• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A primary model of decoherence in neuronal microtubules based on the interaction Hamiltonian between microtubules and plasmon in the neurons

    2019-04-13 01:14:48ZuoxianXiang向左鮮ChuanxiangTang唐傳祥andLixinYan顏立新
    Chinese Physics B 2019年4期

    Zuoxian Xiang(向左鮮),Chuanxiang Tang(唐傳祥),and Lixin Yan(顏立新)

    Department of Engineering Physics,Tsinghua University,Beijing 100084,China

    1.Introduction

    Quantum theory is one of the greatest discoveries of the twentieth century. In recent years,quantum effects in biological systems have been discovered in several areas,including olfaction,[1,2]avian magnetoreception,[3,4]photosynthesis,[5–9]quantum entanglement in living bacteria,[10]and so on.[11]Theoretical study of quantum effect in bio-systems and its possible relevance to explaining the functional properties of these systems are also drawing rapid attention,such as consciousness in the brain.

    How to explain consciousness? Classical or quantum? It is so mysterious and researchers have proposed many models.[12–24]Some studies suggested that the quantum effect might play an important role in the functioning of the brain.[16–24]Penrose and Hameroff proposed the orchestrated objective reduction(Orch OR)model,which suggests that microtubules(MTs)in neurons act as a quantum computer,[18–20,24]Fisher proposed that quantum entanglement may exist between two neurons.[23]

    Decoherence is an important phenomenon in quantum information.The“warm,wet,and noisy”environment might destroy the quantum state,[26–29]thus the decoherence time scale τ is an important parameter to the quantum model.

    To study the decoherence process in MTs,researchers determined this parameter according to different mechanisms of decoherence,including quantum gravity,[18]cavity quantum electrodynamics(QED)model,[25,26]and single ion-MT interactions;these results are listed in Table 1 and the value of decoherence time varies greatly.

    Table 1.Decoherence time scales and their mechanisms.

    Decoherence mainly derives from the interaction between quantum systems and the environment.There are 4 basic interactions that have been discovered in nature;in the range of molecule interactions,the main interaction between environment and tubulin dimers is electromagnetic interaction.In this paper,a model based on the electromagnetic interaction Hamiltonian between microtubules and plasmon in the neurons is proposed.Previous studies considered the effect of a single ion on the decoherence process in MTs;however,cells are known to contain different kinds of ions that have different charges and masses,i.e.,some ions have positive charge,whereas others have negative charge.Over a long time scale,cells can be considered to be electrically neutral;however,this is not true over very short time scales.Therefore,the decoherence rates cannot be calculated only considering the effect of a single ion since decoherence is a result of the interaction between tubulin dimers and cellular fluid environment.In this paper,the interaction Hamiltonian is constructed by using the second quantization method,and the decoherence time is estimated according to the interaction Hamiltonian.

    This article is organized as follows.Section 2 includes the introduction for decoherence mechanisms in our model,as well as the total Hamiltonian of tubulin dimers and cell fluid environment;the decoherence timescale τ are computed and howτ changes with environment parameters will be discussed.In Section 3,other mechanisms of decoherence will be discussed,and some important formulas and their derivations are given in the appendix.

    2.Decoherence rates

    In this section,the decohenrence mechanisms in MTs will be discussed.MT is a hollow cylinder with an outer diameter of 24 nm and an inner diameter of 15 nm.The basic unit of MT is tubulin dimer which has two subunits(denoted by α and β);all of the tubulin dimers form MT crystal lattice by helical encircle.The tubulin dimers have different kinds of conformational states which are regarded as quantum bit in Orch model,and MTs can store information owing to different combinations of these conformational states.Electron transition in each tubulin dimer could change the conformational states,and the MT is a polar molecule and has intrinsic electric dipole moment(Fig.1).[25]

    Fig.1.The structure diagram of MTs.

    2.1.Mechanisms of decoherence

    The cellular fluid is considered to have both positive and negative charges(similar to plasma),and thus two basic and very important parameters are used to describe the it,namely Debye length λDand plasma frequency ωp;these two parameters will be discussed compendiously and their range will be given.

    The Debye length λDrepresents the space scale when the plasma is kept as a neutral state and is determined by

    where nk,0is the average density of the k-th kind of ion,qkis the quantity of charge,ε=80ε0is the dielectric constant of water,kBis the Boltzmann constant,and T is the temperature of the cellular fluid.For physiological Ringer solution,λD~0.7 nm,[29]and in the following calculation,the value of λDis set to be around 0.7 nm.

    The surface of tubulin dimers have net charge,[30]so a counterion layer will be formed because of the Debye shielding.The thickness of the counterions is approximately λD,as shown in Fig.2.The counterions could shield the interaction between MTs and the environment,as shown in Appendix C,the coupling coefficient is decreased if the shielding effect is considered.

    Fig.2.Schematic diagram of counterion layer with a thickness of λD.

    The second parameter is called plasma frequency,which describes the collective oscillations of ions and is determined by

    For typical parameters in a cell,[29][K+]in=400 mmol/L,[Na+]in=50 mmol/L[Cl?]in=52 mmol/L,ωp≈ 0.6 THz.Therefore,in the following calculation,the value of ωpis set to be around 0.6 THz.

    When the plasmon is in an excited state,the electric neutrality is destroyed,and some net charges appear.The net charges can interact with the dipole in the tubulin dimmers,as shown in Fig.3.As shown in Appendix A,the local ion density fluctuation could excite ion density waves.There are different ion density waves,but the only one called plasma oscillation could be coupled with MTs,and the dispersion relation of plasma oscillation is

    where β is the average value of ion thermal velocity,which has the same order of magnitude as the thermal velocity.

    The total Hamiltonian of the MT-environmental systems can be derived as follows:whereis the Hamiltonian of the excited systems in the MTs,is the Hamiltonian of the plasmons in the cellular fluid environment,andrepresents the interaction between the MTs and cellular aqueous environment caused by the interactions between the dipole and net charges.is the reason for decoherence;if=0,the decoherence time is τ=∞.

    Fig.3.Schematic diagram of the coupling between tubulin dimers and the cellular fluid environment.

