as quantum bit in Orch model,and MTs can store information owing to different combinations of these conformational states.Electron transition in each tubulin dimer could change the conformational states,and the MT is a polar molecule and has intrinsic electric dipole moment(Fig.1).[25]

    Fig.1.The structure diagram of MTs.

    2.1.Mechanisms of decoherence

    The cellular fluid is considered to have both positive and negative charges(similar to plasma),and thus two basic and very important parameters are used to describe the it,namely Debye length λDand plasma frequency ωp;these two parameters will be discussed compendiously and their range will be given.

    The Debye length λDrepresents the space scale when the plasma is kept as a neutral state and is determined by

    where nk,0is the average density of the k-th kind of ion,qkis the quantity of charge,ε=80ε0is the dielectric constant of water,kBis the Boltzmann constant,and T is the temperature of the cellular fluid.For physiological Ringer solution,λD~0.7 nm,[29]and in the following calculation,the value of λDis set to be around 0.7 nm.

    The surface of tubulin dimers have net charge,[30]so a counterion layer will be formed because of the Debye shielding.The thickness of the counterions is approximately λD,as shown in Fig.2.The counterions could shield the interaction between MTs and the environment,as shown in Appendix C,the coupling coefficient is decreased if the shielding effect is considered.

    Fig.2.Schematic diagram of counterion layer with a thickness of λD.

    The second parameter is called plasma frequency,which describes the collective oscillations of ions and is determined by

    For typical parameters in a cell,[29][K+]in=400 mmol/L,[Na+]in=50 mmol/L[Cl?]in=52 mmol/L,ωp≈ 0.6 THz.Therefore,in the following calculation,the value of ωpis set to be around 0.6 THz.

    When the plasmon is in an excited state,the electric neutrality is destroyed,and some net charges appear.The net charges can interact with the dipole in the tubulin dimmers,as shown in Fig.3.As shown in Appendix A,the local ion density fluctuation could excite ion density waves.There are different ion density waves,but the only one called plasma oscillation could be coupled with MTs,and the dispersion relation of plasma oscillation is

    where β is the average value of ion thermal velocity,which has the same order of magnitude as the thermal velocity.

    The total Hamiltonian of the MT-environmental systems can be derived as follows:whereis the Hamiltonian of the excited systems in the MTs,is the Hamiltonian of the plasmons in the cellular fluid environment,andrepresents the interaction between the MTs and cellular aqueous environment caused by the interactions between the dipole and net charges.is the reason for decoherence;if=0,the decoherence time is τ=∞.

    Fig.3.Schematic diagram of the coupling between tubulin dimers and the cellular fluid environment.

    As shown in Fig.3,the interaction Hamiltonian between a single tubulin dimer with the electric dipole moment pand the cellular fluid environment can be shown as follows:

    2.2.Computation method of decoherence timescale

    Now,the total Hamiltonian equation(4)will be derived;some basic assumption or approximation is listed below,and will be discussed in Section 3 and appendix.

    (i)Water is treated as an medium with a dielectric constant ε=80ε0,and detailed interaction of ion-water molecules and MT-water molecules is ignored.

    (ii)Due to the Debye shielding,plasma oscillations could only be excited above the Debye length,that is to say,the wave numberk has an upper limit of k=kD=2π/λD;in our calculation,we consider k will decay rapidly as a small quantity for the short wavelength modes.

    (iii)Random phase approximation(RPA)for many particles system,In equilibrium state or near equilibrium state,as the position of particles is random,∑iexp(ik ·ri)=0 unless k=0.

    (iv)The tubulin dimers are seen as a mass point with electric dipole moment p.

    As introduced in Subsection 2.1,the tubulin dimers have different conformational states,denoted by|ki,and let?c?k,?ckbe the creation operator and annihilation operator of the quantum state|ki,so the Hamiltonian of tubulin dimers can be expressed by

    The detailed calculation ofwill be given in Appendix A and Appendix B,and the total Hamiltonian of the MTs and cellular environment can be expressed as follows:

    where ω(k)=is the dispersion relation of plasma oscillation,(k)and(k)are the creation operator and annihilation operator of plasma oscillations,respectively,and the coupling coefficient μn,kis given by

    Equation(8)is given in Appendix C,and pnis the electric dipole moment in state|ni.

    Next,Tolkunov’s model is used,[31,32]which describes the interaction between the spin system and Boson thermal reservoir.In 2-level approximation,the Hamiltonian equation(7)of our model is the same with that of Tolkunov’s in form,so the non-diagonal elements of density matrix will also change with time in the same way

    Here,and the integral region is 0

    where

    Obviously,G(t)>0.In the quantum information theory,the decoherence process is reflected in the damping of the nondiagonal element of the density matrix,so we define decoherence timeτas the timescale when qn(t)decays into qn(0)/e,namely

    Equations(11)and(12)could be used to compute decoherence time.

    2.3.Typical order of magnitude of decoherence timescale

    In this section, the typical value of decoherence time scale will be estimated by Eqs.(11)and(12).The parameters in Eq.(10)are chosen as follows:

    pn=3×10?28C·m is the electric dipole moment of tubulin dimer.[25]

    ε=80ε0is the dielectric constant of water.[29]

    λD~0.7 nm,ωp=0.6 THz;these two basic plasma parameters have been discussed in Subsection 2.1.

    T=310 K is the environment temperature.

    β=300 m/s since it has the same order of magnitude with the thermal velocity.

    kB=1.38×10?23J/K is the Boltzmann’s constant.

    =1.0546×10?34J·s is the Planck’s constant.

    The function G(t)can be computed in a numerical method(Fig.4).Set G(τ)=1 and the decoherence time could be easily obtained

    The decoherence timescale is about 10 fs.

