• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The Stable Carbon Isotopic Compositions of n-Alkanes in Sediments of the Bohai and North Yellow Seas: Implications for Sources of Sedimentary Organic Matter

    2021-03-05 14:13:30DANGTianxiangCAOYunyunandXINGLei
    Journal of Ocean University of China 2021年2期
    關(guān)鍵詞:順利進(jìn)行圖像識(shí)別電力設(shè)備

    DANG Tianxiang, CAO Yunyun, and XING Lei, *

    The Stable Carbon Isotopic Compositions of-Alkanes in Sediments of the Bohai and North Yellow Seas: Implications for Sources of Sedimentary Organic Matter

    DANG Tianxiang1), 2), CAO Yunyun1), 2), and XING Lei1), 2), *

    1) Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China,Qingdao 266100, China 2) Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China

    Stable carbon isotopic compositions of-alkanes in surface sediments of the Bohai and North Yellow Seas were investigated to elucidate sources of sedimentary organic matter in these seas. The long-chain-alkanes in surface sediments are predominantly long-chainC27, C29, and C31types, with obvious odd carbon predominance. The δ13C values of long-chain-C27,-C29, and-C31alkanes are ?30.8%±0.5‰, ?31.9%±0.6‰, and ?32.1%±1.0‰, respectively, within the range of-alkanes of C3terrestrial higher plants. This suggests that sedimentary-alkanes are derived mainly from terrestrial higher plants. Compound-specific carbon isotopic analysis of long-chain-alkanes indicates that C3terrestrial higher plants predominate (64%–79%), with angiosperms being the main contributors.The-alkane δ13C values indicate that mid-chain-alkanes in sediments are derived mainly from aquatic emergent macrophytes, with significant petroleum pollution and bacterial degradation sources for short-chain-alkanes.

    biomarker; carbon isotopes;-alkanes; Bohai Sea; North Yellow Sea

    1 Introduction

    The Bohai Sea (BS) and Yellow Sea (YS) are typical semi-enclosed marginal shallow seas of China, with complex hydrodynamics and large inputs of land-based materials. The annual organic carbon flux from the Yellow River and other rivers to the YS and BS is (1210 ± 240) × 104ton (t) yr?1, accounting for 79% of all organic carbon entering these seas (Liu., 2015a), while atmospheric deposition contributes < 2% (Qiao., 2017). In addition, the Yellow Sea Warm Current (YSWC) transports about 106tyr?1of Yangtze River sediments to the North Yellow Sea (NYS) (Gao., 1996). The tracing of sedi- mentary organic matter (SOM) sources improves understanding of the organic matter cycle in aquatic environments (Hedges., 1997). SOM is a complex mixture of marine and terrestrial organic compounds, and it is difficult to quantitatively distinguish its sources at the edge of the continental shelf. Normal (-) alkanes are commonly applied as biomarkers given their widespread occurrence in marine and terrestrial environments, and can be preserved in marine sediments. Compositions and distributions of-alkanes from different biological sources are generally different. In addition, compared with fatty acids and alkanols, structure of-alkanes is relatively stable and has strong anti-degradation ability (Mead, 2005). Previous studies have shown that- alkanes may be effective in characterizing sources of SOM in coastal marine systems (Xing., 2011; Wang., 2013). Long-chain-alkanes derived from terrestrial higher plants are most abundant in C27, C29, and C31-alkanes (Bray and Evans, 1961). The freshwater and marine non-emergent macrophytes and sphagnum mosses are enriched in mid-chain-alkanes (Pancost, 2002; Mead, 2005; Mügler, 2008; Bush and Mc- Inerney, 2013). Short-chain-alkanes with odd carbon predominance such as C17-alkane are generally considered to be derived from aquatic algae and photosynthetic bacteria (Meyers and Ishiwatari, 1993; Silliman and Schelske, 2003; Liu, 2012). Additionally, petroleum-derived hydrocarbons also contribute short-chain-alkanes, with no obvious odd/even predominance (Hos- tettler, 1999). The long-chain (≥C24)-alkanes have clear odd carbon-number predominance in the NYS, indicating predominant input of terrestrial higher plant material (Lu., 2011). Analyses of-alkanes in sediments of the Yellow River Estuary indicate that SOM originates mainly from terrigenous inputs, while marine microorganisms contribute to short-chain (C12–C22)-al- kanes offshore (Wang., 2018). Compositional analysis of-alkanes in surface sediments of the central South Yellow Sea (SYS) indicates that SOM is derived mainly from terrestrial higher plant input from the modern and old Yellow rivers, with the contribution of herbaceous to woody plants is comparable (Zhang., 2014).

