• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The Stable Carbon Isotopic Compositions of n-Alkanes in Sediments of the Bohai and North Yellow Seas: Implications for Sources of Sedimentary Organic Matter

    2021-03-05 14:13:30DANGTianxiangCAOYunyunandXINGLei
    Journal of Ocean University of China 2021年2期
    關(guān)鍵詞:順利進(jìn)行圖像識(shí)別電力設(shè)備

    DANG Tianxiang, CAO Yunyun, and XING Lei, *

    The Stable Carbon Isotopic Compositions of-Alkanes in Sediments of the Bohai and North Yellow Seas: Implications for Sources of Sedimentary Organic Matter

    DANG Tianxiang1), 2), CAO Yunyun1), 2), and XING Lei1), 2), *

    1) Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China,Qingdao 266100, China 2) Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China

    Stable carbon isotopic compositions of-alkanes in surface sediments of the Bohai and North Yellow Seas were investigated to elucidate sources of sedimentary organic matter in these seas. The long-chain-alkanes in surface sediments are predominantly long-chainC27, C29, and C31types, with obvious odd carbon predominance. The δ13C values of long-chain-C27,-C29, and-C31alkanes are ?30.8%±0.5‰, ?31.9%±0.6‰, and ?32.1%±1.0‰, respectively, within the range of-alkanes of C3terrestrial higher plants. This suggests that sedimentary-alkanes are derived mainly from terrestrial higher plants. Compound-specific carbon isotopic analysis of long-chain-alkanes indicates that C3terrestrial higher plants predominate (64%–79%), with angiosperms being the main contributors.The-alkane δ13C values indicate that mid-chain-alkanes in sediments are derived mainly from aquatic emergent macrophytes, with significant petroleum pollution and bacterial degradation sources for short-chain-alkanes.

    biomarker; carbon isotopes;-alkanes; Bohai Sea; North Yellow Sea

    1 Introduction

    The Bohai Sea (BS) and Yellow Sea (YS) are typical semi-enclosed marginal shallow seas of China, with complex hydrodynamics and large inputs of land-based materials. The annual organic carbon flux from the Yellow River and other rivers to the YS and BS is (1210 ± 240) × 104ton (t) yr?1, accounting for 79% of all organic carbon entering these seas (Liu., 2015a), while atmospheric deposition contributes < 2% (Qiao., 2017). In addition, the Yellow Sea Warm Current (YSWC) transports about 106tyr?1of Yangtze River sediments to the North Yellow Sea (NYS) (Gao., 1996). The tracing of sedi- mentary organic matter (SOM) sources improves understanding of the organic matter cycle in aquatic environments (Hedges., 1997). SOM is a complex mixture of marine and terrestrial organic compounds, and it is difficult to quantitatively distinguish its sources at the edge of the continental shelf. Normal (-) alkanes are commonly applied as biomarkers given their widespread occurrence in marine and terrestrial environments, and can be preserved in marine sediments. Compositions and distributions of-alkanes from different biological sources are generally different. In addition, compared with fatty acids and alkanols, structure of-alkanes is relatively stable and has strong anti-degradation ability (Mead, 2005). Previous studies have shown that- alkanes may be effective in characterizing sources of SOM in coastal marine systems (Xing., 2011; Wang., 2013). Long-chain-alkanes derived from terrestrial higher plants are most abundant in C27, C29, and C31-alkanes (Bray and Evans, 1961). The freshwater and marine non-emergent macrophytes and sphagnum mosses are enriched in mid-chain-alkanes (Pancost, 2002; Mead, 2005; Mügler, 2008; Bush and Mc- Inerney, 2013). Short-chain-alkanes with odd carbon predominance such as C17-alkane are generally considered to be derived from aquatic algae and photosynthetic bacteria (Meyers and Ishiwatari, 1993; Silliman and Schelske, 2003; Liu, 2012). Additionally, petroleum-derived hydrocarbons also contribute short-chain-alkanes, with no obvious odd/even predominance (Hos- tettler, 1999). The long-chain (≥C24)-alkanes have clear odd carbon-number predominance in the NYS, indicating predominant input of terrestrial higher plant material (Lu., 2011). Analyses of-alkanes in sediments of the Yellow River Estuary indicate that SOM originates mainly from terrigenous inputs, while marine microorganisms contribute to short-chain (C12–C22)-al- kanes offshore (Wang., 2018). Compositional analysis of-alkanes in surface sediments of the central South Yellow Sea (SYS) indicates that SOM is derived mainly from terrestrial higher plant input from the modern and old Yellow rivers, with the contribution of herbaceous to woody plants is comparable (Zhang., 2014).

    Similar chemical-alkane compositions have been found in different types of organisms, which may confuse their interpretation (Ficken., 2000; Mead., 2005; Sikes., 2009). However, stable carbon isotopic com- positions of individual-alkanes from different sources in marine sediments are generally distinctive and may therefore constrain their sources (Hayes., 1990; Mead., 2005; Ankit., 2017), with-alkane com- positions and stable carbon isotopic characteristics together having been used to identify SOM sources (Eg- linton, 1969; Jeng and Huh, 2008; Hu., 2013). Previous studies have shown that stable carbon isotopic compositions of long-chain-alkanes in surface soils of eastern China can be used as an indicator of C3/C4plant proportions in overlying vegetation (Rao., 2008). The analysis of long-chain-alkanes and their stable carbon isotopic compositions in sediments of Qinghai Lake indicates that δ13C values of C31-alkanes are consistent with those of modern land plants around the lake, and can therefore be used as a reliable tracer of C3/C4compositions of terrestrial vegetation (Liu., 2015b). A recent study found that δ13C values of organic matter indicate that terrestrial organic carbon from the Yellow River accumulates mainly at the river mouth and in two muddy areas around it (Sun., 2018a).

    Until now, little has been known of the spatial distribution of-alkane stable carbon isotopes in sediments of the BS and NYS. The aim of this study was to elucidate the stable carbon isotopic composition of SOM-alkanes and the sources of-alkanes in surface sediments of the BS and NYS.

    2 Study Area and Methods

    2.1 Study Area

    The BS is a shallow, semi-enclosed epicontinental sea. About 90% of its sediment input is supplied by the surrounding rivers, especially the Yellow River. The YS is a shallow, semi-enclosed, continental margin West Pacific sea, with an area of 400,000 km2and an average water depth of 44 m, joining the BS in the north and the East China Sea in the south. The YS is divided into southern and northern parts by the Shandong and Korean peninsulas. The overall topography of the NYS seabed is inclined southward. Water depths in the BS and NYS are generally < 60m. In the study area, surface currents include coastal currents and the northwestward YSWC (Fig.1). The YSWC is a branch of the Tsushima Current with warm and saline water. There is no major direct local riverine input to the YS although, over time, fine-grained riverine sediment can be resuspended and transported from the BS to the YS by coastal currents. Analyses of sediment sources indicate that fine-grained sediments within the NYS originate mainly in the modern and old Yellow Rivers (Alexander., 1991; Lim., 2007). From 1976 to 2005, runoff and sediments from the Yellow River averaged 140.36×108m3yr?1and 3.31×108tyr?1, respectively (Cui and Li, 2011), with most sedimentary materials being deposited in front edge of the delta and estuary, and finer grained sediment transported to the coastal and shelf areas outside the Yellow River estuary. Muddy sediments along the north coast of Shandong Peninsula are considered to be directly and indirectly from the Yellow River (Yang and Liu, 2007). In addition to riverine input, coastal erosion from the old Yellow River Delta also contributes to sediments (Hu., 1998).

    Fig.1 Sampling sites and surface currents in the BS and NYS. BSCC, Bohai Sea Coastal Current; SDCC, Shandong Coastal Current; YSCC, Yellow Sea Coastal Current; YSWC, Yellow Sea Warm Current; LDCC, Liaodong Peninsula Coastal Current. Blocks represent the sites. Shading indicates the muddy areas.

    2.2 Samples

    Surface sediments (0–3cm depth) were collected from 23 sites in the BS and NYS using a box corer deployed fromduring a cruise sponsored by the National Natural Science Foundation of China (NSFC) in June 2011 (Fig.1). Sediment samples were wrapped in aluminum foil and stored at ?20℃ until analysis.