    As shown in Fig.3,the interaction Hamiltonian between a single tubulin dimer with the electric dipole moment pand the cellular fluid environment can be shown as follows:

    2.2.Computation method of decoherence timescale

    Now,the total Hamiltonian equation(4)will be derived;some basic assumption or approximation is listed below,and will be discussed in Section 3 and appendix.

    (i)Water is treated as an medium with a dielectric constant ε=80ε0,and detailed interaction of ion-water molecules and MT-water molecules is ignored.

    (ii)Due to the Debye shielding,plasma oscillations could only be excited above the Debye length,that is to say,the wave numberk has an upper limit of k=kD=2π/λD;in our calculation,we consider k will decay rapidly as a small quantity for the short wavelength modes.

    (iii)Random phase approximation(RPA)for many particles system,In equilibrium state or near equilibrium state,as the position of particles is random,∑iexp(ik ·ri)=0 unless k=0.

    (iv)The tubulin dimers are seen as a mass point with electric dipole moment p.

    As introduced in Subsection 2.1,the tubulin dimers have different conformational states,denoted by|ki,and let?c?k,?ckbe the creation operator and annihilation operator of the quantum state|ki,so the Hamiltonian of tubulin dimers can be expressed by

    The detailed calculation ofwill be given in Appendix A and Appendix B,and the total Hamiltonian of the MTs and cellular environment can be expressed as follows:

    where ω(k)=is the dispersion relation of plasma oscillation,(k)and(k)are the creation operator and annihilation operator of plasma oscillations,respectively,and the coupling coefficient μn,kis given by

    Equation(8)is given in Appendix C,and pnis the electric dipole moment in state|ni.

    Next,Tolkunov’s model is used,[31,32]which describes the interaction between the spin system and Boson thermal reservoir.In 2-level approximation,the Hamiltonian equation(7)of our model is the same with that of Tolkunov’s in form,so the non-diagonal elements of density matrix will also change with time in the same way

    Here,and the integral region is 0

    where

    Obviously,G(t)>0.In the quantum information theory,the decoherence process is reflected in the damping of the nondiagonal element of the density matrix,so we define decoherence timeτas the timescale when qn(t)decays into qn(0)/e,namely

    Equations(11)and(12)could be used to compute decoherence time.

    2.3.Typical order of magnitude of decoherence timescale

    In this section, the typical value of decoherence time scale will be estimated by Eqs.(11)and(12).The parameters in Eq.(10)are chosen as follows:

    pn=3×10?28C·m is the electric dipole moment of tubulin dimer.[25]

    ε=80ε0is the dielectric constant of water.[29]

    λD~0.7 nm,ωp=0.6 THz;these two basic plasma parameters have been discussed in Subsection 2.1.

    T=310 K is the environment temperature.

    β=300 m/s since it has the same order of magnitude with the thermal velocity.

    kB=1.38×10?23J/K is the Boltzmann’s constant.

    =1.0546×10?34J·s is the Planck’s constant.

    The function G(t)can be computed in a numerical method(Fig.4).Set G(τ)=1 and the decoherence time could be easily obtained

    The decoherence timescale is about 10 fs.

    Fig.4.Schematic diagram of how to compute the decoherence time by the exponential factor G(t).

    2.4.The dependence of decoherence time with other parameters

    Decoherence time may change with other parameters;how these parameters affect the decoherence time will be studied in this section.As discussed in Subsection 2.3,the typical time scale for decoherence is T0=10 fs.So set T0=10 fs as the time unit,six dimensionless physical quantities are shown below

    Then equations(11)and(12)become

    The typical values of these parameters are given in Subsection 2.3;in this section,their values are given in a wide range as follows:

    Here,some values may never be reached,such as T=900 K,ε=240ε0,and so on;but the purpose in this model is to analyze how the decoherence time changes with physical parameter,so the parameter distribution is in a very wide range.

    Case 1: Decoherence time changes with plasma frequency ωp

    As shown in Fig.5,decoherence remains almost unchanged when the plasma frequency changes.

    Fig.5.Decoherence time changes with plasma frequency ωpwhen other parameters are consistent with those in Subsection 2.3.

    Case 2:Decoherence time changes with average thermal velocity β

    As shown in Fig.6,decoherence remains almost unchanged when the average thermal velocity β changes,similar to Case 1.

    Fig.6.Decoherence time changes with average thermal velocity β when other parameters are consistent with those in Subsection 2.3.

    Case 3:Decoherence time changes with Debye length λD

    In Fig.7,the decoherence time increases with Debye length;since the plasma oscillation modes could only be excited when k<2π/λD,a larger Debye length means that fewer modes will be excited,so the number of the modes interacting with MTs will decrease,and the decoherence time will increase.

    Fig.7.Decoherence time changes with Debye length λDwhen other parameters are consistent with those in Subsection 2.3.

    Use τ=CλsDto fit the curve in Fig.7(or equivalently lnτ=slnλD+lnC),the power exponent s and linearly dependent coefficient for lnτ,lnλDare

    Doing the same work to other parameters and we find that τ=CλsDcould fit the relationship between τ,λD,so we can approximately consider that

    Case 4:Decoherence time changes with dielectric constant of water

    In Fig.8,the decoherence time increases with dielectric constant of water,and the reason is obvious.According to Eq.(5),a larger dielectric constant means the weaker interaction between MTs and environment.

    Fig.8.Decoherence time changes with dielectric constant of water when other parameters are consistent with those in Subsection 2.3.

    Doing the same work as Case 3 and we find that

    Case 5:Decoherence time changes with dipole moment of tubulin dimer pn

    In Fig.9,we show the decoherence time decreases as the dipole moment of tubulin dimer increases;according to Eq.(5),the increase of the dipole moment will enhance the interaction between MTs and environment,and then the decoherence time will decrease.

    Fig.9.Decoherence time changes with dipole moment of tubulin dimer pn when other parameters are consistent with those in Subsection 2.3.

    Doing the same work as Case 3 and we find that

    Case 6: Decoherence time changes with environment temperature T

    In Fig.10,the decoherence time decreases as the environment temperature increases,and it is also easy to understand.The higher temperature means that more oscillation modes will be excited,and this will have a greater impact on the MTs,so the decoherence time decreases.

    Fig.10.Decoherence time changes with environment temperature T when other parameters are consistent with those in Subsection 2.3.