    Fig.4.Schematic diagram of how to compute the decoherence time by the exponential factor G(t).

    2.4.The dependence of decoherence time with other parameters

    Decoherence time may change with other parameters;how these parameters affect the decoherence time will be studied in this section.As discussed in Subsection 2.3,the typical time scale for decoherence is T0=10 fs.So set T0=10 fs as the time unit,six dimensionless physical quantities are shown below

    Then equations(11)and(12)become

    The typical values of these parameters are given in Subsection 2.3;in this section,their values are given in a wide range as follows:

    Here,some values may never be reached,such as T=900 K,ε=240ε0,and so on;but the purpose in this model is to analyze how the decoherence time changes with physical parameter,so the parameter distribution is in a very wide range.

    Case 1: Decoherence time changes with plasma frequency ωp

    As shown in Fig.5,decoherence remains almost unchanged when the plasma frequency changes.

    Fig.5.Decoherence time changes with plasma frequency ωpwhen other parameters are consistent with those in Subsection 2.3.

    Case 2:Decoherence time changes with average thermal velocity β

    As shown in Fig.6,decoherence remains almost unchanged when the average thermal velocity β changes,similar to Case 1.

    Fig.6.Decoherence time changes with average thermal velocity β when other parameters are consistent with those in Subsection 2.3.

    Case 3:Decoherence time changes with Debye length λD

    In Fig.7,the decoherence time increases with Debye length;since the plasma oscillation modes could only be excited when k<2π/λD,a larger Debye length means that fewer modes will be excited,so the number of the modes interacting with MTs will decrease,and the decoherence time will increase.

    Fig.7.Decoherence time changes with Debye length λDwhen other parameters are consistent with those in Subsection 2.3.

    Use τ=CλsDto fit the curve in Fig.7(or equivalently lnτ=slnλD+lnC),the power exponent s and linearly dependent coefficient for lnτ,lnλDare

    Doing the same work to other parameters and we find that τ=CλsDcould fit the relationship between τ,λD,so we can approximately consider that

    Case 4:Decoherence time changes with dielectric constant of water

    In Fig.8,the decoherence time increases with dielectric constant of water,and the reason is obvious.According to Eq.(5),a larger dielectric constant means the weaker interaction between MTs and environment.

    Fig.8.Decoherence time changes with dielectric constant of water when other parameters are consistent with those in Subsection 2.3.

    Doing the same work as Case 3 and we find that

    Case 5:Decoherence time changes with dipole moment of tubulin dimer pn

    In Fig.9,we show the decoherence time decreases as the dipole moment of tubulin dimer increases;according to Eq.(5),the increase of the dipole moment will enhance the interaction between MTs and environment,and then the decoherence time will decrease.

    Fig.9.Decoherence time changes with dipole moment of tubulin dimer pn when other parameters are consistent with those in Subsection 2.3.

    Doing the same work as Case 3 and we find that

    Case 6: Decoherence time changes with environment temperature T

    In Fig.10,the decoherence time decreases as the environment temperature increases,and it is also easy to understand.The higher temperature means that more oscillation modes will be excited,and this will have a greater impact on the MTs,so the decoherence time decreases.

    Fig.10.Decoherence time changes with environment temperature T when other parameters are consistent with those in Subsection 2.3.

    Doing the same work as Case 3 and we find that

    According to Eqs.(16)–(19),the decoherence time could be approximately expressed as Since the decoherence time relies less on ωp, β,then equation(20)will be changed into:

    In fact,equation(21)could be proved,since the plasma frequency

    THz,the decoherence time τ~10 fs–100 fs,and the temperature T ~ 100 K.Therefore,

    Under the condition of Eq.(22),equation(12)could be approximately expressed as

    Then the decoherence time satisfies

    Equation(24)could be used for calculating the decoherence time only under the condition of Eq.(22).However,equation(24)is useful for various actual parameters.

    3.Conclusion and outlook

    If the Orch OR model can be verified both in theory and experiment,the influence will be inestimable;however,the conformational state is affected by the “warm and wet”cellular environment,and the decoherence time is a very important parameter.

    In this paper,the decoherence time scale is even smaller than 0.1 ps.This timescale is so short that quantum state will be destroyed by the cell solution environment soon.This model only considers the coupling between the tubulin dimers and ions in the cellular fluid system,treating the water as a medium and overlooking the interactions of MTs-water molecules;water molecules may shield some interactions of ion-MTs,and the interaction of water-ions and water-MTs may have influence on the decoherence process.[32,33]According to Eq.(24),if the interaction strength a√ttenuates to ε(0<ε<1),the decoherence will increase to 1/ε than before;an enough decoherence requires ε?1 and the strength of shielding by water molecules needs to be measured by experiment.

    Other mechanism for decoherence that is not considered is the coherent pumping of the system via the environment.[21]According to Fro¨hlich’s theory,if a system is strongly coupled to its environment via some degrees of freedom,and a coherent pumping source exists in environment,it might inhibit other degrees of freedom known as coherent oscillations.[35,36]Such oscillations might increase the decoherence time.Guanosine triphosphate(GTP)hydrolyzation in the cells might act as a pumping source.This mechanism was not considered in this paper.

    Decoherence is an important phenomenon in quantum information.Decoherence mainly comes from the interaction of quantum systems with the environment.In the range of molecule interactions,the main interaction between environment and tubulin dimers is the electromagnetic interaction;the electromagnetic field comes from ions and thermal radiation of the environment.However,in this model,the thermal radiation is ignored,and in the range of room temperature,the thermal frequency spectrum mainly concentrates in the range of THz band.The water molecules in the cell environment could strongly absorb the THz photon and the model only takes into account the electromagnetic field from ions.Besides,if the thermal radiation is considered,the decoherence time would be smaller than the result given before,and it will not change the conclusion.