    2.3 Analytical Methods

    2.3.1 Lipid extraction and purification of-alkanes

    Freeze-dried, powdered, and homogenized sediment samples were extracted four times with dichloromethane/ methanol (DCM/MeOH; 3:1, v/v) with ultrasonication (15min each time), after adding internal standards containingC24D50. Extracts of the samples were dried in a N2stream and hydrolyzed with 6% KOH in MeOH. Non- polar fractions containing-alkanes were separated using activated silica gel column chromatography with elution by-hexane, anddried in a N2stream.

    To accurately measure the δ13C values of individual-alkanes,-alkanes need to be further purified. Zeolite molecular sieve is a commonly used and high recovery method for-alkanes purification. The extracted-alkanes were transferred to a columnwith AgNO3-Silica gel and molecular sieve, and then eluted with-hexane to ensure the components of the inner wall of the AgNO3- Silica gel glass column were completely transferred into the molecular sieve. After elution of about 1.5mL, the upper AgNO3-Silica gel column was removed and the molecular sieve column was baked in an oven at 40℃ for >12h. Subsequently, the zeolite power was transferred to a 10mL Teflon bottle for digestion with HF to release-alkanes. A preheating Pasteur column (6mm, i.d.×2cm) filled with Na2SO4was used to remove residual HF before the-alkanes were extracted with-hexane (four times) and then was dried in a gentle N2stream pending instrumental analyses. The average recovery rate of long- chain (≥C26), mid-chain (C21–C25), short-chain(C15–C20)-alkanes in all samples was 63%, 53%, 57%, respectively.

    2.3.2-alkanes analysis

    The-alkane compositions were determined by an Agi- lent 6890N gas chromatography, with chromatographic separation on an HP-1 capillary column (50 m ×0.32mmi.d.× 0.17μmfilm thickness, J&W Scientific) using H2as a carrier gas (1.2mLmin?1). Samples were injected in splitless mode with an injector temperature of 300℃. Oven temperature was programmed from 80℃ to 200℃ at 25℃ min?1, 200℃ to 250℃ at 3℃min?1, 250℃ to 300℃ at 1.8℃min?1,300 to 310℃at 5℃min?1, and holding at 310℃ for 5min. Quantification of compounds was performed by peak area integration in FID GC (Agilent 6890N) relative to the internal standards. The average relative standard deviation in concentrations was <10%.

    The average chain length (ACL; Cranwell, 1987), the terrigenous/aquatic ratio (TAR; Bourbonniere and Meyers, 1996), the Pmar-aq(odd mid-chain alkanes/odd mid- and long-chain alkanes; Ficken, 2000; Mead, 2005) of-alkanes were calculated as follows:

    2.3.3 Stable carbon isotopic composition (δ13C) analysis

    Gas chromatography isotope ratio mass spectrometry (GC-IRMS; on an HP 6890 GC coupled with a Thermo Delta-V system.) was used to measure stable carbon isotopic compositions of-alkanes. Chromatographic separation was achieved using a DB-1MS capillary column (60m×0.32mmi.d.×0.25μm film thickness, J & W Scientific). The GC oven temperature was programmed from 60℃ to200℃ at 15℃min–1, 200℃ to 250℃ at 4℃min–1, 250℃ to 300℃ at 1.8℃min–1, 300 to310℃ at 5℃min–1, and holding at 310℃ for 5min. The authentic standard was analyzed under the same conditions after every seven samples. The standard deviation for duplicate analysis of the standard was 0.3‰. Isotopic ratios were expressed as δ13C values (per mil) relative to the Vienna Pee Dee Be- lemnite (VPDB).

    3 Results

    3.1 Composition of n-Alkanes and the Hydrocarbon Indices

    The GC-FID chromatograms of-alkanes showed that-alkaneswereeffectively purified after using the molecular sieve (Fig.2). Total-alkane contents (SC15–35) ranged from 456 to 3837ngg?1(average=1897ngg?1). The contents of long-chain-alkanes (SC25–35) ranged from 267 to 2826ngg?1(average=1300ngg?1). In addition, the average percentage of long-chain, mid-chain, short-chain-alkanes in samples was 58%, 27%, 14%, re- spectively. Furthermore, the total-alkane contents of samples from muddy areas (average = 2666ngg?1) were significantly higher than those from non-muddy areas (average=1683ngg–1). The ACL values varied between 26.1 and 28.9(Fig.4a). The values of TAR and Pmar-aqranged from 3.4 to 25.7,from 0.2 to 0.7 (Figs.4b, 4c), res- pectively.

    Fig.2 GC-FID chromatograms for n-alkanes of surface sediments (site B28): (a), Before purification; (b), After purification.

    3.2 δ13C Values of n-Alkanes in Surface Sediments

    Compound-specific average δ13C values of-alkanes in surface sediments were shown in Fig.3, with average individual values for C17–C31of ?30.1‰±0.5‰, ?28.7‰± 0.4‰, ?29.8‰±0.6‰, ?28.4‰±0.3‰, ?29.9‰±0.5‰, ?29.4‰ ±0.6‰, ?30.4‰±0.3‰, ?29.9‰±0.5‰, ?30.2‰±0.5‰, ?30.1‰±0.5‰, ?30.8‰±0.5‰, ?30.8‰±0.8‰, ?31.9‰±0.6‰, ?31.7‰±1.1‰, and ?32.1‰±1.0‰, respectively. In both the BS and NYS, δ13C values of mid-chain-alkanes (C21–C23) varied within a narrow range, while those of short- and long-chain-alkanes were more variable. Furthermore, for short- and mid-chain-alkanes, δ13C values of even-carbon-numbered cases were more positive than those of odd-carbon-numbered cases.

    Fig.3 Compound-specific average δ13C values for the individual n-alkanes (C17–C31) from 23 BS and NYS samples.

    4 Discussion

    4.1 Long-Chain n-Alkanes

    The contents of long-chain-alkanes were relatively high and exhibited a strong odd carbon predominance in C27, C29, and C31homologues (Fig.3), consistent with terrestrial higher plant sources. The ACL describes the average number of carbon atoms in odd carbon-alkanes in higher plants (Cranwell, 1987). The ACL values of BS and NYS surface sediments ranged from 26.1 to 28.9 (average = 27.5). ACL value of about 29 in sediments near the Yellow River estuary suggests an origin of terrestrial higher plants (Fig.4a). The relative contribution of terrestrial-alkanes to marine sediments can be assessed using the TAR index. TAR values of BS and NYS surface sediments ranged from 3.4 to 25.7, with an average value of 14.1 (Fig.4b). This indicates a predominance of terrigenous-alkanes input (Ankit., 2017). Furthermore, compositional analysis of-alkanes in surface sediments of the BS and NYS also indicates that long- chain-alkanes are derived mainly from terrestrial higher plant input (Cao,, 2018). Hence, Long-chain-al- kanes in the study areas were thus mainly derived from such plants.

    The δ13C values of long-chain-alkanes produced by C3and C4plants typically range from ?31.0‰ to ?39.0‰ and ?18.0‰ to ?25.0‰, respectively (Collister., 1994; Schefu?., 2003). Modern terrestrial higher plants from eastern China are characterized by-alkane δ13C values of ?21.9‰ to ?34.8‰, ?25.3‰ to ?36.1‰, and ?22.9‰ to ?36.7‰ for C27, C29, and C31components (Rao., 2008), consistent with our corresponding average δ13C values of ?30.8%±0.5‰, ?31.9%±0.6‰, and ?32.1%±1.0‰ (Fig.3), respectively, and indicating that long-chain-alkanes are mainly derived from terrigenous sources. Generally, odd-carbon-numbered long-chain- alkanes are somewhat13C-enriched than those of even- carbon-numbered long-chain-alkanes in terrestrial higher plants (Chikaraishi and Naraoka, 2003). However, our results showed δ13C values of even-carbon-numberedlong-chain-alkanes (C26–30) were more positive than those of odd-carbon-numbered long-chain-alkanes (C27–31) in the study area (Fig.3). This implies there may be different sources of even-carbon-numbered long-chain-alkanes. A previous study reported14C ages forC29+31alkanes (Δ14C = ?288‰ to ?612‰) of 2670 to 755014C yr, which differ markedly from those of strongly14C- depletedC26+28+30+32alkanes (Δ14C = ?700‰ to ?961‰) ages of 9600 to 2605014C yr for Yellow River suspended particulate matter, implying ancient organic carbon inputs (Tao., 2015). This may indicate that even-carbon- numbered long-chain-alkanes in the BS and NYS are derived from ancient organic carbon.