    Doing the same work as Case 3 and we find that

    According to Eqs.(16)–(19),the decoherence time could be approximately expressed as Since the decoherence time relies less on ωp, β,then equation(20)will be changed into:

    In fact,equation(21)could be proved,since the plasma frequency

    THz,the decoherence time τ~10 fs–100 fs,and the temperature T ~ 100 K.Therefore,

    Under the condition of Eq.(22),equation(12)could be approximately expressed as

    Then the decoherence time satisfies

    Equation(24)could be used for calculating the decoherence time only under the condition of Eq.(22).However,equation(24)is useful for various actual parameters.

    3.Conclusion and outlook

    If the Orch OR model can be verified both in theory and experiment,the influence will be inestimable;however,the conformational state is affected by the “warm and wet”cellular environment,and the decoherence time is a very important parameter.

    In this paper,the decoherence time scale is even smaller than 0.1 ps.This timescale is so short that quantum state will be destroyed by the cell solution environment soon.This model only considers the coupling between the tubulin dimers and ions in the cellular fluid system,treating the water as a medium and overlooking the interactions of MTs-water molecules;water molecules may shield some interactions of ion-MTs,and the interaction of water-ions and water-MTs may have influence on the decoherence process.[32,33]According to Eq.(24),if the interaction strength a√ttenuates to ε(0<ε<1),the decoherence will increase to 1/ε than before;an enough decoherence requires ε?1 and the strength of shielding by water molecules needs to be measured by experiment.

    Other mechanism for decoherence that is not considered is the coherent pumping of the system via the environment.[21]According to Fro¨hlich’s theory,if a system is strongly coupled to its environment via some degrees of freedom,and a coherent pumping source exists in environment,it might inhibit other degrees of freedom known as coherent oscillations.[35,36]Such oscillations might increase the decoherence time.Guanosine triphosphate(GTP)hydrolyzation in the cells might act as a pumping source.This mechanism was not considered in this paper.

    Decoherence is an important phenomenon in quantum information.Decoherence mainly comes from the interaction of quantum systems with the environment.In the range of molecule interactions,the main interaction between environment and tubulin dimers is the electromagnetic interaction;the electromagnetic field comes from ions and thermal radiation of the environment.However,in this model,the thermal radiation is ignored,and in the range of room temperature,the thermal frequency spectrum mainly concentrates in the range of THz band.The water molecules in the cell environment could strongly absorb the THz photon and the model only takes into account the electromagnetic field from ions.Besides,if the thermal radiation is considered,the decoherence time would be smaller than the result given before,and it will not change the conclusion.

    This model needs to be verified both experimentally and theoretically. This model may offer a helpful theoretical framework to compute the decoherence time in quantum biosystems,even though the environment of biological system is different.However,the electromagnetic interaction is essential in the scale of molecules,so this modelcould be used for reference when dealing with the interaction between the ions in cell environment and dipoles of bio-molecules.The direct experiment to verify this model is hard to be carried out at this time,but with the development of ultrafast biophysics,quantum information,quantum optics,and imaging technology,[37–41]the experiment could be carried out in the future.

    Appendix A:Dispersion relation of ion density wave

    In Appendix A,the dispersion relation of ion density wave is derived by fluid theory.Note that ni,mi,vi,qirepresent the particle number density,ion mass,the macro velocity,and electric charge of the i-th ion. E is the space electric field,βiis used to represent the ion thermal velocity,and?mβ2i?niis the thermodynamic pressure of the i-th ion.Then according to fluid theory

    In order to deduce intrinsic oscillation mode and its dispersion relation,linearization is done for Eq.(A1).For arbitrary physical quantity A,it is divided into two parts

    Now,let us compute the eigenmode with intrinsic wavelength and frequency.Set?A=?A0exp[i(k·r?ωt)].Then the operator?/?t= ?iω,? =ik,and equation(A3)changes to

    According to Eq.(A4),the eigen-equation is

    Or equivalent in matrix form where ?l,k=(ω2?k2β2l)δkl?hnliqlqk/εml,and?=(?1,?2,...,?M)T.Set f(ω,k)=det?(ω,k),equation(A6)must have untrivial solution to ensure eigenmode exits,so the dispersion relation is determined by

    Set ql=(?1)υlZle,where Zlis the valence state of ions,e.g.,for Na+and Cl?,Zl=1,and for Ca2+,Zl=2,and υlrepresents the sign of ion charge,and

    In long-wavelength limit kβl/ω ?1,then

    whereis the plasma frequency,is the average thermal velocity of all ions,and cj(j=2,3,...,M)is the M?1 roots of the following equation

    So M kinds of waves are obtained,and their dispersion relation is

    The ion charged density is

    Use Eqs.(A11)and(A6),under the condition of longwavelength approximation,only when ω2=ω2p+β2k2,ρ 6=0;otherwise ρ =0.That is to say,ω2= ω2p+β2k2represents ion charged density wave,and can be coupled with MTs by dipole–charge interactions as shown in Fig.2.Other M ?1 kinds of waves could not couple with MTs under the condition of long-wavelength approximation.

    Finally,diagonalize matrix ?

    Set P(k)=P(0)+O(k2)and define another variable ρ=(ρ1,ρ2,...,ρM)T,which is determined by

    The transformation between n and ρ is

    Then

    Compare Eqs.(A16)and(A11),then

    So eρ1could also be used to represent net charge density of ions,and equations(A15)and(A17)will be used in Appendix B.

    Appendix B:Second quantization of environment Hamiltonian Heand interaction Hamiltonian Hin

    In the coordinate representation,the Hamiltonian Heof cellular environment can be shown as follows:

    where rk,irepresents the position of the k-th kind of ions that have been numbered i,φ,A are scalar potential and vector potential,respectively,and pk,j=?k,jis the canonical momentum.The first term represents the kinetic energy of the ions,and the second term represents the field energy.