    This model needs to be verified both experimentally and theoretically. This model may offer a helpful theoretical framework to compute the decoherence time in quantum biosystems,even though the environment of biological system is different.However,the electromagnetic interaction is essential in the scale of molecules,so this modelcould be used for reference when dealing with the interaction between the ions in cell environment and dipoles of bio-molecules.The direct experiment to verify this model is hard to be carried out at this time,but with the development of ultrafast biophysics,quantum information,quantum optics,and imaging technology,[37–41]the experiment could be carried out in the future.

    Appendix A:Dispersion relation of ion density wave

    In Appendix A,the dispersion relation of ion density wave is derived by fluid theory.Note that ni,mi,vi,qirepresent the particle number density,ion mass,the macro velocity,and electric charge of the i-th ion. E is the space electric field,βiis used to represent the ion thermal velocity,and?mβ2i?niis the thermodynamic pressure of the i-th ion.Then according to fluid theory

    In order to deduce intrinsic oscillation mode and its dispersion relation,linearization is done for Eq.(A1).For arbitrary physical quantity A,it is divided into two parts

    Now,let us compute the eigenmode with intrinsic wavelength and frequency.Set?A=?A0exp[i(k·r?ωt)].Then the operator?/?t= ?iω,? =ik,and equation(A3)changes to

    According to Eq.(A4),the eigen-equation is

    Or equivalent in matrix form where ?l,k=(ω2?k2β2l)δkl?hnliqlqk/εml,and?=(?1,?2,...,?M)T.Set f(ω,k)=det?(ω,k),equation(A6)must have untrivial solution to ensure eigenmode exits,so the dispersion relation is determined by

    Set ql=(?1)υlZle,where Zlis the valence state of ions,e.g.,for Na+and Cl?,Zl=1,and for Ca2+,Zl=2,and υlrepresents the sign of ion charge,and

    In long-wavelength limit kβl/ω ?1,then

    whereis the plasma frequency,is the average thermal velocity of all ions,and cj(j=2,3,...,M)is the M?1 roots of the following equation

    So M kinds of waves are obtained,and their dispersion relation is

    The ion charged density is

    Use Eqs.(A11)and(A6),under the condition of longwavelength approximation,only when ω2=ω2p+β2k2,ρ 6=0;otherwise ρ =0.That is to say,ω2= ω2p+β2k2represents ion charged density wave,and can be coupled with MTs by dipole–charge interactions as shown in Fig.2.Other M ?1 kinds of waves could not couple with MTs under the condition of long-wavelength approximation.

    Finally,diagonalize matrix ?

    Set P(k)=P(0)+O(k2)and define another variable ρ=(ρ1,ρ2,...,ρM)T,which is determined by

    The transformation between n and ρ is

    Then

    Compare Eqs.(A16)and(A11),then

    So eρ1could also be used to represent net charge density of ions,and equations(A15)and(A17)will be used in Appendix B.

    Appendix B:Second quantization of environment Hamiltonian Heand interaction Hamiltonian Hin

    In the coordinate representation,the Hamiltonian Heof cellular environment can be shown as follows:

    where rk,irepresents the position of the k-th kind of ions that have been numbered i,φ,A are scalar potential and vector potential,respectively,and pk,j=?k,jis the canonical momentum.The first term represents the kinetic energy of the ions,and the second term represents the field energy.

    The potentials φ,A are not unique.For two different potentials(φ,A),(φ0,A0),if they satisfy

    the two potentials will have the same field E, B as follows:

    We use an approach similar to the David Bohm’s electron gas model and define the Hamiltonian Eq.(B1)in another manner;[33]the second term is derived from the interactions between ions and the energy stored in the field.Therefore,equation(B1)can be written in an equivalent way as follows:

    First,set ξ =Rφdt so that φ0=0,then E = ??A/?t, B =?×A.ExpandAin Fourier series exp(ik·r)

    whereek=k/k is an unit vector parallel to the direction of the wave propagation,ekμ(μ =1,2)is another two-unit vector which is perpendicular to ek,and ek1⊥ek2.SoAkandA⊥represent longitudinal wave and transverse wave,respectively.Their electric field and magnetic field are

    where p(?k)=˙q(k),Pμ(?k)=˙Qμ(k).Aand Eare real and can be ensured as follows:

    Use Eqs.(B5)and(B6)as well as the commutative relation[^p,A]=?i??·A,the Hamiltonian equation(B4)will become

    where

    Now,use Eq.(B5),then we have

    where nlis the number of l-th kind of ions in a unit volume.The random phase approximation(RPA)makes the second term inconsiderably smaller than the first termtherefore

    Similarly,

    Use Eqs.(B6a)and(B6b),then we obtain

    means the kinetic energy,and it can be divide it into two parts

    The first term is the macroscopical translational energy,and the second term means the thermodynamic energy.

    The second term in Eq.(B14)can be changed into

    Now,use Eq.(A15)and ignore the cross term ρiρj(i6=j),then

    As discussed in Appendix A,eρ1represents net charge density of ions,so use Gauss’s theorem in k-space

    Use Eqs.(B8)–(B17),then the total Hamiltonian is expressed by

    where the first term means ion sound wave,the second term means interaction between ions and fields and it is neglected for the reason that each ion has a random phase(random phase approximation or RPA),?21(k)= ω2p+c2k2is the dispersion relation of electromagnetic wave in plasma,and ?22(k)=ω2p+β2k2is the dispersion relation of charged density wave or plasma oscillation.