    Similar chemical-alkane compositions have been found in different types of organisms, which may confuse their interpretation (Ficken., 2000; Mead., 2005; Sikes., 2009). However, stable carbon isotopic com- positions of individual-alkanes from different sources in marine sediments are generally distinctive and may therefore constrain their sources (Hayes., 1990; Mead., 2005; Ankit., 2017), with-alkane com- positions and stable carbon isotopic characteristics together having been used to identify SOM sources (Eg- linton, 1969; Jeng and Huh, 2008; Hu., 2013). Previous studies have shown that stable carbon isotopic compositions of long-chain-alkanes in surface soils of eastern China can be used as an indicator of C3/C4plant proportions in overlying vegetation (Rao., 2008). The analysis of long-chain-alkanes and their stable carbon isotopic compositions in sediments of Qinghai Lake indicates that δ13C values of C31-alkanes are consistent with those of modern land plants around the lake, and can therefore be used as a reliable tracer of C3/C4compositions of terrestrial vegetation (Liu., 2015b). A recent study found that δ13C values of organic matter indicate that terrestrial organic carbon from the Yellow River accumulates mainly at the river mouth and in two muddy areas around it (Sun., 2018a).

    Until now, little has been known of the spatial distribution of-alkane stable carbon isotopes in sediments of the BS and NYS. The aim of this study was to elucidate the stable carbon isotopic composition of SOM-alkanes and the sources of-alkanes in surface sediments of the BS and NYS.

    2 Study Area and Methods

    2.1 Study Area

    The BS is a shallow, semi-enclosed epicontinental sea. About 90% of its sediment input is supplied by the surrounding rivers, especially the Yellow River. The YS is a shallow, semi-enclosed, continental margin West Pacific sea, with an area of 400,000 km2and an average water depth of 44 m, joining the BS in the north and the East China Sea in the south. The YS is divided into southern and northern parts by the Shandong and Korean peninsulas. The overall topography of the NYS seabed is inclined southward. Water depths in the BS and NYS are generally < 60m. In the study area, surface currents include coastal currents and the northwestward YSWC (Fig.1). The YSWC is a branch of the Tsushima Current with warm and saline water. There is no major direct local riverine input to the YS although, over time, fine-grained riverine sediment can be resuspended and transported from the BS to the YS by coastal currents. Analyses of sediment sources indicate that fine-grained sediments within the NYS originate mainly in the modern and old Yellow Rivers (Alexander., 1991; Lim., 2007). From 1976 to 2005, runoff and sediments from the Yellow River averaged 140.36×108m3yr?1and 3.31×108tyr?1, respectively (Cui and Li, 2011), with most sedimentary materials being deposited in front edge of the delta and estuary, and finer grained sediment transported to the coastal and shelf areas outside the Yellow River estuary. Muddy sediments along the north coast of Shandong Peninsula are considered to be directly and indirectly from the Yellow River (Yang and Liu, 2007). In addition to riverine input, coastal erosion from the old Yellow River Delta also contributes to sediments (Hu., 1998).

    Fig.1 Sampling sites and surface currents in the BS and NYS. BSCC, Bohai Sea Coastal Current; SDCC, Shandong Coastal Current; YSCC, Yellow Sea Coastal Current; YSWC, Yellow Sea Warm Current; LDCC, Liaodong Peninsula Coastal Current. Blocks represent the sites. Shading indicates the muddy areas.

    2.2 Samples

    Surface sediments (0–3cm depth) were collected from 23 sites in the BS and NYS using a box corer deployed fromduring a cruise sponsored by the National Natural Science Foundation of China (NSFC) in June 2011 (Fig.1). Sediment samples were wrapped in aluminum foil and stored at ?20℃ until analysis.

    2.3 Analytical Methods

    2.3.1 Lipid extraction and purification of-alkanes

    Freeze-dried, powdered, and homogenized sediment samples were extracted four times with dichloromethane/ methanol (DCM/MeOH; 3:1, v/v) with ultrasonication (15min each time), after adding internal standards containingC24D50. Extracts of the samples were dried in a N2stream and hydrolyzed with 6% KOH in MeOH. Non- polar fractions containing-alkanes were separated using activated silica gel column chromatography with elution by-hexane, anddried in a N2stream.