    The potentials φ,A are not unique.For two different potentials(φ,A),(φ0,A0),if they satisfy

    the two potentials will have the same field E, B as follows:

    We use an approach similar to the David Bohm’s electron gas model and define the Hamiltonian Eq.(B1)in another manner;[33]the second term is derived from the interactions between ions and the energy stored in the field.Therefore,equation(B1)can be written in an equivalent way as follows:

    First,set ξ =Rφdt so that φ0=0,then E = ??A/?t, B =?×A.ExpandAin Fourier series exp(ik·r)

    whereek=k/k is an unit vector parallel to the direction of the wave propagation,ekμ(μ =1,2)is another two-unit vector which is perpendicular to ek,and ek1⊥ek2.SoAkandA⊥represent longitudinal wave and transverse wave,respectively.Their electric field and magnetic field are

    where p(?k)=˙q(k),Pμ(?k)=˙Qμ(k).Aand Eare real and can be ensured as follows:

    Use Eqs.(B5)and(B6)as well as the commutative relation[^p,A]=?i??·A,the Hamiltonian equation(B4)will become

    where

    Now,use Eq.(B5),then we have

    where nlis the number of l-th kind of ions in a unit volume.The random phase approximation(RPA)makes the second term inconsiderably smaller than the first termtherefore

    Similarly,

    Use Eqs.(B6a)and(B6b),then we obtain

    means the kinetic energy,and it can be divide it into two parts

    The first term is the macroscopical translational energy,and the second term means the thermodynamic energy.

    The second term in Eq.(B14)can be changed into

    Now,use Eq.(A15)and ignore the cross term ρiρj(i6=j),then

    As discussed in Appendix A,eρ1represents net charge density of ions,so use Gauss’s theorem in k-space

    Use Eqs.(B8)–(B17),then the total Hamiltonian is expressed by

    where the first term means ion sound wave,the second term means interaction between ions and fields and it is neglected for the reason that each ion has a random phase(random phase approximation or RPA),?21(k)= ω2p+c2k2is the dispersion relation of electromagnetic wave in plasma,and ?22(k)=ω2p+β2k2is the dispersion relation of charged density wave or plasma oscillation.

    At last,using second quantization method,define(k),(k)as the creation operator and annihilation operator of electromagnetic wave,respectively,and(k)and ?a(k)as the creation operator and annihilation operator of the plasma oscillations,respectively,and we can obtain

    Andsatisfy the commutation relation

    Use Eqs.(B19)and(B20)and the random phase approximation,the Hamiltonian equation(B18)will become

    where

    In long-wavelength limit,β2k2/ω2p?1,so

    This is the dispersion relation of ion charged density wave as shown in Appendix A.

    In Eq.(B21),only the 3rd term could be coupled with MTs by dipole–charge interactions(as seen in Eq.(B17),ρ(k)is only related to p(k)instead of Pμ(k)),so this model only considers the 3rd term which is named

    namely,the coupling between MTs and cellular environment via interactions between plasma oscillations and dipoles.The interaction Hamiltonian for a single dipole with the cellular environment is determined by Eq.(5).Thus,after Fourier transformation,equation(5)becomes

    According to Eqs.(B17)and(B19b),then

    the MT’s dipole p can be written as follows:

    Here, pn=hn|? p|ni is the observed value of pin state|ni.In Eq.(B27),the the cross term pm,n?c?m?cnwas neglected,use Eqs.(B25)–(B27),then the coupling Hamiltonian can be written as follows:

    where

    The Hn,kmeans the interaction between MTs and cellular fluid environment mentioned later,and it is then used to compute decoherence time,and λn,kis the coupling coefficient.The method for computing the coupling coefficient λn,kwill be introduced in Appendix C.

    Appendix C:Computation of coupling coefficient λn,k

    The coupling coefficient λn,kis expressed as follows:

    where pnis a constant vector;for a certaink,the z axis is set to be parallel tok.In the spherical coordinate frame,k·r =krcosθ,and the volume element dr =r2sinθdθd?;thus, pncan be expressed as follows:

    Thus,

    When the variable ? is integrated in the interval[0,2π],thenpzcosθ exp(ikrcosθ)sinθdrdθd?

    where

    Compute Eq.(C5),then A=0 and

    Here, pz= pn·k/k;generally,in the actual situation,plasma oscillations will be excited only when the wavelength is larger than the Debye length λD.Therefore,only k<2π/λDcould be used to refer to the excited state.The integral in Eq.(C1)in the space|r|> λDbecause a shielding layer charge appears on the surface of MTs with a thickness λD,as shown in Fig.2.The shielding layer charge is stable and cannot excite plasma oscillations;therefore,in Eq.(C6),rmin=λDand rmax=∞.Hence,

    Define b(k)= ?ia(k)as new creation operator and annihilation operator,then the total Hamiltonian is

    where

    and we have obtained Eqs.(7)and(8).

    [1]Turin L 1996 Chem.Senses 21 773

    [2]Franco M I and Siddiqi O 2011 Proc.Natl.Acad.Sci.USA 108 3797

    [3]Ritz T,Adem S and Schulten K 2000 Biophys.J.78 707

    [4]Hiscock H G,Worster S,Kattnig D R,Steers C,Jin Y,Manolopoulos D E,Mouritsen H and Hore P J 2016 Proc.Natl.Acad.Sci.USA 113 201600341

    [5]Gregory S E,Tessa R C,Elizabeth L R,Tae-Kyu A,Toma′s M,Yuan-Chung C,Robert E B and Graham R F 2007 Nature 446 782

    [6]Romero E,Augulis R,Novoderezhkin V I,Ferretti M,Thieme J,Zigmantas D and Van Grondelle R 2014 Nat.Phys.10 676

    [7]Levi F,Mostarda S,Rao F and Mintert F 2015 Rep.Prog.Phys.78 082001

    [8]Novelli F,Nazir A,Richards G H,Roozbeh A,Wilk K E,Curmi P M and Davis J A 2015 J.Phys.Chem.Lett.6 4573

    [9]Sarovar M,Ishizaki A,Fleming G and Whaley B 2010 Nat.Phys.3 462

    [10]Marletto C,Coles D,Farrow T and Vedral V 2018 J.Phys.Commun.2 101001

    [11]Mesquita M V,VasconcellosR,Luzzi R and Mascarenhas S 2005 Int.J.Quantum Chem.102 1116

    [12]Jackendoff R 1987 Consciousness and the Computational Mind(Cambridge:The MIT Press)pp.275–280