    At last,using second quantization method,define(k),(k)as the creation operator and annihilation operator of electromagnetic wave,respectively,and(k)and ?a(k)as the creation operator and annihilation operator of the plasma oscillations,respectively,and we can obtain

    Andsatisfy the commutation relation

    Use Eqs.(B19)and(B20)and the random phase approximation,the Hamiltonian equation(B18)will become

    where

    In long-wavelength limit,β2k2/ω2p?1,so

    This is the dispersion relation of ion charged density wave as shown in Appendix A.

    In Eq.(B21),only the 3rd term could be coupled with MTs by dipole–charge interactions(as seen in Eq.(B17),ρ(k)is only related to p(k)instead of Pμ(k)),so this model only considers the 3rd term which is named

    namely,the coupling between MTs and cellular environment via interactions between plasma oscillations and dipoles.The interaction Hamiltonian for a single dipole with the cellular environment is determined by Eq.(5).Thus,after Fourier transformation,equation(5)becomes

    According to Eqs.(B17)and(B19b),then

    the MT’s dipole p can be written as follows:

    Here, pn=hn|? p|ni is the observed value of pin state|ni.In Eq.(B27),the the cross term pm,n?c?m?cnwas neglected,use Eqs.(B25)–(B27),then the coupling Hamiltonian can be written as follows:

    where

    The Hn,kmeans the interaction between MTs and cellular fluid environment mentioned later,and it is then used to compute decoherence time,and λn,kis the coupling coefficient.The method for computing the coupling coefficient λn,kwill be introduced in Appendix C.

    Appendix C:Computation of coupling coefficient λn,k

    The coupling coefficient λn,kis expressed as follows:

    where pnis a constant vector;for a certaink,the z axis is set to be parallel tok.In the spherical coordinate frame,k·r =krcosθ,and the volume element dr =r2sinθdθd?;thus, pncan be expressed as follows:

    Thus,

    When the variable ? is integrated in the interval[0,2π],thenpzcosθ exp(ikrcosθ)sinθdrdθd?

    where

    Compute Eq.(C5),then A=0 and

    Here, pz= pn·k/k;generally,in the actual situation,plasma oscillations will be excited only when the wavelength is larger than the Debye length λD.Therefore,only k<2π/λDcould be used to refer to the excited state.The integral in Eq.(C1)in the space|r|> λDbecause a shielding layer charge appears on the surface of MTs with a thickness λD,as shown in Fig.2.The shielding layer charge is stable and cannot excite plasma oscillations;therefore,in Eq.(C6),rmin=λDand rmax=∞.Hence,

    Define b(k)= ?ia(k)as new creation operator and annihilation operator,then the total Hamiltonian is

    where

    and we have obtained Eqs.(7)and(8).

    [1]Turin L 1996 Chem.Senses 21 773

    [2]Franco M I and Siddiqi O 2011 Proc.Natl.Acad.Sci.USA 108 3797

    [3]Ritz T,Adem S and Schulten K 2000 Biophys.J.78 707

    [4]Hiscock H G,Worster S,Kattnig D R,Steers C,Jin Y,Manolopoulos D E,Mouritsen H and Hore P J 2016 Proc.Natl.Acad.Sci.USA 113 201600341

    [5]Gregory S E,Tessa R C,Elizabeth L R,Tae-Kyu A,Toma′s M,Yuan-Chung C,Robert E B and Graham R F 2007 Nature 446 782

    [6]Romero E,Augulis R,Novoderezhkin V I,Ferretti M,Thieme J,Zigmantas D and Van Grondelle R 2014 Nat.Phys.10 676

    [7]Levi F,Mostarda S,Rao F and Mintert F 2015 Rep.Prog.Phys.78 082001

    [8]Novelli F,Nazir A,Richards G H,Roozbeh A,Wilk K E,Curmi P M and Davis J A 2015 J.Phys.Chem.Lett.6 4573

    [9]Sarovar M,Ishizaki A,Fleming G and Whaley B 2010 Nat.Phys.3 462

    [10]Marletto C,Coles D,Farrow T and Vedral V 2018 J.Phys.Commun.2 101001

    [11]Mesquita M V,VasconcellosR,Luzzi R and Mascarenhas S 2005 Int.J.Quantum Chem.102 1116

    [12]Jackendoff R 1987 Consciousness and the Computational Mind(Cambridge:The MIT Press)pp.275–280

    [13]Tononi G,Boly M,Massimini M and Koch C 2016 Nat.Rev.Neurosci.17 450

    [14]Crick F and Koch C 2003 Nat.Neurosci.6 119

    [15]Edelman G M 2003 Proc.Natl.Acad.Sci.USA 100 5520

    [16]Jahn R G and Dunne B J 2007 Found.Phys.3 306

    [17]Mershin A,Sanabria H,Miller J H,Nawarathna D,Skoulakis E M,Mavromatos N E,Kolomenskii A A,Schuessler H A,Luduena R F and Nanopoulos D V 2006 The Emerging Physics of Consciousness(Berlin:Springer)pp.95–170

    [18]Hameroff S and Penrose R 2014 Phys.Life Rev.11 39

    [19]Hameroff S and Penrose R 2014 Phys.Life Rev.11 94

    [20]Hameroff S R and Penrose R 2017 Biophysics of Consciousness:A Foundational Approach(Singapore:World Scientific)pp.517–599

    [21]Craddock T J A and Tuszynski J A 2010 J.Biol.Phys.36 53

    [22]Craddock T J,Priel A and Tuszynski J A 2014 J.Integr.Neurosci.13 293

    [23]Fisher M 2015 Ann.Phys.61 593

    [24]Hameroff S R 2007 Cogn.Sci.31 1035

    [25]Mavromatos N E,Mershin A and Nanopoulos D V 2002 Int.J.Mod.Phys.B 16 3623

    [26]Mavromatos N 1999 Bioelectrochemistry Bioenergetics 48 273

    [27]Tegmark M 2000 Phys.Rev.E 61 4194

    [28]Hagan S,Hameroff S R and Tuszy′nski J A 2002 Phys.Rev.E 65 061901

    [29]Nelson P 2007 Biological Physics(New York:WH Freeman)p.416

    [30]Priel A,Tuszynski J A and Woolf N J 2005 Eur.Biophys.J.Biophys.Lett.35 40

    [31]Privman V and Tolkunov D 2005 Quantum Information and Computation III(Bellingham:The International Society for Optics and Photonics),pp.187–195

