• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A unified theory of confidence intervals for high-dimensional precision matrix*

    2021-03-18 07:25:10WANGYueLIYangZHENGZemin

    WANG Yue, LI Yang, ZHENG Zemin

    (School of Management, University of Science and Technology of China, Hefei 230026, China)

    Abstract Precision matrix inference is of fundamental importance nowadays in high-dimensional data analysis for measuring conditional dependence. Despite the fast growing literature, developing approaches to make simultaneous inference for precision matrix with low computational cost is still in urgent need. In this paper, we apply bootstrap-assisted procedure to conduct simultaneous inference for high-dimensional precision matrix based on the recent de-biased nodewise Lasso estimator, which does not require the irrepresentability condition and is easy to implement with low computational cost. Furthermore, we summary a unified framework to perform simultaneous confidence intervals for high-dimensional precision matrix under the sub-Gaussian case. We show that as long as some precision matrix estimation effects are satisfied, our procedure can focus on different precision matrix estimation methods which owns great flexibility. Besides, distinct from earlier Bonferroni-Holm procedure, this bootstrap method is asymptotically nonconservative. Both numerical results confirm the theoretical results and computational advantage of our method.

    Keywords precision matrix; high dimensionality; bootstrap-assisted; confidence intervals; simultaneous inference; de-biased

    Nowadays, high-dimensional data which are referred to as smallnlargepdata, develop extremely rapidly. Graphical models have been extensively used as a solid tool to measure conditional dependence structure between different variables, ranging from genetics, proteins and brain networks to social networks, online marketing and portfolio optimization. It is well known that the edges of Gaussian graphical model (GGM) are encoded by the corresponding entries of the precision matrix[1]. While most of the existing work concentrates on the estimation and individual inference of precision matrix, simultaneous inference methods are generally reckoned to be more useful in practical applications because of the valid reliability assurance. Therefore, it is in urgent need to develop approaches to make inference for groups of entries of the precision matrix.

    Making individual inference for the precision matrix has been widely studied in the literature. Ref.[2] first advocated multiple testing for conditional dependence in GGM with false discovery rates control. It’s a pity that this method can not be applied to construct confidence intervals directly. To address this issue, based on the so-called de-biased or de-sparsified procedure, Refs.[3-4]designed to remove the bias term of the initial Lasso-type penalized estimators and achieved asymptotically normal distribution for each entry of the precision matrix. Difference lies in that Ref.[3] adopted graphical Lasso as initial Lasso-type penalized estimator but Ref.[4] focused on nodewise Lasso. They both followed the way of Refs.[5-8]which proposed de-biased steps for inference in high-dimensional linear models.

    While most recent studies have focused on the individual inference in high-dimensional regime, the simultaneous inference remains largely unexplored. Refs.[9-11]creatively proposed multiplier bootstrap method. Based on the individual confidence interval, Ref.[12] proposed simultaneous confidence intervals via applying bootstrap scheme to high-dimensional linear models. Distinct from earlier Bonferroni-Holm procedure, this bootstrap method is asymptotically nonconservative because it considers the correlation among the test statistics. More recently, Ref.[13] considered combinatorial inference aiming at testing the global structure of the graph at the cost of heavy computation and only limited to the Gaussian case.

    Motivated by these concerns, we develop a bootstrap-assisted procedure to conduct simultaneous inference for high-dimensional precision matrix, based on the de-biased nodewise Lasso estimator. Moreover, we summary a unified framework to perform simultaneous inference for high-dimensional precision matrix. Our method imitates Ref.[12] but generalizes bootstrap-assisted scheme to graphical models and we conclude general theory that our method is applicative as long as precision matrix estimation satisfies some common conditions. The major contributions of this paper are threefold. First of all, we develop a bootstrap-assisted procedure to conduct simultaneous inference for high-dimensional precision matrix, which is adaptive to the dimension of the concerned component and considers the dependence within the de-biased nodewise Lasso estimators while Bonferroni-Holm procedure cannot attain. Second, our method is easy to implement and enjoy nice computational efficiency without loss of accuracy. Last, we provide theoretical guarantees for constructing simultaneous confidence intervals of the precision matrix under a unified framework. We prove that our simultaneous testing procedure asymptotically achieves the preassigned significance level even when the model is sub Gaussian and the dimension is exponentially larger than sample size.