    Fig.4 Spatial distribution of n-alkane indices: (a), ACL; (b), TAR; (c), Pmar-aq and (d), C3plants contribution to n-alkanes and C3/C4 ratio in surface sediments, based on the end-member modeling of compound-specific δ13C values in the study area.

    Weighted mean average δ13C of long-chain-alkanes from sediment samples were determined to calculate the changes in biomass of C3and C4plants in historical periods (Kuang., 2013). A binaryend-member mixing model was used to estimate the relative contributions of long-chain-alkanes from C3and C4plants(Garcin., 2014), with δ13C values of ?36.0‰ and ?21.0‰ being used as end-members for these plants, respectively (Col- lister., 1994; Zhang., 2003). Calculations were performed as follows:

    = (δ13C27× C27+ δ13C29× C29+ δ13C31× C31)/( C27+ C29+ C31) = (?36.0‰) ×+ (?21.0‰) × (100% ?), (4)

    whereis the weighted mean average δ13C value of long-chain-alkanes, andis the C3contribution (%).

    End-member estimations for the BS and NYS indicated that terrestrial C3plants were dominant-alkane sources, with relative contributions of 64%–79% (Fig.4d).This is consistent with the predominance of C3plants in north China, with a previous study having shown that δ13C values of-alkanes in aerosols near the north China coast have terrestrial C3plant origins with the C4contribution being negligible (Guo., 2006).Moreover, soil organic matterδ13C values in a N–S section (34–52?N) through central and eastern Asia indicate that vegetation in the area comprises mainly C3plants (Feng., 2008). Records of δ13Cvalues in surface soils of northeast China indicate that the abundance of C4plants is relatively high in warm periods and almost exclusively C3plants exist in cold periods (Sun., 2018b). Previous studies have shown thatδ13C values of dominant C3plants in the Chinese Loess Plateau range from ?30.7‰ to ?22.6‰, with average value of 27.2‰ (Zheng and Shangguan, 2007) and ?27.1%±2.4‰ (=39; Liu., 2005). Both δ13C values of total organic carbon and long-chain-alkanesderived from terrestrial higher plants show minor variations among surface soil samples from northern China,indicating the major contributor is from local grasses with a uniform C3photosynthetic pathway (Rao., 2011). It is likely, therefore, that long-chain-alkanes in BS and NYS surface sediments are mainly derived from terrestrial higher plants, particularly C3plants.

    Furthermore, recent studies have also shown thatδ13C valuesof-alkanes in gymnosperms are heavier than those in angiosperms (Diefendorf., 2011; Lane, 2017; Zhao., 2018). And angiospermδ13C values generally decrease with increasing chain length of-alkanes, while gymnosperm values increase (Bush and McInerney, 2009).It is clear here that δ13C values of long-chain-alkanes decrease with increasing chain length (Fig.3). Average δ13Cvalues of C29and C31-alkanes are ?31.9%±0.6‰ and ?32.1%±1.0‰, respectively, similar to values for herbaceous plants in the modern Yellow River drainage basin (?31.1‰ to ?31.5‰ for C29-alkanes, and ?31.3‰ to ?32.6‰ for C31-alkanes in dust episode periods,Guo., 2006).This suggests that the contribution of C3angiosperms to the sedimentary long-chain-alkanes is greater. This is consistent with the predominance of angiosperms in the last glacial period and Holocene on the Chinese Loess Plateau (Li., 2016).

    4.2 Mid-Chain n-Alkanes

    C21, C23, and C25-alkanes are mainly contributed by aquatic plants. Previous studies have shown that theδ13C values of mid-chain-alkanes in aquatic emergent macro- phytes range from ?28.6‰to ?31.2‰ (Chikaraishi and Naraoka, 2003; Mead., 2005). Although non-emer- gent marine macrophytes can also produce mid-chain-alkanes, their δ13C values are relatively heavy, ranging from ?13.0‰ to ?22.0‰ (Ficken., 2000; Jaffé., 2001). In the NYS, there was little difference between stable carbon isotopic compositions of samples from muddy and non-muddy areas: average δ13C values of mid-chain-alkanes (C21, C23, and C25) in non-muddy areas were ?29.8‰, ?30.3‰, and ?30.2‰, respectively, and those in muddy areas were ?29.7‰, ?30.3‰, and ?30.2‰, respectively. This also applied to the BS, where average δ13C values were ?29.7‰, ?30.4‰, and ?30.2‰, respectively, indicating that stable carbon isotope compositions of mid-chain-alkanes in the BS and NYS were similar. The narrow range of these values may be due to there being a common source for BS and NYS sediments, namely the Yellow River (Bi., 2010). The δ13C values of C21, C23, and C25-alkanes fell within the range of values for the corresponding-alkanes in aquatic emergent macrophytes, with sediment mid-chain-alkanes in the study area thus being mainly derived from such plants. Furthermore, the Pmar-aq index provides a measure of the relative contributions of aquatic non-emergent/emergent plants and terrestrial vegetation, with values of <0.25 corresponding to terrigenous plants, 0.3–0.6 to aqua- tic emergent plants, and >0.6 to aquatic non-emergent macrophytes in coastal marine environments (Ficken, 2000; Mead, 2005). The Pmar-aq values ranged from 0.2 to 0.7 (average = 0.4) in the study area (Fig.4c). We concluded, therefore, that mid-chain-al- kanes were mainly derived from aquatic emergent macro- phytes in the BS and NYS.

    4.3 Short-Chain n-Alkanes

    Short-chain-alkanes are generally considered as being derived from microorganisms and marine algae. Those produced by marine planktonic algae are mainly C15, C17, and C19-alkanes with odd carbon predominance, while even-carbon-numbered short-chain-alka- nes (C16, C18,and C20) are derived from marine bacteria or petroleum hydrocarbons (Gogou., 2000; Wang and Fingas, 2006). Short-chain-alkanes in marine sediments are predominantly C17, indicating the major contribution of algae and photosynthetic bacteria (Han and Calvin, 1969), while even-carbon-numbered (C16–22)-alkanes in marine sediments are mainly attributable to non-photo- synthetic bacteria(Jeng and Huh, 2008). Most of sediments in the BS and NYS exhibited an even-carbon- number preference in the range of-C16to-C22(Fig.3), indicating that these short-chain-alkanes could be from non-photosynthetic bacterial sources. Thevalues of- C18/-C17can be used to compare the relative contributions of-alkanes from petroleum-derived-alkanes and natural-alkanes from algae and photosynthetic bacteria. Here, the calculated-C18/-C17values of surface sediments are higher than 1 at all stations, indicating that short-chain-alkanes are affected by petroleum pollution to some degree. Extremely depleted △14C values (?932‰ to ?979‰) for short-chain-alkanes (C16and C18) were found in BS and YS sediments, suggesting a predominant input from sedimentary rocks (organic carbon) or petroleum products(Tao., 2016). The average δ13C value of short-chain-alkanes, δ13C17, δ13C18, and δ13C19, is ?30.1%±0.5‰, ?28.7%±0.4‰, and ?29.8%±0.6‰, respectively (Fig.3). Previous studies show that the δ13CC17values of cyanobacteria vary from ?34.0‰ to ?36.0‰ (Kristen., 2010), while δ13C17and δ13C19values of petroleum hydrocarbons are about ?30.6‰ and ?31.0‰, respectively (Li., 2009). The average δ13C value of algae in Laizhou Bay is ?20.5‰ (Cai and Cai, 1993). Our results showed δ13C values of short-chain-alkanes were relatively lighter than those of algae, possibly due to biodegradation of bacteria and input of petroleum hydrocarbons or other sources.