    [32]Tolkunov D,Privman V and Aravind P K 2005 Phy.Rev.A 71 060308

    [33]Craddock T J,Friesen D,Mane J,Hameroff S and Tuszynski J A 2014 J.R.Soc.Interface 11 20140677

    [34]Chen Y,Okur H I,Gomopoulos N,Macias-Romero C,Cremer P S,Petersen P B,Tocci G,Wilkins D M,Liang C and Ceriotti M 2016 Sci.Adv.2 e1501891

    [35]Fr?hlich H 1968 Int.J.Quantum Chem.2 641

    [36]Wu T M and Austin S J 1981 J.Biol.Phys.9 97

    [37]Bohm D and Pines D 1953 Phy.Rev.92 609

    [38]Yin C C and Biophysics D O 2018 Chin.Phys.B 27 058703

    [39]Zheng C J,Jia T Q,Zhao H,Xia Y J,Zhang S A and Sun Z R 2018 Chin.Phys.B 27 057802

    [40]Wade C G,ˇSibali′c N,de Melo N R,Kondo J M,Adams C S and Weatherill K J 2017 Nat.Photon.11 40

    [41]Trocha P,Karpov M,Ganin D,Pfeiffer M H,Kordts A,Wolf S,Krockenberger J,Marin-Palomo P,Weimann C and Randel S 2018 Science 359 887