    1 Methodology

    1.1 Model setting

    Under the graphical model framework, denote byXann×prandom design matrix withpcovariates. Assume thatXhas independent sub-Gaussian rowsX(i), that is, there exists constantKsuch that

    (1)

    1.2 De-biased nodewise Lasso

    Characterizing the distribution of Lasso-type estimator for precision matrix is difficult because Lasso-type estimator is biased due to thel1penalization. To address this problem, Refs.[3-4]adopted de-biasing idea which is to start with graphical Lasso or nodewise Lasso estimator and then remove its bias. This results in de-biased estimator generally taking the form

    Then we have the following estimation error decomposition

    Further we let

    1.3 Simultaneous confidence intervals

    (2)

    (3)

    c1-α,E=inf{t∈:e(WE≤t)≤1-α)},

    (4)

    Remark1.1Bonferroni-Holm adjustment states that if an experimenter is testingphypotheses on a set of data, then the statistical significance level for each independent hypothesis separately is 1/ptimes what it would be if only one hypothesis were tested. However, the bootstrap uses the quantile of the multiplier bootstrap statistic to asymptotically estimate the quantile of the target statistic and takes dependence among the test statistics into account. Thus the original method with Bonferroni-Holm is on the conservative side, while the bootstrap is closer to the preassigned significance level.

    1.4 A unified theory for confidence intervals

    Define the parameter set

    λmax(Θ)≤L,

    2 Theoretical properties

    Before giving the theoretical properties, we list two technical conditions.

    Φ(z)|=0,

    Based on the asymptotic normality properties established in Proposition 2.1, we have the following simultaneous confidence intervals for multiple entriesΘjk.

    Theorem 2.1Assume that conditions (A1)-(A2) hold. Then for anyE?[p]×[p], we have

    (1-α)|=0,

    Next, we extend the above theory to more general case and conclude the unified theory for precision matrix inference.

    Theorem 2.2Assume that eventHholds. Then we have

    for anyE?[p]×[p], whereΘEdenotes the entries ofΘwith indices inE.

    Next, we extend the above theory to more general case and conclude the unified theory for precision matrix inference.

    Theorem 2.3Assume that eventHholds. Then we have

    (A)(Individual inference)

    Φ(z)|=0,

    (B)(Simultaneous inference)

    (1-α)|=0,

    for anyE?[p]×[p], whereΘEdenotes the entries ofΘwith indices inE.

    Theorem 2.3 presents general conclusions for both individual and simultaneous confidence intervals. That is, our inferential procedures work for any estimation methods for precision matrix as long as the estimation effect satisfies eventH.

    3 Numerical studies

    In this section, we investigate the finite sample performance of the methods proposed in Section 3 and provide a comparison to simultaneous confidence interval for de-biased graphical Lasso, denoted by S-NL and S-GL, respectively. We now present two numerical examples and evaluate the methods by estimated average coverage probabilities (avgcov) and average confidence interval lengths (avglen) over two cases: support setSand its complementSc. For convenience, we only consider Gaussian setting. The implementation for de-biased nodewise Lasso and de-biased graphical Lasso are suggested by Ref.[4]. Throughout the simulation, the level of significance is set atα=0.05 and the coverage probabilities and interval lengths calculated by averaging over 100 simulation runs and 500 Monte Carlo replications. For extra comparison, we also record individual confidence intervals for de-biased nodewise Lasso and de-biased graphical Lasso, denoted by I-NL and I-GL, respectively.

    3.1 Numerical example 1: band structure

    We start with a numerical example which has the similar setting as that in Ref.[3]. We consider the precision matrixΘwith the band structure, whereΘjj=1,Θj,j+1=Θj+1,j=ρforj=1,2,…,p-1, andzero otherwise. We sample the rows of then×pdata matrixXas i.i.d.copies from the multivariate Gaussian distributionN(0,Σ) whereΣ=Θ-1. We fix the sample sizen=100 and consider a range of dimensionalityp=300,500 and link strengthρ=0.2,0.3,0.4,0.5, respectively. The results are summarized in Table 1.

    In terms of avgcov and avglen, it is clear that our proposed S-NL method outperforms other alternative methods with higher avgcov and shorter avglen in most settings. Although the avglen overScmay be a little longer in some cases, it is amazing that the coverage probabilities inSapproach the nominal coverage 95%. On the other hand, the advantage becomes more evident aspandρincrease. Compared with individual confidence intervals, simultaneous confidence intervals have longer lengths and lower coverage probabilities. This is reasonable because multiplicity adjustment damages partial accuracy which is inevitable.