    To accurately measure the δ13C values of individual-alkanes,-alkanes need to be further purified. Zeolite molecular sieve is a commonly used and high recovery method for-alkanes purification. The extracted-alkanes were transferred to a columnwith AgNO3-Silica gel and molecular sieve, and then eluted with-hexane to ensure the components of the inner wall of the AgNO3- Silica gel glass column were completely transferred into the molecular sieve. After elution of about 1.5mL, the upper AgNO3-Silica gel column was removed and the molecular sieve column was baked in an oven at 40℃ for >12h. Subsequently, the zeolite power was transferred to a 10mL Teflon bottle for digestion with HF to release-alkanes. A preheating Pasteur column (6mm, i.d.×2cm) filled with Na2SO4was used to remove residual HF before the-alkanes were extracted with-hexane (four times) and then was dried in a gentle N2stream pending instrumental analyses. The average recovery rate of long- chain (≥C26), mid-chain (C21–C25), short-chain(C15–C20)-alkanes in all samples was 63%, 53%, 57%, respectively.

    2.3.2-alkanes analysis

    The-alkane compositions were determined by an Agi- lent 6890N gas chromatography, with chromatographic separation on an HP-1 capillary column (50 m ×0.32mmi.d.× 0.17μmfilm thickness, J&W Scientific) using H2as a carrier gas (1.2mLmin?1). Samples were injected in splitless mode with an injector temperature of 300℃. Oven temperature was programmed from 80℃ to 200℃ at 25℃ min?1, 200℃ to 250℃ at 3℃min?1, 250℃ to 300℃ at 1.8℃min?1,300 to 310℃at 5℃min?1, and holding at 310℃ for 5min. Quantification of compounds was performed by peak area integration in FID GC (Agilent 6890N) relative to the internal standards. The average relative standard deviation in concentrations was <10%.

    The average chain length (ACL; Cranwell, 1987), the terrigenous/aquatic ratio (TAR; Bourbonniere and Meyers, 1996), the Pmar-aq(odd mid-chain alkanes/odd mid- and long-chain alkanes; Ficken, 2000; Mead, 2005) of-alkanes were calculated as follows:

    2.3.3 Stable carbon isotopic composition (δ13C) analysis

    Gas chromatography isotope ratio mass spectrometry (GC-IRMS; on an HP 6890 GC coupled with a Thermo Delta-V system.) was used to measure stable carbon isotopic compositions of-alkanes. Chromatographic separation was achieved using a DB-1MS capillary column (60m×0.32mmi.d.×0.25μm film thickness, J & W Scientific). The GC oven temperature was programmed from 60℃ to200℃ at 15℃min–1, 200℃ to 250℃ at 4℃min–1, 250℃ to 300℃ at 1.8℃min–1, 300 to310℃ at 5℃min–1, and holding at 310℃ for 5min. The authentic standard was analyzed under the same conditions after every seven samples. The standard deviation for duplicate analysis of the standard was 0.3‰. Isotopic ratios were expressed as δ13C values (per mil) relative to the Vienna Pee Dee Be- lemnite (VPDB).

    3 Results

    3.1 Composition of n-Alkanes and the Hydrocarbon Indices

    The GC-FID chromatograms of-alkanes showed that-alkaneswereeffectively purified after using the molecular sieve (Fig.2). Total-alkane contents (SC15–35) ranged from 456 to 3837ngg?1(average=1897ngg?1). The contents of long-chain-alkanes (SC25–35) ranged from 267 to 2826ngg?1(average=1300ngg?1). In addition, the average percentage of long-chain, mid-chain, short-chain-alkanes in samples was 58%, 27%, 14%, re- spectively. Furthermore, the total-alkane contents of samples from muddy areas (average = 2666ngg?1) were significantly higher than those from non-muddy areas (average=1683ngg–1). The ACL values varied between 26.1 and 28.9(Fig.4a). The values of TAR and Pmar-aqranged from 3.4 to 25.7,from 0.2 to 0.7 (Figs.4b, 4c), res- pectively.

    Fig.2 GC-FID chromatograms for n-alkanes of surface sediments (site B28): (a), Before purification; (b), After purification.

    3.2 δ13C Values of n-Alkanes in Surface Sediments

    Compound-specific average δ13C values of-alkanes in surface sediments were shown in Fig.3, with average individual values for C17–C31of ?30.1‰±0.5‰, ?28.7‰± 0.4‰, ?29.8‰±0.6‰, ?28.4‰±0.3‰, ?29.9‰±0.5‰, ?29.4‰ ±0.6‰, ?30.4‰±0.3‰, ?29.9‰±0.5‰, ?30.2‰±0.5‰, ?30.1‰±0.5‰, ?30.8‰±0.5‰, ?30.8‰±0.8‰, ?31.9‰±0.6‰, ?31.7‰±1.1‰, and ?32.1‰±1.0‰, respectively. In both the BS and NYS, δ13C values of mid-chain-alkanes (C21–C23) varied within a narrow range, while those of short- and long-chain-alkanes were more variable. Furthermore, for short- and mid-chain-alkanes, δ13C values of even-carbon-numbered cases were more positive than those of odd-carbon-numbered cases.