    欧美中文日本在线观看视频| 精品国产超薄肉色丝袜足j| 中文字幕av成人在线电影| 在线观看一区二区三区| 精品久久久久久久毛片微露脸| 国产精品 国内视频| 51国产日韩欧美| 一卡2卡三卡四卡精品乱码亚洲| 色综合婷婷激情| 国产午夜福利久久久久久| 亚洲精品成人久久久久久| 国产一区二区在线av高清观看| 国产精品久久视频播放| 亚洲国产中文字幕在线视频| 国产毛片a区久久久久| 婷婷精品国产亚洲av在线| 亚洲av免费在线观看| 成人午夜高清在线视频| 老司机午夜福利在线观看视频| 麻豆一二三区av精品| 欧美区成人在线视频| 精华霜和精华液先用哪个| 欧美日韩中文字幕国产精品一区二区三区| 热99re8久久精品国产| 国产成人a区在线观看| 亚洲av五月六月丁香网| 久久精品国产亚洲av香蕉五月| 久久香蕉国产精品| 操出白浆在线播放| 免费一级毛片在线播放高清视频| 不卡一级毛片| 九色成人免费人妻av| 午夜老司机福利剧场| 午夜福利成人在线免费观看| 国产伦一二天堂av在线观看| 国产乱人视频| 色综合站精品国产| 精品无人区乱码1区二区| 欧美一级a爱片免费观看看| 婷婷精品国产亚洲av| 欧美av亚洲av综合av国产av| 18禁美女被吸乳视频| 国产日本99.免费观看| 国产精品电影一区二区三区| 国产精品综合久久久久久久免费| 国产一区二区激情短视频| 日本一二三区视频观看| 国产aⅴ精品一区二区三区波| 国产乱人伦免费视频| 女人高潮潮喷娇喘18禁视频| 国内毛片毛片毛片毛片毛片| 亚洲精品456在线播放app | 久久伊人香网站| 亚洲最大成人中文| 欧美av亚洲av综合av国产av| 久久久久久大精品| 国产成人av教育| 免费在线观看日本一区| 中文字幕av成人在线电影| 黄片小视频在线播放| 欧美成人a在线观看| 成人鲁丝片一二三区免费| 在线国产一区二区在线| 亚洲美女黄片视频| 国内毛片毛片毛片毛片毛片| 成熟少妇高潮喷水视频| 伊人久久精品亚洲午夜| av欧美777| 亚洲av第一区精品v没综合| 免费看日本二区| 99久久99久久久精品蜜桃| 久久欧美精品欧美久久欧美| 欧美日韩乱码在线| 一卡2卡三卡四卡精品乱码亚洲| 色老头精品视频在线观看| 无遮挡黄片免费观看| 噜噜噜噜噜久久久久久91| xxxwww97欧美| 国产精品99久久久久久久久| 丁香欧美五月| www.www免费av| 观看免费一级毛片| 我的老师免费观看完整版| 国产黄a三级三级三级人| 成人性生交大片免费视频hd| 国产伦在线观看视频一区| 一级a爱片免费观看的视频| 亚洲欧美一区二区三区黑人| xxx96com| 人人妻,人人澡人人爽秒播| 黄色视频,在线免费观看| 欧美黄色淫秽网站| 又紧又爽又黄一区二区| 深夜精品福利| 亚洲成a人片在线一区二区| 内射极品少妇av片p| 国产一区在线观看成人免费| 亚洲五月婷婷丁香| 日韩欧美在线乱码| 在线观看一区二区三区| 麻豆国产av国片精品| 日日摸夜夜添夜夜添小说| 亚洲av成人不卡在线观看播放网| 观看美女的网站| 精品日产1卡2卡| h日本视频在线播放| 精品国产美女av久久久久小说| 最后的刺客免费高清国语| 国产在线精品亚洲第一网站| av天堂在线播放| 亚洲狠狠婷婷综合久久图片| 亚洲国产精品久久男人天堂| 亚洲一区二区三区色噜噜| 99在线人妻在线中文字幕| bbb黄色大片| 亚洲国产日韩欧美精品在线观看 | 久久亚洲真实| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 日本免费一区二区三区高清不卡| 在线观看美女被高潮喷水网站 | 国产色婷婷99| 午夜影院日韩av| 亚洲欧美日韩卡通动漫| 日韩大尺度精品在线看网址| 亚洲成人精品中文字幕电影| 桃红色精品国产亚洲av| 久久久久免费精品人妻一区二区| 国产蜜桃级精品一区二区三区| 日本一二三区视频观看| 欧美日韩国产亚洲二区| 国产蜜桃级精品一区二区三区| 午夜精品在线福利| 国产成+人综合+亚洲专区| 搡女人真爽免费视频火全软件 | 国产亚洲精品一区二区www| av国产免费在线观看| 欧美成人a在线观看| 亚洲在线观看片| 亚洲精品亚洲一区二区| 女人十人毛片免费观看3o分钟| 高清在线国产一区| 91久久精品电影网| 欧美zozozo另类| 最新美女视频免费是黄的| 91久久精品电影网| 99久久无色码亚洲精品果冻| 国产精品野战在线观看| 搡女人真爽免费视频火全软件 | 又紧又爽又黄一区二区| 久久久精品欧美日韩精品| 91麻豆av在线| 成人特级黄色片久久久久久久| 亚洲精品粉嫩美女一区| 亚洲第一欧美日韩一区二区三区| 亚洲电影在线观看av| 国产亚洲欧美在线一区二区| 国产精品亚洲av一区麻豆| 亚洲av二区三区四区| 深夜精品福利| 一进一出抽搐动态| 日韩欧美国产在线观看| 一本精品99久久精品77| 最后的刺客免费高清国语| 中文字幕精品亚洲无线码一区| 天堂影院成人在线观看| 日本免费一区二区三区高清不卡| 69人妻影院| 欧美大码av| 日韩人妻高清精品专区| 欧美成人a在线观看| 99热精品在线国产| 在线观看一区二区三区| 亚洲人成伊人成综合网2020| 亚洲人成网站在线播放欧美日韩| 香蕉丝袜av| 国产av一区在线观看免费| 国产爱豆传媒在线观看| 在线观看午夜福利视频| 一本综合久久免费| 国产精品久久久人人做人人爽| 好男人在线观看高清免费视频| 成人永久免费在线观看视频| 免费高清视频大片| 法律面前人人平等表现在哪些方面| 国产一区二区三区视频了| 我要搜黄色片| 可以在线观看毛片的网站| 美女大奶头视频| 久久久久九九精品影院| www日本在线高清视频| 黄片小视频在线播放| av片东京热男人的天堂| 国产极品精品免费视频能看的| 欧美性感艳星| 99精品在免费线老司机午夜| 草草在线视频免费看| 亚洲成人久久爱视频| 亚洲av五月六月丁香网| av在线天堂中文字幕| www.