    Table 1 Averaged coverage probabilities and lengths over the support set S and its complement Sc in Section 3.1

    3.2 Numerical example 2: nonband structure

    For the second numerical example, we use the same setup as simulation example 1 in Ref.[16] to test the performance of S-NL in more general cases. We generate the precision matrix in two steps. First, we create a band matrixΘ0the same as that in Section 3.1. Second, we randomly permute the rows and columns ofΘ0to obtain the precision matrixΘ. The final precision matrixΘno longer has the band structure. Then we sample the rows of then×pdata matrixXas i.i.d. copies from the multivariate Gaussian distributionN(0,Σ) whereΣ=Θ-1. Throughout this simulation, we fix the sample sizen=200, dimensionalityp=1 000 and consider a range ofρ=0.2,0.3,0.4,0.5.

    Simulation results summarized in Table 2 also illustrate that our method can achieve the preassigned significance level asymptotically and behaves better than others in most cases. Moreover, we can see our method is very robust especially in largeρ.

    4 Discussions

    In this paper, we apply bootstrap-assisted procedure to make valid simultaneous inference for high-dimensional precision matrix based on the recent de-biased nodewise Lasso estimator. In addition, we summary a unified framework to perform simultaneous confidence intervals for high-dimensional precision matrix under the sub-Gaussian case. As long as some estimation effects are satisfied, our procedure can focus on different precision matrix estimation methods which owns great flexibility. Further, this method can be expended to more general settings, such as functional graphical model where the samples are consisted of functional data. We leave this problem for further investigations.

    Table 2 Averaged coverage probabilities and lengths over the support set S and its complement Sc in Section 3.2

    ≤4,

    A.2 Proof of Theorem 2.1

    Without loss of generality, we setE=[p]×[p]. For any (j,k)∈E, define

    (1-α)|=0,

    which conclude the proof.

    A.3 Proof of Theorem 2.3

    To enhance the readability, we split the proof into three steps by providing the bound on bias term, establishing asymptotic normality and verifying the variance consistency.

    Step 1

    ∶=Z+Δ1+Δ2.

    Step 2The proof is the direct conclusion of Theorem 1 of Ref.[4].

    Step 3The proof is the direct conclusion of Lemma 2 of Ref.[4].

    The subsequent proof is similar to Theorem 2.1, thus we omit the details.

    A.4 Lemmas and their proofs

    The following lemmas will be used in the proof of the main theorem.

    Lemma A.1Assume that conditions (A1)-(A4) hold. Then for anyE?[p]×[p] we have

    where {Yijk}(j,k)∈Eare Gaussian analogs of {Zijk}(j,k)∈Ein the sense of sharing the same mean and covariance fori=1,2,…,n.

    ProofThe proof is based upon verifying conditions from Corollary 2.1 of Ref.[9]. To be concrete, we require to prove the following condition (E.1).

    which conclude the proof.

    Lemma A.2LetVandYbe centered Gaussian random vectors inpwith covariance matricesΣVandΣYrespectively. Suppose that there are some constants 00 depending only onc1andC1such that

    ProofThe proof is the same as Lemma 3.1 of Ref.[9]

    where π(ν):=C2ν1/3(1∨log(|E|/ν))2/3.

    Lemma A.4Assume that conditions (A1)-(A4) hold. Then for any (j,k)∈Ewe have

    Proof

    Bounds for|TE-T0|: Recall that

    It follows from Theorem 2.1 that

    (1),

    whereξ1=O(slogp/n)=o(1) andξ2=o(1).

    Bounds for|WE-W0|:

    which conclude the proof.

    Lemma A.5

    Proof

    For the second part, it is obvious that

    |I2|≤Op(logp/n),

    which is a direct result of eventH.

    Combining them together, we conclude =Op(s2logplog(np)/n)=op(1).

    Lemma A.6Assume that conditions (A1)-(A4) hold. Let

    ProofThe proof is the same as Lemma L.3 of Ref.[13], which follows by invoking the inequality

    and Proposition 5.16 in Ref.[17] and the union bound.

    Lemma A.8Letα,β∈psuch that ‖α‖2≤M,‖β‖2≤M. LetXisatisfy the sub-Gaussian setting with a positive constantK. Then for anyr≥2, we have

    (2M2K2)r≤r!/2.