    5 Conclusions

    The relative inputs of terrestrial and marine organic matter were assessed using-alkane. Terrigenous plants are the main source of-alkanes in BS and NYS sediments. Long-chain-alkanes in sediments were mostly derived from terrestrial sources with some contribution from biogenic and/or petroleum sources.The average δ13C values of long-chain-C27,-C29, and-C31alkanes are ?30.8% ± 0.5‰, ?31.9% ± 0.6‰, and ?32.1% ± 1.0‰, respectively, within the range of-alkanes δ13C values of terrestrial C3plants. A hydrocarbon source distribution derived using a binary end-number mixing model based on δ13C values of long-chain-alkanes indicates that organic matter in BS and NYS sediments is mainly sourced from C3plants, particularly angiosperms. The relative contribution of C3plants decreases from estuary to ocean. δ13C values of mid-chain-alkanes in surface sediments indicate that mid-chain-alkanes are mainly of aquatic emergent macrophyte origin. δ13C17, δ13C18and δ13C19values,-C18/-C17ratios indicate that short-chain-alkanes in BS and NYS sediments have complex sources including petroleum pollution and bacterial action.

    Acknowledgements

    This work was financially supported by the Ministry of Science and Technology of People’s Republic of China (No. 2016YFA0600904), and the National Natural Science Foundation of China (No. 41476058).

    Alexander, C. R., DeMaster, D. J., and Nittrouer, C. A., 1991. Sediment accumulation in a modern epicontinental-shelf setting: The Yellow Sea., 98: 51-72, https:// doi.org/10.1016/0025-3227(91)90035-3.

    Ankit, Y., Mishra, P. K., Kumar, P., Jha, D. K., Kumar, V. V., Ambili, V., and Anoop, A., 2017. Molecular distribution and carbon isotope of-alkanes from Ashtamudi Estuary, South India: Assessment of organic matter sources and paleo- climatic implications.,196: 62-70, https:// doi.org/10.1016/j.marchem.2017.08.002.

    Bi, N., Yang, Z., Wang, H., Hu, B., and Ji, Y., 2010. Sediment dispersion pattern off the present Huanghe (Yellow River) subdelta and its dynamic mechanism during normal river discharge period., 86: 352-362, https://doi.org/10.1016/j.ecss.2009.06.005.

    Bourbonniere, R. A., and Meyers, P. A., 1996. Sedimentary geolipid records of historical changes in the watersheds and productivities of Lakes Ontario and Erie., 41: 352-359, https://doi.org/10.4319/lo.1996.41.2.03 52.

    Bray, E. E., and Evans, E. D., 1961. Distribution of-paraffins as a clue to recognition of source beds.,22: 2-15, https://doi.org/10.1016/0016-7037 (61)90069-2.

    Bush, R. T., and McInerney, F. A., 2013. Leaf wax-alkane distributions in and across modern plants: Implications for paleoecology and chemotaxonomy., 117: 161-179, https://doi.org/10.1016/j.gca. 2013.04.016.

    Bush, R. T., and McInerney, F. A., 2009. Re-evaluating the isotopic divide between angiosperms and gymnosperms using-alkane δ13C values.Washing- ton D. C., 1-9.

    Cai, D., and Cai, A., 1993. The organic carbon isotope geo- chemistry study of Yellow River Mouth.–, 23 (10): 1105-1113, https://doi.org/10.1360/zb1993-23-10-1105.

    Cao, Y., Xing, L., Wang, X., and Zhao, M., 2018. Study on the indication of-alkanes in surface sediments from the Bohai Sea and the North Yellow Sea., 48: 104-113, https://doi.org/10.16441/j.cnki. hdxb.20160341 (in Chinese with English abstract).

    Chikaraishi, Y., and Naraoka, H., 2003. Compound-specific δD- δ13C analyses of-alkanes extracted from terrestrial and aquatic plants., 63: 361-371, https://doi.org/ 10.1016/S0031-9422(02)00749-5.

    Collister, J. W., Rieley, G., Stern, B., Eglinton, G., and Fry, B., 1994. Compound-specific δ13C analyses of leaf lipids from plants with differing carbon dioxide metabolisms., 21: 619-627, https://doi.org/10.1016/0146-63 80(94)90008-6.

    Cranwell, P. A., Eglinton, G., Robinson, N., 1987. Lipids of aquatic organisms as potential contributors to lacustrine sedi- ments-II., 11: 513-527, https://doi. org/10.1016/0146-6380(87)90007-6.

    Cui, B. L., and Li, X. Y., 2011. Coastline change of the Yellow River estuary and its response to the sediment and runoff (1976-2005)., 127: 32-40, https://doi.org/10. 1016/j.geomorph.2010.12.001.

    Eglinton, G., 1969. Organicgeochemistry the organic chemist’s approach. In:.Eglinton, G., Murphy, M. T. J. eds., Springer, Berlin, Heidelberg, 20-73, https://doi. org/ 10.1007/978-3-642-87734-6_2.

    Feng, Z. D., Wang, L. X., Ji, Y. H., Guo, L. L., Lee, X. Q., and Dworkin, S. I., 2008. Climatic dependency of soil organic carbon isotopic composition along the S-N Transect from 34?N to 52?N in central-east Asia., 257: 335-343, https://doi.org/10. 1016/j.palaeo.2007.10.026.

    Ficken, K. J., Li, B., Swain, D. L., and Eglinton, G., 2000. An-alkane proxy for the sedimentary input of submerged/ floating freshwater aquatic macrophytes., 31: 745-749, https://doi.org/10.1016/S0146-6380(00)00 081-4.

    Gao, S., Park, Y. A., Zhao, Y. Y., and Qin, Y. S., 1996. Trans- port and resuspension of fine-grained sediments over the southeastern Yellow Sea.. Seoul National Uni- versity Seoul, Korea, 83-98.

    Garcin, Y., Schefu?, E., Schwab, V. F., Garreta, V., Gleixner, G., Vincens, A., Todou, G., Séné, O., Onana, J. M., Achoun- dong, G., and Sachse, D., 2014. Reconstructing C3and C4vegetation cover using-alkane carbon isotope ratios in recent lake sediments from Cameroon, Western Central Africa., 142: 482-500, https://doi.org/10.1016/j.gca.2014.07.004.

    Gogou, A., Bouloubassi, I., and Stephanou, E. G., 2000. Marine organic geochemistry of the eastern Mediterranean: 1. Aliphatic and polyaromatic hydrocarbons in Cretan Sea surficial sediments., 68: 265-282, https:// doi.org/10.1016/S0304-4203(99)00082-1

    Guo, Z., Li, J., Feng, J., Fang, M., and Yang, Z., 2006. Com- pound-specific carbon isotope compositions of individual long-chain-alkanes in severe Asian dust episodes in the North China coast in 2002., 51: 2133-2140, https://doi.org/10.1007/s11434-006-2071-7.

    Han, J., and Calvin, M., 1969. Hydrocarbon distribution of algae and bacteria, and microbiological activity in sediments., 64 (2): 436- 443, https://doi.org/10.1073/pnas.64.2.436.

    圖像識(shí)別是一個(gè)至關(guān)重要的環(huán)節(jié),在這個(gè)環(huán)節(jié)中包含著多個(gè)不同的步驟,每一個(gè)步驟對(duì)于識(shí)別的結(jié)果都有重要的影響,決定著電力設(shè)備檢測(cè)工作能否順利進(jìn)行下去。

    Hayes, J. M., Freeman, K. H., Popp, B. N., and Hoham, C. H., 1990. Compound-specific isotopic analyses: A novel tool for reconstruction of ancient biogeochemical processes., 16: 1115-1128, https://doi.org/10.1016/0146- 6380(90)90147-R.

    Hedges, J. I., Keil, R. G., and Benner, R., 1997. What happens to terrestrial organic matter in the ocean?, 27: 195-212, https://doi.org/10.1016/S0146-6380 (97)00066-1.

    Hostettler, F. D., Pereira, W. E., Kvenvolden, K. A., Van Geen, A., Luoma, S. N., Fuller, C. C., and Anima, R., 1999. A record of hydrocarbon input to San Francisco Bay as traced by biomarker profiles in surface sediment and sediment cores., 64: 115-127, https://doi.org/10.1016/S03 04-4203(98)00088-7.

    Hu, L., Shi, X., Guo, Z., Wang, H., and Yang, Z., 2013. Sources, dispersal and preservation of sedimentary organic matter in the Yellow Sea: The importance of depositional hydrodyna- mic forcing., 335: 52-63, https://doi.org/10. 1016/j.margeo.2012.10.008.