熟女人妻精品国产| 丁香欧美五月| 美女 人体艺术 gogo| 国产乱人伦免费视频| 琪琪午夜伦伦电影理论片6080| 亚洲久久久久久中文字幕| 国产一级毛片七仙女欲春2| 偷拍熟女少妇极品色| 午夜久久久久精精品| 波多野结衣高清无吗| 日本 欧美在线| 看黄色毛片网站| 久久精品国产亚洲av香蕉五月| 热99re8久久精品国产| 黄色日韩在线| 日韩欧美免费精品| 美女被艹到高潮喷水动态| 一a级毛片在线观看| 熟女人妻精品中文字幕| 亚洲 欧美 日韩 在线 免费| 老鸭窝网址在线观看| 看片在线看免费视频| 久久精品国产亚洲av香蕉五月| 国产中年淑女户外野战色| 亚洲专区国产一区二区| 国产高清有码在线观看视频| 少妇的逼水好多| 久久久成人免费电影| 一级黄片播放器| 99视频精品全部免费 在线| 欧美性猛交╳xxx乱大交人| 最新美女视频免费是黄的| 亚洲自拍偷在线| 欧美乱妇无乱码| 国内精品一区二区在线观看| 欧美性感艳星| 中文字幕高清在线视频| 男女床上黄色一级片免费看| 久久久久精品国产欧美久久久| 午夜福利高清视频| 嫁个100分男人电影在线观看| 内射极品少妇av片p| 国产欧美日韩精品亚洲av| 亚洲男人的天堂狠狠| 日韩人妻高清精品专区| 一本一本综合久久| 日本成人三级电影网站| 18禁在线播放成人免费| 天堂av国产一区二区熟女人妻| 国产伦精品一区二区三区视频9 | 国产探花极品一区二区| 中文字幕人妻丝袜一区二区| 精品人妻一区二区三区麻豆 | 99热6这里只有精品| 国产视频一区二区在线看| 免费观看人在逋| 成人一区二区视频在线观看| 国产精品,欧美在线| 国产单亲对白刺激| 免费看a级黄色片| tocl精华| 日韩中文字幕欧美一区二区| 欧美成人a在线观看| 韩国av一区二区三区四区| 日本精品一区二区三区蜜桃| 国产色爽女视频免费观看| 亚洲精品在线观看二区| 99精品久久久久人妻精品| 变态另类成人亚洲欧美熟女| 午夜亚洲福利在线播放| 欧美高清成人免费视频www| 97超视频在线观看视频| 精品久久久久久久久久久久久| 亚洲真实伦在线观看| 日韩亚洲欧美综合| 亚洲国产高清在线一区二区三| 观看美女的网站| 国产激情偷乱视频一区二区| 香蕉av资源在线| 老司机福利观看| 99国产极品粉嫩在线观看| 精品一区二区三区视频在线 | 热99re8久久精品国产| 国产精品久久久久久久电影 | 每晚都被弄得嗷嗷叫到高潮| 日本一二三区视频观看| 熟女电影av网| 免费看十八禁软件| 精品福利观看| 亚洲aⅴ乱码一区二区在线播放| 18+在线观看网站| 天堂√8在线中文| 久久久久精品国产欧美久久久| av国产免费在线观看| 日本撒尿小便嘘嘘汇集6| 日本黄大片高清| 最近最新免费中文字幕在线| 手机成人av网站| 欧美性猛交╳xxx乱大交人| 美女被艹到高潮喷水动态| 久久久久久久久久黄片| xxx96com| 深夜精品福利| 精品一区二区三区av网在线观看| 亚洲av免费在线观看| www.熟女人妻精品国产| 久久久成人免费电影| 精品日产1卡2卡| 午夜福利18| x7x7x7水蜜桃| 国内少妇人妻偷人精品xxx网站| 黄片大片在线免费观看| 亚洲人成网站在线播放欧美日韩| 久久久久国内视频| 欧美日韩综合久久久久久 | 他把我摸到了高潮在线观看| 成人18禁在线播放| 日韩欧美一区二区三区在线观看| www.熟女人妻精品国产| 欧美午夜高清在线| 欧美另类亚洲清纯唯美| 国产视频一区二区在线看| 国产精品三级大全| x7x7x7水蜜桃| 小蜜桃在线观看免费完整版高清| 精品电影一区二区在线| 丝袜美腿在线中文| 国产精品一区二区三区四区免费观看 | aaaaa片日本免费| 国产高清视频在线播放一区| 国产成人aa在线观看| 我的老师免费观看完整版| 男插女下体视频免费在线播放| av天堂中文字幕网| 欧美xxxx黑人xx丫x性爽| 欧美日韩瑟瑟在线播放| 欧美成人性av电影在线观看| 日本熟妇午夜| 亚洲欧美日韩卡通动漫| 欧美激情久久久久久爽电影| 欧美在线一区亚洲| 国产成+人综合+亚洲专区| 久久精品综合一区二区三区| 看黄色毛片网站| 国产精品日韩av在线免费观看| 精品国内亚洲2022精品成人| 变态另类丝袜制服| av专区在线播放| 久久精品影院6| 啦啦啦观看免费观看视频高清| 在线免费观看的www视频| 国产高清videossex| 99久久精品热视频| 国产又黄又爽又无遮挡在线| 亚洲av免费在线观看| 观看免费一级毛片| 亚洲熟妇中文字幕五十中出| 成人一区二区视频在线观看| 成人特级av手机在线观看| 丁香六月欧美| 淫秽高清视频在线观看| 国产亚洲精品综合一区在线观看| 黄色视频,在线免费观看| 在线观看舔阴道视频| 黄色视频,在线免费观看| 欧美日本视频| 综合色av麻豆| 无限看片的www在线观看| 我要搜黄色片| 成人国产综合亚洲| 亚洲精品影视一区二区三区av| 国产精品98久久久久久宅男小说| 99riav亚洲国产免费| 中文亚洲av片在线观看爽| 最后的刺客免费高清国语| 久久国产精品影院| 禁无遮挡网站| 老熟妇仑乱视频hdxx| 99精品久久久久人妻精品| 91久久精品电影网| 亚洲欧美激情综合另类| 91av网一区二区| 又爽又黄无遮挡网站| 一级a爱片免费观看的视频| 婷婷丁香在线五月| 国产精品久久久人人做人人爽| 国产在视频线在精品| 免费电影在线观看免费观看| 脱女人内裤的视频| 中文字幕熟女人妻在线| 国产免费男女视频| 天天躁日日操中文字幕| 亚洲国产高清在线一区二区三| 亚洲av免费高清在线观看| 我的老师免费观看完整版| 在线观看日韩欧美| av中文乱码字幕在线| 国产精品亚洲av一区麻豆| 五月伊人婷婷丁香| 日韩欧美在线二视频| 久久久久久久久大av| 国产高清三级在线| 国产一区二区在线av高清观看| 亚洲中文日韩欧美视频| 天美传媒精品一区二区| 老熟妇乱子伦视频在线观看| 桃红色精品国产亚洲av| 老汉色∧v一级毛片| 操出白浆在线播放| 亚洲成人精品中文字幕电影| 法律面前人人平等表现在哪些方面| 