    ProofThe proof is the same as Lemma 5 of Ref.[3]. Since ‖α‖2≤M,‖β‖2≤Mand sub-Gaussian assumption with a constantK, we obtain

    By the inequalityab≤a2/2+b2/2 (for anya,b∈) and Cauchy-Schwarz inequality we have

    By the Taylor expansion, we have the inequality

    Next it follows

    Therefore, we have

    大型黄色视频在线免费观看| 波多野结衣高清作品| 国产一区二区三区在线臀色熟女| 日韩 亚洲 欧美在线| 久久精品国产亚洲av天美| 久久久欧美国产精品| 人妻夜夜爽99麻豆av| 日韩制服骚丝袜av| 嫩草影院入口| 在线播放国产精品三级| 变态另类成人亚洲欧美熟女| 亚洲综合色惰| 一区二区三区免费毛片| 内地一区二区视频在线| av天堂中文字幕网| 我的女老师完整版在线观看| 男人的好看免费观看在线视频| 99热这里只有精品一区| 婷婷亚洲欧美| 婷婷六月久久综合丁香| 欧美成人a在线观看| 干丝袜人妻中文字幕| 看片在线看免费视频| 1000部很黄的大片| 久久久久久国产a免费观看| 久久午夜亚洲精品久久| 99热精品在线国产| 亚洲精品自拍成人| 在线免费观看不下载黄p国产| 亚洲一区高清亚洲精品| 天天一区二区日本电影三级| 久久精品久久久久久噜噜老黄 | 午夜福利视频1000在线观看| 99久久成人亚洲精品观看| 成年版毛片免费区| 亚洲综合色惰| 国产老妇伦熟女老妇高清| 国产又黄又爽又无遮挡在线| 在线天堂最新版资源| 男女做爰动态图高潮gif福利片| 岛国在线免费视频观看| 高清毛片免费看| 看免费成人av毛片| 搡女人真爽免费视频火全软件| 日本爱情动作片www.在线观看| 国产69精品久久久久777片| 久久久久久久久中文| 男的添女的下面高潮视频| 国产精品一区二区三区四区久久| 成人性生交大片免费视频hd| 97超碰精品成人国产| 亚洲精品自拍成人| 亚洲七黄色美女视频| 久久精品国产99精品国产亚洲性色| 日韩一区二区视频免费看| 日韩欧美在线乱码| 亚洲五月天丁香| 性插视频无遮挡在线免费观看| 六月丁香七月| 97热精品久久久久久| 男插女下体视频免费在线播放| 午夜老司机福利剧场| 久99久视频精品免费| 秋霞在线观看毛片| 国产精品嫩草影院av在线观看| 青春草国产在线视频 | 国产久久久一区二区三区| 国产探花在线观看一区二区| 欧美激情久久久久久爽电影| av在线观看视频网站免费| 99在线人妻在线中文字幕| 日本免费a在线| 一本久久中文字幕| 老司机福利观看| 在线播放无遮挡| 婷婷精品国产亚洲av| 日韩欧美 国产精品| 亚洲欧美精品专区久久| 男女做爰动态图高潮gif福利片| av免费在线看不卡| 黄片无遮挡物在线观看| 久久国产乱子免费精品| 在线观看一区二区三区| 久久这里只有精品中国| 男女做爰动态图高潮gif福利片| 日日撸夜夜添| 久久这里只有精品中国| 波多野结衣高清作品| 黄色视频,在线免费观看| 最近视频中文字幕2019在线8| 亚洲精品久久国产高清桃花| 国产探花在线观看一区二区| 深夜a级毛片| 狠狠狠狠99中文字幕| 一卡2卡三卡四卡精品乱码亚洲| 国产精品一区二区三区四区免费观看| 国产蜜桃级精品一区二区三区| 能在线免费看毛片的网站| 国产又黄又爽又无遮挡在线| 久久欧美精品欧美久久欧美| 免费看美女性在线毛片视频| 一级av片app| 