    Jaffé, R., Mead, R., Hernandez, M. E., Peralba, M. C., and DiGuida, O. A., 2001. Origin and transport of sedimentary organic matter in two subtropical estuaries: A comparative, biomarker-based study., 32: 507-526, https://doi.org/10.1016/S0146-6380(00)00192-3.

    Jeng, W. L., and Huh, C. A., 2008. A comparison of sedimen- tary aliphatic hydrocarbon distribution between East China Sea and southern Okinawa Trough., 28: 582-592, https://doi.org/10.1016/j.csr.2007.11. 009.

    Kristen, I., Wilkes, H., Vieth, A., Zink, K. G., Plessen, B., Thorpe, J., Partridge, T. C., and Oberh?nsli, H., 2010. Bio- marker and stable carbon isotope analyses of sedimentary organic matter from Lake Tswaing: Evidence for deglacial wetness and early Holocene drought from South Africa., 44: 143-160, https://doi.org/10. 1007/s10933-009-9393-9.

    Kuang, H., Zhou, H., Hu, J., Yang, X., Peng, P., and Yang, H., 2013. Variations of-alkanes and compound specific carbon isotopes in sedments from Huguanyan Maar lake during the last glacial maximum and holoceneoptimum: Implications for paleovegetation., 33 (6): 1222-1233, https://doi.org/10.3969/j.issn.1001-7410.2013.06.18.

    Lane, C. S., 2017. Modern-alkane abundances and isotopic composition of vegetation in a gymnosperm-dominated ecosystem of the southeastern U.S. coastal plain.,105: 33-36, https://doi.org/10.1016/j.orggeo chem.2016.12.003.

    Li, Y., Xiong, Y., Yang, W., Xie, Y., Li, S., and Sun, Y., 2009. Compound-specific stable carbon isotopic composition of petroleum hydrocarbons as a tool for tracing the source of oil spills., 58: 114-117, https://doi.org/ 10.1016/j.marpolbul.2008.08.012.

    Li, Y., Yang, S., Wang, X., Hu, J., Cui, L., Huang, X., and Jiang, W., 2016. Leaf wax-alkane distributions in Chinese loess since the Last Glacial Maximum and implications for paleo- climate., 399: 190-197, https://doi. org/10.1016/j.quaint.2015.04.029.

    Lim, D. I., Choi, J. Y., Jung, H. S., Rho, K. C., and Ahn, K. S., 2007. Recent sediment accumulation and origin of shelf mud deposits in the Yellow and East China Seas., 73: 145-159, https://doi.org/10.1016/j.pocean. 2007.02.004.

    Liu, J., Yu, Z., Zang, J., Sun, T., Zhao, C., and Ran, X., 2015a. Distribution and budget of organic carbon in the Bohai and Yellow Seas., 30: 564-578, https:// doi.org/10.11867/j.issn.1001-8166.2015.05.0564 (in Chinese with English abstract).

    Liu, L. Y., Wang, J. Z., Guan, Y. F., and Zeng, E. Y., 2012. Use of aliphatic hydrocarbons to infer terrestrial organic matter in coastal marine sediments off China., 64: 1940-1946, https://doi.org/10.1016/j.marpolbul. 2012. 04.023.

    Liu, W., Ning, Y., An, Z., Wu, Z., Lu, H., and Cao, Y., 2005. Carbon isotopic composition of modern soil and paleosol as a response to vegetation change on the Chinese Loess Plateau., 48 (1): 93-99, https://doi.org/10.1360/02yd 0148.

    Liu, W., Yang, H., Wang, H., An, Z., Wang, Z., and Leng, Q., 2015b. Carbon isotope composition of long chain leaf wax- alkanes in lake sediments: A dual indicator of paleoenviron- ment in the Qinghai-Tibet Plateau., 83-84: 190-201, https://doi.org/10.1016/j.orggeochem.2015. 03.017.

    Lu, X., Chen, Y., Huang, G., Liu, D., Tang, J., Li, J., and Zhang, G., 2011. Distribution and sources of lipid biomakers in surface sediments of the Yellow Sea and Bohai Sea., 20: 1117-1122, https://doi.org/ 10.16258/j.cnki.1674-5906.2011.z1.013.

    Mead, R., Xu, Y., Chong, J., and Jaffé, R., 2005. Sediment and soil organic matter source assessment as revealed by the molecular distribution and carbon isotopic composition of-alkanes.,36: 363-370. https://doi. org/10.1016/j.orggeochem.2004.10.003

    Meyers, P. A., and Ishiwatari, R., 1993. The early diagenesis of organic matter in lacustrine sediments,, Springer, 185-209. https://doi.org/10.1007/978-1-4615-2890- 6_8.

    Mügler, I., Sachse, D., Werner, M., Xu, B., Wu, G., Yao, T., and Gleixner, G., 2008. Effect of lake evaporation on δD va- lues of lacustrine n-alkanes: A comparison of Nam Co (Tibe- tan Plateau) and Holzmaar (Germany)., 39: 711-729, https://doi.org/10.1016/j.orggeochem. 2008.02.008.

    Pancost, R. D., Baas, M., Van Geel, B., and Sinninghe Damsté, J. S., 2002. Biomarkers as proxies for plant inputs to peats: An example from a sub-boreal ombrotrophic bog., 33: 675-690, https://doi.org/10.1016/S0146- 6380(02)00048-7.

    Qiao, S., Shi, X., Wang, G., Zhou, L., Hu, B., Hu, L., Yang, G., Liu, Y., Yao, Z., and Liu, S., 2017. Sediment accumulation and budget in the Bohai Sea, Yellow Sea and East China Sea., 390: 270-281, https://doi.org/10.1016/j. margeo.2017.06.004.

    Rao, Z., Jia, G., Zhu, Z., Wu, Y., and Zhang, J., 2008. Compara- tive study and significance on carbon isotopes of total organic matter and long-chain-alkanes in topsoil of eastern China., 53: 2077-2084.

    Rao, Z., Zhu, Z., Jia, G., Zhang, X., and Wang, S., 2011. Compound-specific hydrogen isotopes of long-chain-alka- nes extracted from topsoil under a grassland ecosystem in northern China., 54: 1902-1911, https://doi.org/10.1007/s11430-011-4252-8.

    Schefu?, E., Ratmeyer, V., Stuut, J. B. W., Jansen, J. H. F., and Sinninghe Damsté, J. S., 2003. Carbon isotope analyses of-alkanes in dust from the lower atmosphere over the central eastern Atlantic., 67: 1757-1767, https://doi.org/10.1016/S0016-7037(02)01414-X.

    Sikes, E. L., Uhle, M. E., Nodder, S. D., and Howard, M. E., 2009. Sources of organic matter in a coastal marine environ- ment: Evidence from-alkanes and their δ13C distributions in the Hauraki Gulf, New Zealand., 113: 149- 163, https://doi.org/10.1016/j.marchem.2008.12.003.

    Silliman, J. E., and Schelske, C. L., 2003. Saturated hydro- carbons in the sediments of Lake Apopka, Florida., 34: 253-260, https://doi.org/10.1016/S0146- 6380(02)00169-9.

    Sun, D., Tang, J., He, Y., Liao, W., and Sun, Y., 2018a. Sources, distributions, and burial efficiency of terrigenous organic matter in surface sediments from the Yellow River Mouth, Northeast China.,118: 89-102, https:// doi.org/10.1016/j.orggeochem.2017.12.009.

    Sun, W., Zhang, E., Liu, E., Chang, J., Chen, R., and Shen, J., 2018b. Glacial-interglacial vegetation changes in Northeast China inferred from isotopic composition of pyrogenic carbon from Lake Xingkai sediments.,121: 80-88, https://doi.org/10.1016/j.orggeochem.2018.03.004.

    Tao, S., Eglinton, T. I., Montlu?on, D. B., McIntyre, C., and Zhao, M., 2016. Diverse origins and pre-depositional histo- ries of organic matter in contemporary Chinese marginal sea sediments., 191: 70-88, https://doi.org/10.1016/j.gca.2016.07.019.

    Tao, S., Eglinton, T. I., Montlu?on, D. B., McIntyre, C., and Zhao, M., 2015. Pre-aged soil organic carbon as a major component of the Yellow River suspended load: Regional significance and global relevance.,414: 77-86, https://doi.org/10.1016/j.epsl.2015. 01.004.