    [13]Tononi G,Boly M,Massimini M and Koch C 2016 Nat.Rev.Neurosci.17 450

    [14]Crick F and Koch C 2003 Nat.Neurosci.6 119

    [15]Edelman G M 2003 Proc.Natl.Acad.Sci.USA 100 5520

    [16]Jahn R G and Dunne B J 2007 Found.Phys.3 306

    [17]Mershin A,Sanabria H,Miller J H,Nawarathna D,Skoulakis E M,Mavromatos N E,Kolomenskii A A,Schuessler H A,Luduena R F and Nanopoulos D V 2006 The Emerging Physics of Consciousness(Berlin:Springer)pp.95–170

    [18]Hameroff S and Penrose R 2014 Phys.Life Rev.11 39

    [19]Hameroff S and Penrose R 2014 Phys.Life Rev.11 94

    [20]Hameroff S R and Penrose R 2017 Biophysics of Consciousness:A Foundational Approach(Singapore:World Scientific)pp.517–599

    [21]Craddock T J A and Tuszynski J A 2010 J.Biol.Phys.36 53

    [22]Craddock T J,Priel A and Tuszynski J A 2014 J.Integr.Neurosci.13 293

    [23]Fisher M 2015 Ann.Phys.61 593

    [24]Hameroff S R 2007 Cogn.Sci.31 1035

    [25]Mavromatos N E,Mershin A and Nanopoulos D V 2002 Int.J.Mod.Phys.B 16 3623

    [26]Mavromatos N 1999 Bioelectrochemistry Bioenergetics 48 273

    [27]Tegmark M 2000 Phys.Rev.E 61 4194

    [28]Hagan S,Hameroff S R and Tuszy′nski J A 2002 Phys.Rev.E 65 061901

    [29]Nelson P 2007 Biological Physics(New York:WH Freeman)p.416

    [30]Priel A,Tuszynski J A and Woolf N J 2005 Eur.Biophys.J.Biophys.Lett.35 40

    [31]Privman V and Tolkunov D 2005 Quantum Information and Computation III(Bellingham:The International Society for Optics and Photonics),pp.187–195

    [32]Tolkunov D,Privman V and Aravind P K 2005 Phy.Rev.A 71 060308

    [33]Craddock T J,Friesen D,Mane J,Hameroff S and Tuszynski J A 2014 J.R.Soc.Interface 11 20140677

    [34]Chen Y,Okur H I,Gomopoulos N,Macias-Romero C,Cremer P S,Petersen P B,Tocci G,Wilkins D M,Liang C and Ceriotti M 2016 Sci.Adv.2 e1501891

    [35]Fr?hlich H 1968 Int.J.Quantum Chem.2 641

    [36]Wu T M and Austin S J 1981 J.Biol.Phys.9 97

    [37]Bohm D and Pines D 1953 Phy.Rev.92 609

    [38]Yin C C and Biophysics D O 2018 Chin.Phys.B 27 058703

    [39]Zheng C J,Jia T Q,Zhao H,Xia Y J,Zhang S A and Sun Z R 2018 Chin.Phys.B 27 057802

    [40]Wade C G,ˇSibali′c N,de Melo N R,Kondo J M,Adams C S and Weatherill K J 2017 Nat.Photon.11 40

    [41]Trocha P,Karpov M,Ganin D,Pfeiffer M H,Kordts A,Wolf S,Krockenberger J,Marin-Palomo P,Weimann C and Randel S 2018 Science 359 887