黄色女人牲交| 精品一区二区三区av网在线观看| 丰满乱子伦码专区| 特级一级黄色大片| 嫩草影院入口| 亚洲 欧美 日韩 在线 免费| 狂野欧美白嫩少妇大欣赏| av天堂在线播放| 蜜桃亚洲精品一区二区三区| 国产精品久久久人人做人人爽| xxx96com| 久久久国产精品麻豆| 国产午夜精品论理片| 日本免费a在线| 成人高潮视频无遮挡免费网站| 国产精品 国内视频| 亚洲中文字幕日韩| 国产麻豆成人av免费视频| 精品人妻1区二区| 首页视频小说图片口味搜索| 亚洲美女视频黄频| 欧美一级a爱片免费观看看| 久久久久久国产a免费观看| 一区二区三区国产精品乱码| 日本a在线网址| 免费av不卡在线播放| 嫁个100分男人电影在线观看| 12—13女人毛片做爰片一| 99热6这里只有精品| 美女大奶头视频| 丰满人妻熟妇乱又伦精品不卡| 亚洲18禁久久av| 看片在线看免费视频| 香蕉丝袜av| 国产乱人伦免费视频| 毛片女人毛片| 人人妻,人人澡人人爽秒播| 欧美一级毛片孕妇| 18禁国产床啪视频网站| 可以在线观看毛片的网站| 深爱激情五月婷婷| 国产精品99久久99久久久不卡| 中亚洲国语对白在线视频| 久久这里只有精品中国| 午夜久久久久精精品| 床上黄色一级片| 欧美日韩国产亚洲二区| 欧美xxxx黑人xx丫x性爽| 亚洲专区国产一区二区| 成人av在线播放网站| 亚洲美女黄片视频| 99久久成人亚洲精品观看| 日本精品一区二区三区蜜桃| 在线观看舔阴道视频| 免费人成视频x8x8入口观看| 老汉色∧v一级毛片| xxxwww97欧美| 久久精品国产亚洲av香蕉五月| 午夜精品一区二区三区免费看| 精品久久久久久久毛片微露脸| 岛国在线观看网站| 久久久久九九精品影院| 久久久久久九九精品二区国产| av片东京热男人的天堂| 久久久成人免费电影| 啦啦啦韩国在线观看视频| 免费看美女性在线毛片视频| 波野结衣二区三区在线 | 一级黄色大片毛片| 欧美日韩一级在线毛片| 成人三级黄色视频| 天堂影院成人在线观看| 露出奶头的视频| 色老头精品视频在线观看| 国产亚洲av嫩草精品影院| 国产三级中文精品| 欧美成人免费av一区二区三区| 国产精品一及| 久久精品国产综合久久久| 女人十人毛片免费观看3o分钟| 亚洲精品在线美女| 色视频www国产| 国产高清激情床上av| 中文字幕久久专区| 日本a在线网址| 日本黄色视频三级网站网址| 桃色一区二区三区在线观看| 国产精品久久久久久精品电影| 国产激情偷乱视频一区二区| 欧美在线一区亚洲| 老熟妇仑乱视频hdxx| 99久久综合精品五月天人人| 波多野结衣高清作品| 国产伦一二天堂av在线观看| 桃红色精品国产亚洲av| 欧美日本亚洲视频在线播放| 国产又黄又爽又无遮挡在线| 黄色视频,在线免费观看| 免费av不卡在线播放| 熟女人妻精品中文字幕| 最新中文字幕久久久久| 国产精品野战在线观看| 啪啪无遮挡十八禁网站| 国产乱人视频| 久久伊人香网站| 国产一区二区亚洲精品在线观看| 757午夜福利合集在线观看| 午夜福利视频1000在线观看| 2021天堂中文幕一二区在线观| 亚洲第一电影网av| 中文字幕熟女人妻在线| 欧美区成人在线视频| 免费在线观看成人毛片| 国产精品一及| 久久久久免费精品人妻一区二区| 高清毛片免费观看视频网站| 亚洲精品在线观看二区| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 成年女人永久免费观看视频| 日韩大尺度精品在线看网址| АⅤ资源中文在线天堂| 99热精品在线国产| 五月玫瑰六月丁香| 日韩欧美国产在线观看| 97超视频在线观看视频| 亚洲av成人精品一区久久| 99热只有精品国产| 精品久久久久久久久久免费视频| 国产高清视频在线观看网站| 免费观看精品视频网站| 亚洲精品粉嫩美女一区| 午夜视频国产福利| 嫩草影院精品99| 特级一级黄色大片| 亚洲av熟女| 老司机在亚洲福利影院| 最后的刺客免费高清国语| 亚洲精品在线美女| 国产真实乱freesex| 久久久久亚洲av毛片大全| 色视频www国产| www日本黄色视频网| 成人亚洲精品av一区二区| 国产精品久久久人人做人人爽| 国产成人啪精品午夜网站| 亚洲av免费在线观看| 又黄又粗又硬又大视频| 亚洲欧美日韩高清专用| 欧美在线黄色| 免费人成在线观看视频色| 免费搜索国产男女视频| 欧美又色又爽又黄视频| 九色国产91popny在线| 免费观看人在逋| 1000部很黄的大片| 法律面前人人平等表现在哪些方面| 久久久久久大精品| 欧美区成人在线视频| 欧美3d第一页| АⅤ资源中文在线天堂| 婷婷精品国产亚洲av| aaaaa片日本免费| 欧美黄色片欧美黄色片| 天天一区二区日本电影三级| 操出白浆在线播放| 精品国产美女av久久久久小说| 国产伦一二天堂av在线观看| 最近在线观看免费完整版| 久久精品国产自在天天线| 一区二区三区国产精品乱码| 久久久久九九精品影院| 18禁黄网站禁片免费观看直播| 啦啦啦韩国在线观看视频| 最近最新免费中文字幕在线| 亚洲乱码一区二区免费版| 亚洲在线观看片| 免费人成视频x8x8入口观看| 99国产极品粉嫩在线观看| 国产成人a区在线观看| 亚洲aⅴ乱码一区二区在线播放| 国产三级中文精品| 黑人欧美特级aaaaaa片| 亚洲aⅴ乱码一区二区在线播放| 此物有八面人人有两片| 一本精品99久久精品77| 亚洲七黄色美女视频| 成人国产一区最新在线观看| 最近最新中文字幕大全电影3| 51午夜福利影视在线观看| 日本免费一区二区三区高清不卡| 精品人妻一区二区三区麻豆 | 看黄色毛片网站| 国产亚洲精品久久久com| 国产不卡一卡二| netflix在线观看网站| 久久久久九九精品影院| 国产一区二区在线观看日韩 | 亚洲内射少妇av| 国产精品1区2区在线观看.| 成人鲁丝片一二三区免费| 国产一区二区在线av高清观看| 国产老妇女一区| 特大巨黑吊av在线直播| 午夜福利免费观看在线| 日本黄大片高清|