    Wang, S., Liu, G., Yuan, Z., and Da, C., 2018.-Alkanes in sediments from the Yellow River Estuary, China: Occurrence, sources and historical sedimentary record., 150: 199-206, https://doi.org/10.1016/j. ecoenv.2017.12.016.

    Wang, Y., Liu, D., Richard, P., and Li, X., 2013. A geochemical record of environmental changes in sediments from Sishili Bay, northern Yellow Sea, China: Anthropogenic influence on organic matter sources and composition over the last 100 years.,77: 227-236, https://doi.org/ 10.1016/j.marpolbul.2013.10.001.

    Wang, Z., and Fingas, M., 2006. Oil and petroleum product fingerprinting analysis by gas chromatographic techniques., 93: 1027.

    Xing, L., Zhang, H., Yuan, Z., Sun, Y., and Zhao, M., 2011. Terrestrial and marine biomarker estimates of organic matter sources and distributions in surface sediments from the East China Sea shelf., 31: 1106-1115, https://doi.org/10.1016/j.csr.2011.04.003.

    Yang, Z. S., and Liu, J. P., 2007. A unique Yellow River-deri- ved distal subaqueous delta in the Yellow Sea., 240: 169-176, https://doi.org/10.1016/j.margeo.2007.02. 008.

    Zhang, S., Li, S., Dong, H., Zhao, Q., Lu, X., and Shi, J., 2014. An analysis of organic matter sources for surface sediments in the central South Yellow Sea, China: Evidence based on macroelements and-alkanes., 88: 389-397, https://doi.org/10.1016/j.marpolbul.2014.07.064.

    Zhang, Z., Zhao, M., Lu, H., and Faiia, A. M., 2003. Lower temperature as the main cause of C4plant declines during the glacial periods on the Chinese Loess Plateau., 214: 467-481, https://doi.org/10. 1016/S0012-821X(03)00387-X.

    Zhao, B., Zhang, Y., Huang, X., Qiu, R., Zhang, Z., and Meyers, P. A., 2018. Comparison of-alkane molecular, carbon and hydrogen isotope compositions of different types of plants in the Dajiuhu peatland, central China., 124: 1-11, https://doi.org/10.1016/j.orggeochem.2018.07.008.

    Zheng, S. X., and Shangguan, Z. P., 2007. Foliar δ13C values of nine dominant species in the Loess Plateau of China., 45 (1): 110-119, https://doi.org/10.1007/s11099- 007-0017-1.

    June 16, 2020;

    September 23, 2020;

    November 3, 2020

    ? Ocean University of China, Science Press and Springer-Verlag GmbH Germany 2021

    . E-mail: xinglei@ouc.edu.cn

    (Edited by Ji Dechun)