    精品少妇黑人巨大在线播放| 精品酒店卫生间| 天天添夜夜摸| 69精品国产乱码久久久| 一级片'在线观看视频| 久久 成人 亚洲| 黄网站色视频无遮挡免费观看| 一级爰片在线观看| 天堂中文最新版在线下载| 男人操女人黄网站| 国精品久久久久久国模美| 一级a爱视频在线免费观看| 一级爰片在线观看| 51午夜福利影视在线观看| 国产精品秋霞免费鲁丝片| 色视频在线一区二区三区| 亚洲三区欧美一区| 欧美人与善性xxx| 欧美在线一区亚洲| 男女高潮啪啪啪动态图| 97人妻天天添夜夜摸| 在线观看一区二区三区激情| 色94色欧美一区二区| 日韩av在线免费看完整版不卡| xxx大片免费视频| 美国免费a级毛片| 免费黄网站久久成人精品| 亚洲在久久综合| 又大又爽又粗| 青青草视频在线视频观看| 国产精品国产三级国产专区5o| 欧美黑人精品巨大| 亚洲精品自拍成人| 丰满迷人的少妇在线观看| 久热爱精品视频在线9| 日韩精品免费视频一区二区三区| 欧美精品人与动牲交sv欧美| www.熟女人妻精品国产| 下体分泌物呈黄色| 日韩一区二区视频免费看| 满18在线观看网站| av一本久久久久| 水蜜桃什么品种好| 国产毛片在线视频| 最黄视频免费看| 久久精品久久精品一区二区三区| www.自偷自拍.com| 波野结衣二区三区在线| 国产精品秋霞免费鲁丝片| 中文字幕高清在线视频| 亚洲av成人不卡在线观看播放网 | 精品亚洲成国产av| 欧美日韩亚洲综合一区二区三区_| 亚洲欧美成人综合另类久久久| 人妻人人澡人人爽人人| 久久久久久人人人人人| 欧美最新免费一区二区三区| xxx大片免费视频| 色播在线永久视频| 国产又爽黄色视频| 最新的欧美精品一区二区| www.熟女人妻精品国产| 国产片特级美女逼逼视频| 亚洲国产精品国产精品| 狠狠婷婷综合久久久久久88av| 日日撸夜夜添| 在线 av 中文字幕| 久久国产精品男人的天堂亚洲| 免费女性裸体啪啪无遮挡网站| 精品久久久久久电影网| 国产精品嫩草影院av在线观看| 免费少妇av软件| 成年美女黄网站色视频大全免费| 国产精品 欧美亚洲| 欧美日韩av久久| 午夜免费观看性视频| 色精品久久人妻99蜜桃| 久久ye,这里只有精品| 一二三四在线观看免费中文在| 考比视频在线观看| 18在线观看网站| 丰满迷人的少妇在线观看| 国产精品免费视频内射| 欧美成人午夜精品| 国产精品一区二区精品视频观看| 亚洲成色77777| 午夜福利一区二区在线看| 久久久久久人人人人人| 啦啦啦视频在线资源免费观看| 国产精品免费大片| 国产日韩一区二区三区精品不卡| 狠狠婷婷综合久久久久久88av| 久热这里只有精品99| 久久久久久久大尺度免费视频| 欧美 日韩 精品 国产| 新久久久久国产一级毛片| 亚洲国产看品久久| av视频免费观看在线观看| 深夜精品福利| 看免费成人av毛片| 男女边摸边吃奶| 精品一区二区三区四区五区乱码 | 亚洲成色77777| 亚洲精品aⅴ在线观看| 久久性视频一级片| 国产成人免费观看mmmm| 亚洲色图综合在线观看| 如何舔出高潮| 国产精品二区激情视频| 成人毛片60女人毛片免费| 99热国产这里只有精品6| 校园人妻丝袜中文字幕| 咕卡用的链子| 夫妻午夜视频| 丁香六月欧美| 人人妻,人人澡人人爽秒播 | 欧美精品高潮呻吟av久久| 看十八女毛片水多多多| 美女脱内裤让男人舔精品视频| 视频区图区小说| 中文字幕av电影在线播放| 老司机亚洲免费影院| 黑人巨大精品欧美一区二区蜜桃| 国产伦理片在线播放av一区| 亚洲av欧美aⅴ国产| 亚洲国产欧美在线一区| 热99国产精品久久久久久7| 少妇精品久久久久久久| 国产精品av久久久久免费| 成人手机av| 人人妻人人添人人爽欧美一区卜| 在线观看www视频免费| 亚洲精华国产精华液的使用体验| 男女下面插进去视频免费观看| 亚洲精品aⅴ在线观看| 亚洲精品国产一区二区精华液| 日韩免费高清中文字幕av| 久久久精品区二区三区| 另类亚洲欧美激情| 国产av码专区亚洲av| 亚洲国产精品一区二区三区在线| 人人妻人人爽人人添夜夜欢视频| 日本黄色日本黄色录像| 欧美激情高清一区二区三区 | 婷婷色综合www| 国产 精品1| 免费黄网站久久成人精品| 巨乳人妻的诱惑在线观看| 国产精品国产av在线观看| 国产探花极品一区二区| 满18在线观看网站| 又大又黄又爽视频免费| 欧美另类一区| 男男h啪啪无遮挡| 日韩一区二区三区影片| 成年动漫av网址| av.在线天堂| 高清黄色对白视频在线免费看| 97在线人人人人妻| 80岁老熟妇乱子伦牲交| 男女免费视频国产| 亚洲免费av在线视频| 高清不卡的av网站| 超碰97精品在线观看| 蜜桃在线观看..| 男的添女的下面高潮视频| 一区二区av电影网| 一边亲一边摸免费视频| 久久久久国产一级毛片高清牌| 成人漫画全彩无遮挡| 丁香六月欧美| 美国免费a级毛片| 国产亚洲av高清不卡| 亚洲成人一二三区av| 久久久久久久国产电影| 男女午夜视频在线观看| 国产午夜精品一二区理论片| www.av在线官网国产| 狠狠婷婷综合久久久久久88av| 久久99精品国语久久久| 精品午夜福利在线看| 看免费av毛片| 国产精品久久久久久精品电影小说| 天天躁夜夜躁狠狠躁躁| 精品视频人人做人人爽| 人人妻人人澡人人爽人人夜夜| 国产国语露脸激情在线看| 成人漫画全彩无遮挡| 久久久久久久大尺度免费视频| 中文字幕另类日韩欧美亚洲嫩草| 亚洲美女视频黄频| www.