国产精品国产高清国产av| 亚洲欧洲国产日韩| 午夜福利视频1000在线观看| 日韩成人伦理影院| av国产免费在线观看| 六月丁香七月| 免费人成在线观看视频色| 亚洲av中文av极速乱| 超碰av人人做人人爽久久| 久久精品国产99精品国产亚洲性色| 亚洲国产精品合色在线| 亚洲自偷自拍三级| 亚洲成a人片在线一区二区| 亚洲在久久综合| 日韩精品有码人妻一区| 精品一区二区三区视频在线| 久久久久免费精品人妻一区二区| 久久精品夜夜夜夜夜久久蜜豆| 18禁在线无遮挡免费观看视频| 国产 一区 欧美 日韩| 日韩欧美 国产精品| 噜噜噜噜噜久久久久久91| 欧美丝袜亚洲另类| 两性午夜刺激爽爽歪歪视频在线观看| 色吧在线观看| 能在线免费观看的黄片| 亚洲国产精品合色在线| 一边亲一边摸免费视频| 国产精品久久久久久久久免| 国产极品精品免费视频能看的| 精品久久国产蜜桃| 国产精品久久久久久久久免| 亚洲一区二区三区色噜噜| 91久久精品国产一区二区三区| 干丝袜人妻中文字幕| 国语自产精品视频在线第100页| 丰满人妻一区二区三区视频av| 在线免费十八禁| 欧美高清成人免费视频www| 婷婷色综合大香蕉| 国模一区二区三区四区视频| 久久久久久久久中文| 日本色播在线视频| 久久午夜亚洲精品久久| 久久久久久久久久成人| 国产男人的电影天堂91| 99久国产av精品| 精品不卡国产一区二区三区| 亚洲最大成人av| 午夜福利成人在线免费观看| 国产免费一级a男人的天堂| 淫秽高清视频在线观看| 又爽又黄a免费视频| 99热这里只有精品一区| 亚洲一区二区三区色噜噜| 久久久精品欧美日韩精品| 老司机福利观看| 夜夜看夜夜爽夜夜摸| 久久久精品94久久精品| 如何舔出高潮| 一进一出抽搐gif免费好疼| 我要搜黄色片| 99久久成人亚洲精品观看| 久久热精品热| 欧美成人a在线观看| 中文字幕久久专区| 在线观看一区二区三区| 亚洲四区av| 午夜免费男女啪啪视频观看| www日本黄色视频网| 一本久久精品| 国产精品99久久久久久久久| 色综合亚洲欧美另类图片| 亚洲欧美日韩高清专用| 不卡视频在线观看欧美| 九色成人免费人妻av| 久久精品久久久久久久性| 婷婷精品国产亚洲av| 国产成人福利小说| 国产在视频线在精品| 国产午夜福利久久久久久| 我要看日韩黄色一级片| 亚洲图色成人| 成人毛片a级毛片在线播放| 在线观看美女被高潮喷水网站| 久久久久久久久久久丰满| 国内少妇人妻偷人精品xxx网站| 一个人免费在线观看电影| 尤物成人国产欧美一区二区三区| 久久人人精品亚洲av| 能在线免费看毛片的网站| 午夜免费男女啪啪视频观看| 日韩欧美三级三区| 精品99又大又爽又粗少妇毛片| 悠悠久久av| 国产高清有码在线观看视频| 少妇的逼水好多| 亚洲欧美日韩无卡精品| 亚洲欧美中文字幕日韩二区| 欧美最新免费一区二区三区| 少妇裸体淫交视频免费看高清| 国产亚洲av片在线观看秒播厂 | 中文字幕久久专区| www日本黄色视频网| 久久久色成人| 在线a可以看的网站| 亚洲精品国产成人久久av| 别揉我奶头 嗯啊视频| 22中文网久久字幕| 欧美在线一区亚洲| 在线播放无遮挡| 高清日韩中文字幕在线| 人妻久久中文字幕网| 1000部很黄的大片| 国产成人影院久久av| 97超碰精品成人国产| 久久精品国产清高在天天线| 国产精品一二三区在线看| 女同久久另类99精品国产91| 精品免费久久久久久久清纯| 中文字幕av在线有码专区| 草草在线视频免费看| 国产麻豆成人av免费视频| 看十八女毛片水多多多| 成人漫画全彩无遮挡| 午夜久久久久精精品| 2022亚洲国产成人精品| 麻豆国产av国片精品| 日韩,欧美,国产一区二区三区 | 麻豆国产av国片精品| 九草在线视频观看| 偷拍熟女少妇极品色| 丝袜喷水一区| 日韩欧美精品v在线| 久久九九热精品免费| 亚洲国产精品合色在线| 国产精品女同一区二区软件| 成人一区二区视频在线观看| 久久中文看片网| 久久久国产成人精品二区| 身体一侧抽搐| 日韩高清综合在线| 亚洲色图av天堂| or卡值多少钱| 联通29元200g的流量卡| 国产蜜桃级精品一区二区三区| 韩国av在线不卡| 亚洲人成网站在线播放欧美日韩| 男女视频在线观看网站免费| 特级一级黄色大片| 九九热线精品视视频播放| av黄色大香蕉| 少妇丰满av| 美女 人体艺术 gogo| 日本-黄色视频高清免费观看| 深爱激情五月婷婷| a级一级毛片免费在线观看| 日韩人妻高清精品专区| 美女内射精品一级片tv| 天天一区二区日本电影三级| 色吧在线观看| 国产精品一二三区在线看| 国产精品一区二区性色av| 毛片一级片免费看久久久久| 内射极品少妇av片p| 国产成人精品婷婷| 十八禁国产超污无遮挡网站| 少妇被粗大猛烈的视频| 一级av片app| 久久精品人妻少妇| 麻豆成人午夜福利视频| 寂寞人妻少妇视频99o| 久久韩国三级中文字幕| 九草在线视频观看| 最近中文字幕高清免费大全6| 国产伦精品一区二区三区四那| 精品一区二区免费观看| 九九爱精品视频在线观看| 国产亚洲5aaaaa淫片| 久久久久网色| 天堂中文最新版在线下载 | 国产精品不卡视频一区二区| a级毛片免费高清观看在线播放| 老师上课跳d突然被开到最大视频| 黄片无遮挡物在线观看| 国产麻豆成人av免费视频| 日本黄色视频三级网站网址| 日韩欧美精品免费久久| 国产精品1区2区在线观看.| 美女xxoo啪啪120秒动态图| 日韩大尺度精品在线看网址| 亚洲精品色激情综合| 亚洲人成网站在线播| 中文欧美无线码| 国产成人aa在线观看| 欧美日韩一区二区视频在线观看视频在线 | 成年女人永久免费观看视频| 亚洲欧美日韩高清在线视频| 久久中文看片网| 九九爱精品视频在线观看| 少妇人妻一区二区三区视频| 性欧美人与动物交配| 日韩人妻高清精品专区| 日韩 亚洲 欧美在线| 成年女人看的毛片在线观看| 男插女下体视频免费在线播放| 国产黄片美女视频| 欧美日韩乱码在线| 日韩国内少妇激情av| 欧美性猛交╳xxx乱大交人| 免费人成在线观看视频色| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产精品一及| 天堂影院成人在线观看| 菩萨蛮人人尽说江南好唐韦庄 | 一本精品99久久精品77| 国产蜜桃级精品一区二区三区| 亚洲av不卡在线观看| 亚洲欧美精品专区久久| 女人被狂操c到高潮| 日韩精品青青久久久久久| 国产真实乱freesex| 国产亚洲精品久久久久久毛片| av卡一久久| 日本熟妇午夜| 青春草亚洲视频在线观看| 国产精品野战在线观看| 国产精品三级大全| 麻豆一二三区av精品| 麻豆国产97在线/欧美| 亚洲欧美日韩高清在线视频| 国产av不卡久久| 国产亚洲av片在线观看秒播厂 | .国产精品久久| 亚洲aⅴ乱码一区二区在线播放| 91狼人影院| 国产视频首页在线观看| 中文资源天堂在线| 综合色丁香网| 免费看光身美女| av在线天堂中文字幕| 小蜜桃在线观看免费完整版高清| or卡值多少钱| 91狼人影院| 最近视频中文字幕2019在线8| 亚洲人成网站在线观看播放| 我要看日韩黄色一级片| 欧美激情国产日韩精品一区| 国产黄色小视频在线观看| 麻豆成人av视频| 噜噜噜噜噜久久久久久91| 赤兔流量卡办理| 一级毛片电影观看 | 亚洲无线观看免费| 99九九线精品视频在线观看视频| 尾随美女入室| 观看美女的网站| 