    猜你喜歡
    順利進(jìn)行圖像識(shí)別電力設(shè)備
    加強(qiáng)電力設(shè)備運(yùn)維云平臺(tái)安全性管理
    基于Resnet-50的貓狗圖像識(shí)別
    電子制作(2019年16期)2019-09-27 09:34:50
    高速公路圖像識(shí)別技術(shù)應(yīng)用探討
    科學(xué)課,合理的材料利于課的進(jìn)行
    科學(xué)課,合理的材料利于課的進(jìn)行
    圖像識(shí)別在物聯(lián)網(wǎng)上的應(yīng)用
    電子制作(2018年19期)2018-11-14 02:37:04
    圖像識(shí)別在水質(zhì)檢測(cè)中的應(yīng)用
    電子制作(2018年14期)2018-08-21 01:38:16
    電力設(shè)備運(yùn)維管理及安全運(yùn)行探析
    基于壓縮感知的電力設(shè)備視頻圖像去噪方法研究
    基于改進(jìn)Canny算子的電力設(shè)備圖像檢測(cè)研究
    3wmmmm亚洲av在线观看| 性色av一级| 99久久中文字幕三级久久日本| www.av在线官网国产| 久久久久久人妻| 91在线精品国自产拍蜜月| 亚洲精品亚洲一区二区| 九九在线视频观看精品| 如何舔出高潮| 亚洲欧美清纯卡通| 久久久精品94久久精品| 精品熟女少妇av免费看| 黄色欧美视频在线观看| 老司机亚洲免费影院| 校园人妻丝袜中文字幕| 在线观看三级黄色| 看非洲黑人一级黄片| 波野结衣二区三区在线| 国产一区有黄有色的免费视频| 2021少妇久久久久久久久久久| 午夜av观看不卡| 人体艺术视频欧美日本| 欧美成人精品欧美一级黄| 免费观看性生交大片5| 久久久久久伊人网av| 精品人妻熟女毛片av久久网站| 少妇 在线观看| 久久国内精品自在自线图片| 亚洲av日韩在线播放| tube8黄色片| 99热这里只有精品一区| 少妇猛男粗大的猛烈进出视频| 亚洲天堂av无毛| 久久久久久久久久人人人人人人| 久久久国产欧美日韩av| 国产成人免费无遮挡视频| 成人黄色视频免费在线看| 久久鲁丝午夜福利片| 涩涩av久久男人的天堂| 欧美3d第一页| 欧美精品亚洲一区二区| 国产精品一区二区在线不卡| 美女大奶头黄色视频| 看免费成人av毛片| kizo精华| 亚洲少妇的诱惑av| 久久久a久久爽久久v久久| 中文字幕亚洲精品专区| 建设人人有责人人尽责人人享有的| 亚洲精品久久午夜乱码| 精品国产乱码久久久久久小说| 亚洲精品aⅴ在线观看| 你懂的网址亚洲精品在线观看| 人人妻人人爽人人添夜夜欢视频| videos熟女内射| 狠狠精品人妻久久久久久综合| 性色avwww在线观看| 久久ye,这里只有精品| av播播在线观看一区| 99国产综合亚洲精品| 精品亚洲成a人片在线观看| 九色亚洲精品在线播放| 一级片'在线观看视频| 美女主播在线视频| 亚洲美女黄色视频免费看| 午夜福利在线观看免费完整高清在| 久久狼人影院| 午夜福利视频在线观看免费| 九九爱精品视频在线观看| 美女xxoo啪啪120秒动态图| 亚洲欧美成人综合另类久久久| 亚洲精品aⅴ在线观看| 国产精品人妻久久久久久| 如何舔出高潮| 久久久精品区二区三区| 免费观看性生交大片5| 免费久久久久久久精品成人欧美视频 | 亚洲欧美精品自产自拍| 人妻 亚洲 视频| 一级黄片播放器| 国模一区二区三区四区视频| 久久久精品94久久精品| 亚洲精品亚洲一区二区| 国产免费现黄频在线看| 国产日韩欧美亚洲二区| 日本欧美国产在线视频| 夫妻午夜视频| 国产精品人妻久久久影院| 国产精品无大码| 久久热精品热| 国产精品久久久久久久电影| 日韩欧美一区视频在线观看| 超碰97精品在线观看| 免费大片18禁| 国产亚洲最大av| 中国国产av一级| 一级毛片电影观看| 国产精品人妻久久久影院| 观看av在线不卡| 日韩中字成人| 五月伊人婷婷丁香| 黄片无遮挡物在线观看| 中文字幕人妻丝袜制服| 午夜福利,免费看| 精品亚洲成国产av| 日韩视频在线欧美| 亚洲欧美色中文字幕在线| 成人二区视频| 欧美亚洲日本最大视频资源| 欧美 亚洲 国产 日韩一| 精品久久国产蜜桃| 一级毛片电影观看| 狂野欧美激情性xxxx在线观看| 久久久久视频综合| 色吧在线观看| 日韩三级伦理在线观看| 菩萨蛮人人尽说江南好唐韦庄| av网站免费在线观看视频| 国产精品久久久久久久电影| www.av在线官网国产| 久久精品国产亚洲av涩爱| 赤兔流量卡办理| 一级爰片在线观看| 亚洲av不卡在线观看| 女性被躁到高潮视频| 久久 成人 亚洲| 久久精品久久精品一区二区三区| 亚洲情色 制服丝袜| 久久影院123| 在线观看免费高清a一片| 日本爱情动作片www.在线观看| 日日撸夜夜添| 极品人妻少妇av视频| 街头女战士在线观看网站| 人妻夜夜爽99麻豆av| 看十八女毛片水多多多| 秋霞伦理黄片| 80岁老熟妇乱子伦牲交| 国产高清三级在线| 午夜福利视频在线观看免费| 亚洲成人一二三区av| videossex国产| 高清不卡的av网站| 午夜91福利影院| av卡一久久| 久久国产亚洲av麻豆专区| a级毛片免费高清观看在线播放| 久久综合国产亚洲精品| 国产男人的电影天堂91| 精品午夜福利在线看| 人人妻人人澡人人看| 制服诱惑二区| 黄片无遮挡物在线观看| 91久久精品电影网| 日韩av在线免费看完整版不卡| 夜夜看夜夜爽夜夜摸| 国产在线免费精品| 日本免费在线观看一区| 亚洲欧美成人精品一区二区| 中文字幕制服av| 五月天丁香电影| 色婷婷久久久亚洲欧美| 王馨瑶露胸无遮挡在线观看| 免费观看无遮挡的男女| 好男人视频免费观看在线| 卡戴珊不雅视频在线播放| 久久97久久精品| 最近手机中文字幕大全| 国产69精品久久久久777片| 国产69精品久久久久777片| 蜜桃国产av成人99| 日本91视频免费播放| 欧美一级a爱片免费观看看| 蜜桃在线观看..| 免费观看av网站的网址| 欧美xxⅹ黑人| 日韩不卡一区二区三区视频在线| 中文精品一卡2卡3卡4更新| 亚洲欧洲日产国产| 毛片一级片免费看久久久久| 黄片播放在线免费| 精品卡一卡二卡四卡免费| av卡一久久| 免费日韩欧美在线观看| 夜夜骑夜夜射夜夜干| 久久久久网色| 内地一区二区视频在线| 伊人久久国产一区二区| 亚洲三级黄色毛片| 久久久国产精品麻豆| 中文字幕人妻丝袜制服| 2022亚洲国产成人精品| 精品午夜福利在线看| 国产视频首页在线观看| 丰满乱子伦码专区| 亚洲成人手机| 狂野欧美激情性bbbbbb| 蜜桃久久精品国产亚洲av| 亚洲国产毛片av蜜桃av| 欧美日韩综合久久久久久| 亚洲怡红院男人天堂| 成人漫画全彩无遮挡| 久久久久精品性色| 亚洲第一av免费看| 精品熟女少妇av免费看| 一区二区三区精品91| 我的女老师完整版在线观看| 国国产精品蜜臀av免费| 日韩成人av中文字幕在线观看| 一本久久精品| 久久久精品区二区三区| 新久久久久国产一级毛片| 久久久久久久亚洲中文字幕| 亚洲国产毛片av蜜桃av| 国产 精品1| 99热这里只有精品一区| 国产日韩欧美亚洲二区| 免费少妇av软件| 18+在线观看网站| 人妻制服诱惑在线中文字幕| 亚洲无线观看免费| 国产精品一区二区三区四区免费观看| 永久网站在线| 观看av在线不卡| 又大又黄又爽视频免费| 成人国产av品久久久| 久久精品夜色国产| 国产亚洲精品第一综合不卡 | 国产深夜福利视频在线观看| 人妻 亚洲 视频| 黄色配什么色好看| 亚洲精品亚洲一区二区| 看非洲黑人一级黄片| 啦啦啦在线观看免费高清www| 丰满迷人的少妇在线观看| 精品国产国语对白av| 日本欧美国产在线视频| 国产精品久久久久久精品古装| 99热这里只有精品一区| 午夜影院在线不卡| 岛国毛片在线播放| 2022亚洲国产成人精品| 少妇人妻 视频| 视频中文字幕在线观看| 成年人午夜在线观看视频| 纯流量卡能插随身wifi吗| 国产免费又黄又爽又色| 亚洲国产日韩一区二区| 国产男人的电影天堂91| 91精品一卡2卡3卡4卡| 国产精品国产av在线观看| av视频免费观看在线观看| 在线天堂最新版资源| 两个人的视频大全免费| 这个男人来自地球电影免费观看 | 国产欧美亚洲国产| 免费观看在线日韩| 国产一区二区在线观看日韩| 99热网站在线观看| av天堂久久9| 国产精品熟女久久久久浪| 欧美精品亚洲一区二区| 如何舔出高潮| 一级毛片aaaaaa免费看小| 亚洲久久久国产精品| 考比视频在线观看| 人妻夜夜爽99麻豆av| 中文欧美无线码| 国产一区亚洲一区在线观看| 欧美另类一区| 国语对白做爰xxxⅹ性视频网站| 国产精品99久久99久久久不卡 | 国产精品蜜桃在线观看| 十八禁高潮呻吟视频| 赤兔流量卡办理| 国产有黄有色有爽视频| 国产av精品麻豆| 国产伦精品一区二区三区视频9| 日本猛色少妇xxxxx猛交久久| av又黄又爽大尺度在线免费看| 亚洲国产精品一区三区| 亚洲四区av| 欧美精品高潮呻吟av久久| 国产av一区二区精品久久| 黄色配什么色好看| 中文欧美无线码| 久久综合国产亚洲精品| 免费日韩欧美在线观看| 欧美成人午夜免费资源| 国产色爽女视频免费观看| 亚洲中文av在线| 日韩不卡一区二区三区视频在线| 