精华液| 亚洲精品一二三| 久久精品国产a三级三级三级| 欧美在线黄色| 久久久久精品人妻al黑| 国产伦人伦偷精品视频| 只有这里有精品99| 国产一区二区三区av在线| 观看av在线不卡| 国产男女内射视频| 欧美日韩视频高清一区二区三区二| 最近手机中文字幕大全| 男人爽女人下面视频在线观看| 高清在线视频一区二区三区| 高清视频免费观看一区二区| 欧美日韩福利视频一区二区| 9191精品国产免费久久| 久热爱精品视频在线9| 尾随美女入室| 又粗又硬又长又爽又黄的视频| 在线 av 中文字幕| 精品少妇一区二区三区视频日本电影 | 91国产中文字幕| 肉色欧美久久久久久久蜜桃| 大陆偷拍与自拍| 欧美人与善性xxx| 国产av码专区亚洲av| 91aial.com中文字幕在线观看| 观看av在线不卡| 丰满乱子伦码专区| 亚洲综合精品二区| 国产爽快片一区二区三区| 久久av网站| 精品国产乱码久久久久久男人| 满18在线观看网站| 亚洲av成人精品一二三区| 国产精品一区二区在线不卡| av片东京热男人的天堂| 亚洲国产欧美网| 国产日韩欧美视频二区| 国产熟女欧美一区二区| 免费观看性生交大片5| 亚洲第一av免费看| 日本一区二区免费在线视频| 最近的中文字幕免费完整| 欧美最新免费一区二区三区| 男女高潮啪啪啪动态图| 日韩一区二区三区影片| 久久国产精品男人的天堂亚洲| 亚洲自偷自拍图片 自拍| 黑人巨大精品欧美一区二区蜜桃| 精品人妻一区二区三区麻豆| 免费黄频网站在线观看国产| 黄色视频不卡| 成人黄色视频免费在线看| 亚洲精品国产一区二区精华液| 亚洲国产最新在线播放| 久久久精品区二区三区| 搡老岳熟女国产| 色94色欧美一区二区| 视频在线观看一区二区三区| 精品一区在线观看国产| 老司机影院成人| 精品亚洲成a人片在线观看| www.av在线官网国产| 亚洲天堂av无毛| 国产一区二区 视频在线| 久久久精品区二区三区| 亚洲国产日韩一区二区| 久久精品久久久久久噜噜老黄| 亚洲欧美中文字幕日韩二区| 亚洲第一区二区三区不卡| 色视频在线一区二区三区| 精品一区二区三卡| 99久久精品国产亚洲精品| 日韩中文字幕欧美一区二区 | 男女边摸边吃奶| 一区二区三区乱码不卡18| 人人妻人人爽人人添夜夜欢视频| 美女扒开内裤让男人捅视频| 国产在线一区二区三区精| 制服诱惑二区| 亚洲四区av| 色94色欧美一区二区| 成人18禁高潮啪啪吃奶动态图| 精品一区二区三卡| e午夜精品久久久久久久| 亚洲成人一二三区av| 午夜福利网站1000一区二区三区| 99久国产av精品国产电影| www.av在线官网国产| 青春草亚洲视频在线观看| 久久久国产欧美日韩av| 在线观看免费午夜福利视频| 晚上一个人看的免费电影| 欧美亚洲 丝袜 人妻 在线| 亚洲四区av| 夫妻性生交免费视频一级片| 啦啦啦视频在线资源免费观看| 亚洲一区二区三区欧美精品| 人体艺术视频欧美日本| 中文字幕另类日韩欧美亚洲嫩草| 亚洲成国产人片在线观看| 在线观看免费高清a一片| 国产亚洲一区二区精品| 久久久久久久国产电影| 久久狼人影院| 大陆偷拍与自拍| 日韩制服骚丝袜av| 国语对白做爰xxxⅹ性视频网站| 欧美精品高潮呻吟av久久| 性高湖久久久久久久久免费观看| 亚洲国产欧美日韩在线播放| 日本vs欧美在线观看视频| 99精品久久久久人妻精品| 午夜老司机福利片| 国产成人免费观看mmmm| 一边亲一边摸免费视频| 日本av手机在线免费观看| 少妇 在线观看| 午夜影院在线不卡| 欧美精品一区二区大全| 免费观看a级毛片全部| 巨乳人妻的诱惑在线观看| 我的亚洲天堂| 中文字幕av电影在线播放| 热99国产精品久久久久久7| 亚洲欧美一区二区三区国产| 亚洲欧美日韩另类电影网站| 91成人精品电影| 99久久人妻综合| 青春草视频在线免费观看| 欧美黑人欧美精品刺激| 不卡视频在线观看欧美| 国产一区二区激情短视频 | 只有这里有精品99| 国产精品秋霞免费鲁丝片| 熟女少妇亚洲综合色aaa.| 9色porny在线观看| 高清欧美精品videossex| 亚洲精品在线美女| 新久久久久国产一级毛片| 黄片小视频在线播放| 精品免费久久久久久久清纯 | 色视频在线一区二区三区| 一本久久精品| 欧美成人精品欧美一级黄| 国产av一区二区精品久久| 成人毛片60女人毛片免费| 亚洲天堂av无毛| 国产亚洲欧美精品永久| 狂野欧美激情性xxxx| 欧美另类一区| 久久久久网色| 亚洲熟女毛片儿| 97在线人人人人妻| 国产精品.久久久| 免费人妻精品一区二区三区视频| 午夜久久久在线观看| 卡戴珊不雅视频在线播放| 9色porny在线观看| 侵犯人妻中文字幕一二三四区| 无遮挡黄片免费观看| 亚洲久久久国产精品| 久久久亚洲精品成人影院| 可以免费在线观看a视频的电影网站 | 国产女主播在线喷水免费视频网站| 欧美日韩成人在线一区二区| 精品一区二区三区四区五区乱码 | 精品国产一区二区三区久久久樱花| 超色免费av| 国产精品免费大片| 国产精品99久久99久久久不卡 | 亚洲精品日韩在线中文字幕| 成人国语在线视频| 久久 成人 亚洲| 亚洲精品国产av蜜桃| 亚洲精华国产精华液的使用体验| 51午夜福利影视在线观看| 99久久精品国产亚洲精品| 久久久久精品国产欧美久久久 | 色婷婷久久久亚洲欧美| 亚洲av成人不卡在线观看播放网 | 国产国语露脸激情在线看| 国产亚洲最大av| 99久国产av精品国产电影| 久久久精品区二区三区| 赤兔流量卡办理| 午夜福利网站1000一区二区三区| 少妇人妻 视频| av国产精品久久久久影院| 亚洲精品国产区一区二| 午夜福利乱码中文字幕| 男女之事视频高清在线观看 | 精品人妻在线不人妻| 精品免费久久久久久久清纯 | 婷婷成人精品国产| 成年动漫av网址| 久久99一区二区三区| 亚洲美女视频黄频| av天堂久久9| 男男h啪啪无遮挡| 18禁动态无遮挡网站| 欧美激情 高清一区二区三区| 午夜福利网站1000一区二区三区| 高清av免费在线| 亚洲欧美一区二区三区国产| 日韩精品免费视频一区二区三区| 国产高清不卡午夜福利| 中文字幕人妻熟女乱码| 观看美女的网站| 精品少妇一区二区三区视频日本电影 | 天堂俺去俺来也www色官网| 亚洲视频免费观看视频| 国产免费福利视频在线观看| 99热网站在线观看| 午夜福利影视在线免费观看| 十八禁高潮呻吟视频| 国产精品女同一区二区软件| 亚洲欧美日韩另类电影网站| 尾随美女入室| 哪个播放器可以免费观看大片| 