中国美白少妇内射xxxbb| 中国国产av一级| 国产精品电影一区二区三区| 国产不卡一卡二| 精品一区二区三区视频在线| 国产午夜精品论理片| 国产精品久久久久久精品电影| 亚洲国产色片| 久久久久国产网址| 一区二区三区四区激情视频 | 久久99热这里只有精品18| 极品教师在线视频| 日韩中字成人| 精品久久久久久成人av| 久久婷婷人人爽人人干人人爱| 久久精品国产亚洲网站| 亚洲中文字幕一区二区三区有码在线看| 国产精华一区二区三区| 国产极品精品免费视频能看的| 日韩高清综合在线| 国产精品一区二区性色av| 久久久久九九精品影院| 熟妇人妻久久中文字幕3abv| 国产一区二区三区在线臀色熟女| 中文资源天堂在线| 午夜亚洲福利在线播放| 两性午夜刺激爽爽歪歪视频在线观看| а√天堂www在线а√下载| 国产 一区 欧美 日韩| 日韩中字成人| 中文字幕制服av| 日本与韩国留学比较| 久久精品国产亚洲网站| 97人妻精品一区二区三区麻豆| 国产亚洲欧美98| 色尼玛亚洲综合影院| 久久久午夜欧美精品| 日韩一区二区三区影片| 欧美日韩在线观看h| 色视频www国产| 欧美+亚洲+日韩+国产| 99热6这里只有精品| 国产av在哪里看| 又爽又黄无遮挡网站| 亚洲精品成人久久久久久| 亚洲欧美精品综合久久99| 国产一区二区在线观看日韩| 色尼玛亚洲综合影院| 久久亚洲精品不卡| 在线播放国产精品三级| 免费电影在线观看免费观看| 精品久久久噜噜| 精品久久久久久久久av| 日日摸夜夜添夜夜添av毛片| 狠狠狠狠99中文字幕| 大香蕉久久网| 一本久久精品| 国内少妇人妻偷人精品xxx网站| 可以在线观看的亚洲视频| 国内少妇人妻偷人精品xxx网站| 午夜激情福利司机影院| 哪个播放器可以免费观看大片| 蜜桃久久精品国产亚洲av| 菩萨蛮人人尽说江南好唐韦庄 | 青春草视频在线免费观看| 少妇的逼好多水| 看片在线看免费视频| 欧美性感艳星| 尾随美女入室| 日本爱情动作片www.在线观看| 九草在线视频观看| 亚洲欧美清纯卡通| 国产爱豆传媒在线观看| 国产亚洲欧美98| 国产不卡一卡二| 日本三级黄在线观看| 国产蜜桃级精品一区二区三区| 男女那种视频在线观看| 久久久久久大精品| 国产精品人妻久久久久久| 深爱激情五月婷婷| 黄色日韩在线| 国产精品嫩草影院av在线观看| 日韩av不卡免费在线播放| 麻豆av噜噜一区二区三区| 哪个播放器可以免费观看大片| 国产久久久一区二区三区| 爱豆传媒免费全集在线观看| 久久久欧美国产精品| 三级经典国产精品| 欧美zozozo另类| av天堂中文字幕网| 禁无遮挡网站| 久久精品人妻少妇| 晚上一个人看的免费电影| www.色视频.com| 亚洲人成网站高清观看| 狂野欧美激情性xxxx在线观看| 亚洲,欧美,日韩| 国国产精品蜜臀av免费| 久久亚洲国产成人精品v| 一级二级三级毛片免费看| 成人高潮视频无遮挡免费网站| 成人无遮挡网站| 三级国产精品欧美在线观看| 久久精品久久久久久久性| 久久精品夜夜夜夜夜久久蜜豆| 国产高清三级在线| 久久久精品欧美日韩精品| 黄色一级大片看看| 午夜精品在线福利| 自拍偷自拍亚洲精品老妇| 成熟少妇高潮喷水视频| 国产高清视频在线观看网站| 国产伦理片在线播放av一区 | 中文资源天堂在线| 好男人视频免费观看在线| av在线蜜桃| 免费在线观看成人毛片| 搡女人真爽免费视频火全软件| 日本一本二区三区精品| 听说在线观看完整版免费高清| 国产精品一区二区三区四区免费观看| 亚洲av免费高清在线观看| 2022亚洲国产成人精品| 99久久人妻综合| 天堂√8在线中文| 日韩在线高清观看一区二区三区| 毛片一级片免费看久久久久| 