男女高潮啪啪啪动态图| 毛片一级片免费看久久久久| 午夜激情福利司机影院| 亚洲av不卡在线观看| av线在线观看网站| 国产一区二区三区综合在线观看 | a级片在线免费高清观看视频| 日韩,欧美,国产一区二区三区| 狠狠婷婷综合久久久久久88av| 久久久亚洲精品成人影院| 黄片播放在线免费| 久久 成人 亚洲| 久久久久网色| 伊人久久国产一区二区| 99re6热这里在线精品视频| 精品国产露脸久久av麻豆| 在线观看免费日韩欧美大片 | 91精品国产国语对白视频| 日韩亚洲欧美综合| 黑人巨大精品欧美一区二区蜜桃 | 免费大片18禁| 日日摸夜夜添夜夜爱| 2021少妇久久久久久久久久久| 另类精品久久| 日韩在线高清观看一区二区三区| 看十八女毛片水多多多| 免费观看在线日韩| 国产亚洲欧美精品永久| 成人18禁高潮啪啪吃奶动态图 | 午夜激情福利司机影院| 成人二区视频| 午夜免费男女啪啪视频观看| 国产精品一区二区在线观看99| 美女大奶头黄色视频| 亚洲国产av新网站| 好男人视频免费观看在线| 另类精品久久| 午夜视频国产福利| 久久免费观看电影| 午夜激情久久久久久久| 啦啦啦视频在线资源免费观看| 国产精品久久久久久精品电影小说| 在线观看人妻少妇| 中文字幕人妻丝袜制服| 如日韩欧美国产精品一区二区三区 | 亚洲性久久影院| freevideosex欧美| 国产精品免费大片| 一本一本综合久久| 在线观看一区二区三区激情| 国产精品99久久久久久久久| 插逼视频在线观看| 69精品国产乱码久久久| 国产精品人妻久久久影院| 欧美日韩视频高清一区二区三区二| 欧美日韩国产mv在线观看视频| 亚洲欧美中文字幕日韩二区| 如何舔出高潮| 黄色配什么色好看| 国产极品粉嫩免费观看在线 | 高清不卡的av网站| 国产精品久久久久久精品古装| 在线免费观看不下载黄p国产| 国产乱来视频区| 国产精品麻豆人妻色哟哟久久| 中国美白少妇内射xxxbb| 大香蕉久久网| 蜜臀久久99精品久久宅男| 亚洲精品乱久久久久久| 色视频在线一区二区三区| 少妇 在线观看| 亚洲人成网站在线观看播放| 欧美日韩一区二区视频在线观看视频在线| 亚洲国产av影院在线观看| 最近中文字幕高清免费大全6| 午夜激情av网站| 日日摸夜夜添夜夜添av毛片| 人妻夜夜爽99麻豆av| 午夜激情久久久久久久| 热re99久久精品国产66热6| 80岁老熟妇乱子伦牲交| 久久女婷五月综合色啪小说| av免费观看日本| 国精品久久久久久国模美| 久久久精品区二区三区| 另类亚洲欧美激情| 成人黄色视频免费在线看| 成人漫画全彩无遮挡| 国产视频内射| av.在线天堂| 啦啦啦视频在线资源免费观看| 熟妇人妻不卡中文字幕| 大陆偷拍与自拍| 夫妻午夜视频| 在线亚洲精品国产二区图片欧美 | 国产精品女同一区二区软件| 亚洲美女搞黄在线观看| 国产av精品麻豆| 中文字幕最新亚洲高清| 欧美日韩av久久| 99国产精品免费福利视频| 欧美精品一区二区免费开放| 国产成人a∨麻豆精品| 国产精品麻豆人妻色哟哟久久| 高清黄色对白视频在线免费看| 精品午夜福利在线看| 美女国产高潮福利片在线看| 国产精品不卡视频一区二区| 美女主播在线视频| 秋霞在线观看毛片| 男女免费视频国产| av在线播放精品| 蜜桃在线观看..| 亚洲欧洲日产国产| 免费黄频网站在线观看国产| 大香蕉久久成人网| 一区二区三区乱码不卡18| 日本91视频免费播放| 男的添女的下面高潮视频| 日日摸夜夜添夜夜爱| 久久精品国产亚洲av天美| 夜夜看夜夜爽夜夜摸| 亚洲综合色网址| 人妻系列 视频| 看十八女毛片水多多多| 日韩三级伦理在线观看| 亚洲欧美色中文字幕在线| 你懂的网址亚洲精品在线观看| 啦啦啦在线观看免费高清www| 欧美xxxx性猛交bbbb| 欧美激情 高清一区二区三区| 黄片无遮挡物在线观看| 91精品伊人久久大香线蕉| 在线观看人妻少妇| 如日韩欧美国产精品一区二区三区 | 色哟哟·www| 内地一区二区视频在线| 这个男人来自地球电影免费观看 | 亚洲欧美日韩另类电影网站| 18+在线观看网站| 搡女人真爽免费视频火全软件| 能在线免费看毛片的网站| kizo精华| 夫妻午夜视频| 日韩精品免费视频一区二区三区 | 久久精品国产亚洲av涩爱| 最新中文字幕久久久久| 2021少妇久久久久久久久久久| 欧美变态另类bdsm刘玥| 又大又黄又爽视频免费| 一本一本综合久久| 在线精品无人区一区二区三| 精品久久久久久电影网| 色婷婷久久久亚洲欧美| 亚洲丝袜综合中文字幕| 亚洲精品aⅴ在线观看| 精品一区在线观看国产| 欧美3d第一页| 伊人久久精品亚洲午夜| 免费不卡的大黄色大毛片视频在线观看| 精品一区二区三区视频在线| 少妇 在线观看| 欧美日本中文国产一区发布| 日韩制服骚丝袜av| 99久国产av精品国产电影| 91精品一卡2卡3卡4卡| 欧美bdsm另类| 久久久久国产精品人妻一区二区| 美女内射精品一级片tv| 97在线视频观看| 五月天丁香电影| 国产伦理片在线播放av一区| 亚洲欧洲国产日韩| 我要看黄色一级片免费的| 午夜福利视频在线观看免费| 在线精品无人区一区二区三| 精品国产一区二区久久| 亚洲成人手机| 欧美成人午夜免费资源| 久久国产精品大桥未久av| 亚洲av成人精品一二三区| 亚洲av电影在线观看一区二区三区| 丝袜脚勾引网站| 在线精品无人区一区二区三| 亚洲精品视频女| 黄片播放在线免费| 晚上一个人看的免费电影| 女人久久www免费人成看片| 亚洲精品亚洲一区二区| 少妇的逼好多水| 欧美日韩av久久| 国产成人午夜福利电影在线观看| 久久人妻熟女aⅴ| 交换朋友夫妻互换小说| 男女边吃奶边做爰视频| 日韩亚洲欧美综合| 99久久精品一区二区三区| 国产女主播在线喷水免费视频网站| 日韩av免费高清视频| 性色avwww在线观看| 乱码一卡2卡4卡精品| 亚洲成人av在线免费| 国产一区亚洲一区在线观看| 美女内射精品一级片tv| 欧美丝袜亚洲另类| 欧美人与善性xxx| 爱豆传媒免费全集在线观看| 大片免费播放器 马上看| 亚洲成人一二三区av| 精品少妇黑人巨大在线播放| 永久网站在线| 男女边吃奶边做爰视频| 欧美日韩国产mv在线观看视频| 飞空精品影院首页| 国产成人精品在线电影| 搡女人真爽免费视频火全软件| av电影中文网址| 午夜免费观看性视频| 交换朋友夫妻互换小说| av又黄又爽大尺度在线免费看| 日韩欧美精品免费久久| 午夜福利视频在线观看免费| 99国产综合亚洲精品| 亚洲怡红院男人天堂| 男男h啪啪无遮挡| av在线app专区| 寂寞人妻少妇视频99o| 国产高清国产精品国产三级| 久久人人爽人人片av| 久久久久久久久久人人人人人人| 国产精品免费大片| 国产亚洲精品第一综合不卡 | 涩涩av久久男人的天堂| 人成视频在线观看免费观看| 亚洲内射少妇av| 欧美日韩亚洲高清精品| 久久人妻熟女aⅴ| 亚洲综合色网址| 国产无遮挡羞羞视频在线观看| 亚洲成色77777| 日韩三级伦理在线观看| 亚洲av免费高清在线观看| 国产不卡av网站在线观看| 久久久亚洲精品成人影院| 久久久精品94久久精品| 亚洲五月色婷婷综合| 成人午夜精彩视频在线观看| 国产日韩欧美视频二区| 日韩欧美一区视频在线观看| 中文天堂在线官网| 亚洲欧美清纯卡通| 久久这里有精品视频免费| 人妻夜夜爽99麻豆av| 国产亚洲午夜精品一区二区久久| 99热6这里只有精品| 蜜桃在线观看..| 日韩中字成人| 99热这里只有是精品在线观看| 国产成人精品福利久久| 777米奇影视久久| 婷婷色av中文字幕| 成人亚洲欧美一区二区av| 成人国产av品久久久| 亚洲国产精品专区欧美| 国产免费视频播放在线视频| 久久99热6这里只有精品| 亚洲国产精品999| 欧美精品一区二区免费开放| 伦理电影免费视频| 久久精品国产亚洲av天美| 亚洲久久久国产精品| 欧美日韩在线观看h| 国产高清有码在线观看视频| 久久久久久久大尺度免费视频| 18+在线观看网站| 欧美人与性动交α欧美精品济南到 | 22中文网久久字幕| 九九久久精品国产亚洲av麻豆| 色视频在线一区二区三区| 91精品国产九色| 国产精品一国产av| 久久久久久久大尺度免费视频| 欧美日韩视频精品一区| 丝袜在线中文字幕| 如日韩欧美国产精品一区二区三区 | 免费观看在线日韩| 久久午夜福利片| 国产精品国产av在线观看| 七月丁香在线播放| 啦啦啦啦在线视频资源| 亚洲人成77777在线视频| av国产精品久久久久影院| 特大巨黑吊av在线直播| 亚洲成人av在线免费| 国产日韩一区二区三区精品不卡 | 中文字幕人妻熟人妻熟丝袜美| 欧美最新免费一区二区三区| 久久久精品94久久精品| 99热6这里只有精品| 亚洲成人av在线免费| 亚洲色图综合在线观看| 乱码一卡2卡4卡精品| 又大又黄又爽视频免费| 91精品国产九色| 18在线观看网站| 秋霞在线观看毛片| 国产不卡av网站在线观看| 成人国语在线视频| 国产精品蜜桃在线观看| 亚洲精品日韩在线中文字幕| 视频中文字幕在线观看| tube8黄色片| 一级,二级,三级黄色视频| 99九九在线精品视频| 午夜视频国产福利| 中国国产av一级| 在线观看免费视频网站a站| 我的女老师完整版在线观看| 国产在视频线精品| 麻豆成人av视频| 午夜久久久在线观看| av在线app专区| 国产伦精品一区二区三区视频9|