国产高清国产精品国产三级| 一级a爱视频在线免费观看| 免费少妇av软件| 亚洲激情五月婷婷啪啪| 欧美精品av麻豆av| 韩国高清视频一区二区三区| 日韩,欧美,国产一区二区三区| 亚洲欧洲国产日韩| 国产精品熟女久久久久浪| 国产精品国产av在线观看| 91aial.com中文字幕在线观看| 国产1区2区3区精品| 日韩制服丝袜自拍偷拍| 99精国产麻豆久久婷婷| 少妇的丰满在线观看| 最近的中文字幕免费完整| 捣出白浆h1v1| 亚洲av男天堂| 最近2019中文字幕mv第一页| 99re6热这里在线精品视频| 日本vs欧美在线观看视频| 日本欧美国产在线视频| a级片在线免费高清观看视频| 99热国产这里只有精品6| 亚洲综合精品二区| 80岁老熟妇乱子伦牲交| 香蕉国产在线看| 丁香六月欧美| 日本欧美视频一区| 亚洲精品久久久久久婷婷小说| 国产av国产精品国产| 少妇精品久久久久久久| 久久久亚洲精品成人影院| 一区二区三区四区激情视频| 欧美精品高潮呻吟av久久| 亚洲精品久久久久久婷婷小说| 亚洲成人手机| 久久婷婷青草| 免费在线观看黄色视频的| 高清欧美精品videossex| 建设人人有责人人尽责人人享有的| 午夜免费男女啪啪视频观看| 午夜老司机福利片| 亚洲国产精品成人久久小说| 深夜精品福利| 桃花免费在线播放| 国产精品国产三级国产专区5o| 亚洲中文av在线| 亚洲av福利一区| 日韩中文字幕欧美一区二区 | 在线精品无人区一区二区三| 七月丁香在线播放| 在线免费观看不下载黄p国产| 亚洲av日韩精品久久久久久密 | 永久免费av网站大全| 亚洲,一卡二卡三卡| 国产日韩欧美在线精品| 亚洲美女黄色视频免费看| 99九九在线精品视频| 久久精品aⅴ一区二区三区四区| 午夜老司机福利片| 777久久人妻少妇嫩草av网站| 精品人妻熟女毛片av久久网站| 18禁裸乳无遮挡动漫免费视频| 麻豆乱淫一区二区| 夫妻性生交免费视频一级片| 亚洲精品国产一区二区精华液| 黄色 视频免费看| 亚洲欧美精品自产自拍| 天美传媒精品一区二区| 日韩视频在线欧美| 欧美日韩视频精品一区| 2021少妇久久久久久久久久久| 亚洲男人天堂网一区| av网站在线播放免费| 晚上一个人看的免费电影| 成人毛片60女人毛片免费| 啦啦啦在线免费观看视频4| 一区二区日韩欧美中文字幕| 亚洲美女视频黄频| 欧美成人午夜精品| 丝袜美腿诱惑在线| 精品第一国产精品| 欧美变态另类bdsm刘玥| 在线观看免费午夜福利视频| 国产精品久久久久久精品电影小说| 日韩,欧美,国产一区二区三区| 亚洲av福利一区| 午夜精品国产一区二区电影| 永久免费av网站大全| 久久韩国三级中文字幕| 亚洲人成网站在线观看播放| 亚洲国产av影院在线观看| 青春草国产在线视频| 久久精品国产亚洲av高清一级| 啦啦啦视频在线资源免费观看| 日韩欧美一区视频在线观看| 少妇人妻 视频| 日韩一区二区三区影片| 51午夜福利影视在线观看| 啦啦啦视频在线资源免费观看| 国产av一区二区精品久久| 亚洲免费av在线视频| 国产乱来视频区| 狠狠婷婷综合久久久久久88av| 国产精品女同一区二区软件| 国产日韩欧美在线精品| 少妇人妻 视频| 日韩中文字幕欧美一区二区 | 波野结衣二区三区在线| 久久久久人妻精品一区果冻| 日本欧美视频一区| 色婷婷av一区二区三区视频| 国产精品一二三区在线看| 欧美日韩一区二区视频在线观看视频在线| 久久久久久久久免费视频了| 80岁老熟妇乱子伦牲交| 十分钟在线观看高清视频www| 飞空精品影院首页| 婷婷色麻豆天堂久久| 亚洲欧美精品综合一区二区三区| 欧美精品人与动牲交sv欧美| 亚洲欧美一区二区三区久久| 女人久久www免费人成看片| 男女边吃奶边做爰视频| 天天躁狠狠躁夜夜躁狠狠躁| 最新的欧美精品一区二区| 99久国产av精品国产电影| 无遮挡黄片免费观看| 香蕉国产在线看| 中文乱码字字幕精品一区二区三区| 熟女av电影| av免费观看日本| 精品一区二区三区av网在线观看 | 激情视频va一区二区三区| 亚洲,欧美,日韩| 只有这里有精品99| 日本欧美国产在线视频| 99国产精品免费福利视频| 亚洲欧美成人综合另类久久久| 国产黄色视频一区二区在线观看| 你懂的网址亚洲精品在线观看| 啦啦啦在线免费观看视频4| av视频免费观看在线观看| xxx大片免费视频| 日本91视频免费播放| 久久久久精品久久久久真实原创| 建设人人有责人人尽责人人享有的| 久久久亚洲精品成人影院| 久久精品亚洲熟妇少妇任你| 色94色欧美一区二区| 人人澡人人妻人| 亚洲国产精品999| 免费久久久久久久精品成人欧美视频| www.自偷自拍.com| av免费观看日本| 在线亚洲精品国产二区图片欧美| 亚洲精品,欧美精品| 一二三四在线观看免费中文在| 黄频高清免费视频| 一本大道久久a久久精品| 亚洲av电影在线进入| 热re99久久国产66热| 午夜福利在线免费观看网站| 观看美女的网站| 亚洲成人国产一区在线观看 | 国产97色在线日韩免费| 美女视频免费永久观看网站| 哪个播放器可以免费观看大片| 久久精品久久久久久久性| 欧美亚洲 丝袜 人妻 在线| 日韩一区二区三区影片| 汤姆久久久久久久影院中文字幕| 久久久久网色| 欧美在线一区亚洲| 最近2019中文字幕mv第一页| 制服丝袜香蕉在线| 国产在视频线精品| 制服丝袜香蕉在线| 中文乱码字字幕精品一区二区三区| 亚洲成色77777| 色播在线永久视频| 中文字幕另类日韩欧美亚洲嫩草| 亚洲综合精品二区| 香蕉丝袜av| 美女福利国产在线| 国产av精品麻豆| 王馨瑶露胸无遮挡在线观看| 成年人免费黄色播放视频| 亚洲色图综合在线观看| 啦啦啦 在线观看视频| 看免费av毛片| 亚洲精品美女久久久久99蜜臀 | 日韩精品有码人妻一区| 男人舔女人的私密视频| 视频区图区小说| 自线自在国产av| 国产欧美日韩综合在线一区二区| 中文字幕制服av| 操出白浆在线播放| 国产爽快片一区二区三区| 一区二区av电影网|