一区二区三区高清视频在线| 久久草成人影院| 久久久久久伊人网av| 麻豆一二三区av精品| 亚洲欧美日韩卡通动漫| 欧美激情久久久久久爽电影| 亚洲四区av| 免费看a级黄色片| 国内久久婷婷六月综合欲色啪| 少妇的逼好多水| 内射极品少妇av片p| 插阴视频在线观看视频| 日本五十路高清| 欧美高清性xxxxhd video| 亚洲国产欧美在线一区| 搞女人的毛片| 亚洲精品国产av成人精品| 亚洲精品乱码久久久久久按摩| 亚洲av不卡在线观看| 亚洲国产欧美在线一区| 一个人看视频在线观看www免费| 久久久久九九精品影院| 最好的美女福利视频网| 乱码一卡2卡4卡精品| 久久精品综合一区二区三区| 黄色一级大片看看| 在线免费十八禁| 欧美日韩精品成人综合77777| 亚洲不卡免费看| 菩萨蛮人人尽说江南好唐韦庄 | 在线观看66精品国产| 狠狠狠狠99中文字幕| 人妻制服诱惑在线中文字幕| 两个人视频免费观看高清| 成年版毛片免费区| 嫩草影院入口| 内射极品少妇av片p| 激情 狠狠 欧美| 国产精品乱码一区二三区的特点| 亚洲精品粉嫩美女一区| 十八禁国产超污无遮挡网站| 亚洲国产欧洲综合997久久,| 级片在线观看| 五月玫瑰六月丁香| 国产亚洲精品av在线| 一个人观看的视频www高清免费观看| 熟女电影av网| 99久久无色码亚洲精品果冻| 网址你懂的国产日韩在线| 69av精品久久久久久| 高清午夜精品一区二区三区 | 久久这里有精品视频免费| 国产精品一区二区三区四区久久| av在线老鸭窝| 97在线视频观看| 国产精品电影一区二区三区| 美女xxoo啪啪120秒动态图| 黄色日韩在线| 99在线视频只有这里精品首页| 国产精品乱码一区二三区的特点| 一区二区三区四区激情视频 | 欧美在线一区亚洲| 99视频精品全部免费 在线| 日本av手机在线免费观看| 三级男女做爰猛烈吃奶摸视频| 久久午夜亚洲精品久久| 91久久精品电影网| 麻豆精品久久久久久蜜桃| 热99在线观看视频| 国产成人精品一,二区 | 日本熟妇午夜| 一本久久精品| 国产精品久久久久久亚洲av鲁大| 蜜桃亚洲精品一区二区三区| 亚洲精品日韩av片在线观看| 国产精品久久电影中文字幕| 99久久精品热视频| 日本三级黄在线观看| 国产成年人精品一区二区| 久久久久久久久中文| 日日摸夜夜添夜夜爱| 人体艺术视频欧美日本| 午夜福利在线观看吧| 亚洲一区二区三区色噜噜| 国产麻豆成人av免费视频| 亚洲乱码一区二区免费版| 晚上一个人看的免费电影| 成人国产麻豆网| 尤物成人国产欧美一区二区三区| www日本黄色视频网| 国产亚洲欧美98| 色噜噜av男人的天堂激情| 亚洲图色成人| 最新中文字幕久久久久| 欧美最黄视频在线播放免费| 精品免费久久久久久久清纯| 国产精品久久久久久久电影| 欧美色视频一区免费| 久久精品人妻少妇| 蜜桃亚洲精品一区二区三区| 国产精品久久久久久精品电影| 99精品在免费线老司机午夜| 男女边吃奶边做爰视频| 欧美人与善性xxx| 亚洲婷婷狠狠爱综合网| 我的老师免费观看完整版| 99热这里只有是精品在线观看| 看非洲黑人一级黄片| 99久国产av精品| 精品国产三级普通话版| 亚洲天堂国产精品一区在线| 免费av毛片视频| 99久久成人亚洲精品观看| 天堂√8在线中文| 国产伦理片在线播放av一区 | 精品人妻熟女av久视频| 大型黄色视频在线免费观看| 久久久国产成人精品二区| 日韩欧美一区二区三区在线观看| 久久久久久久亚洲中文字幕| 成年女人永久免费观看视频| 欧美日本视频| 久久综合国产亚洲精品| 看免费成人av毛片| 毛片一级片免费看久久久久| 亚洲人成网站在线播放欧美日韩| 国产精品美女特级片免费视频播放器|