    Fig.3 Compound-specific average δ13C values for the individual n-alkanes (C17–C31) from 23 BS and NYS samples.

    4 Discussion

    4.1 Long-Chain n-Alkanes

    The contents of long-chain-alkanes were relatively high and exhibited a strong odd carbon predominance in C27, C29, and C31homologues (Fig.3), consistent with terrestrial higher plant sources. The ACL describes the average number of carbon atoms in odd carbon-alkanes in higher plants (Cranwell, 1987). The ACL values of BS and NYS surface sediments ranged from 26.1 to 28.9 (average = 27.5). ACL value of about 29 in sediments near the Yellow River estuary suggests an origin of terrestrial higher plants (Fig.4a). The relative contribution of terrestrial-alkanes to marine sediments can be assessed using the TAR index. TAR values of BS and NYS surface sediments ranged from 3.4 to 25.7, with an average value of 14.1 (Fig.4b). This indicates a predominance of terrigenous-alkanes input (Ankit., 2017). Furthermore, compositional analysis of-alkanes in surface sediments of the BS and NYS also indicates that long- chain-alkanes are derived mainly from terrestrial higher plant input (Cao,, 2018). Hence, Long-chain-al- kanes in the study areas were thus mainly derived from such plants.

    The δ13C values of long-chain-alkanes produced by C3and C4plants typically range from ?31.0‰ to ?39.0‰ and ?18.0‰ to ?25.0‰, respectively (Collister., 1994; Schefu?., 2003). Modern terrestrial higher plants from eastern China are characterized by-alkane δ13C values of ?21.9‰ to ?34.8‰, ?25.3‰ to ?36.1‰, and ?22.9‰ to ?36.7‰ for C27, C29, and C31components (Rao., 2008), consistent with our corresponding average δ13C values of ?30.8%±0.5‰, ?31.9%±0.6‰, and ?32.1%±1.0‰ (Fig.3), respectively, and indicating that long-chain-alkanes are mainly derived from terrigenous sources. Generally, odd-carbon-numbered long-chain- alkanes are somewhat13C-enriched than those of even- carbon-numbered long-chain-alkanes in terrestrial higher plants (Chikaraishi and Naraoka, 2003). However, our results showed δ13C values of even-carbon-numberedlong-chain-alkanes (C26–30) were more positive than those of odd-carbon-numbered long-chain-alkanes (C27–31) in the study area (Fig.3). This implies there may be different sources of even-carbon-numbered long-chain-alkanes. A previous study reported14C ages forC29+31alkanes (Δ14C = ?288‰ to ?612‰) of 2670 to 755014C yr, which differ markedly from those of strongly14C- depletedC26+28+30+32alkanes (Δ14C = ?700‰ to ?961‰) ages of 9600 to 2605014C yr for Yellow River suspended particulate matter, implying ancient organic carbon inputs (Tao., 2015). This may indicate that even-carbon- numbered long-chain-alkanes in the BS and NYS are derived from ancient organic carbon.

    Fig.4 Spatial distribution of n-alkane indices: (a), ACL; (b), TAR; (c), Pmar-aq and (d), C3plants contribution to n-alkanes and C3/C4 ratio in surface sediments, based on the end-member modeling of compound-specific δ13C values in the study area.

    Weighted mean average δ13C of long-chain-alkanes from sediment samples were determined to calculate the changes in biomass of C3and C4plants in historical periods (Kuang., 2013). A binaryend-member mixing model was used to estimate the relative contributions of long-chain-alkanes from C3and C4plants(Garcin., 2014), with δ13C values of ?36.0‰ and ?21.0‰ being used as end-members for these plants, respectively (Col- lister., 1994; Zhang., 2003). Calculations were performed as follows:

    = (δ13C27× C27+ δ13C29× C29+ δ13C31× C31)/( C27+ C29+ C31) = (?36.0‰) ×+ (?21.0‰) × (100% ?), (4)

    whereis the weighted mean average δ13C value of long-chain-alkanes, andis the C3contribution (%).

    End-member estimations for the BS and NYS indicated that terrestrial C3plants were dominant-alkane sources, with relative contributions of 64%–79% (Fig.4d).This is consistent with the predominance of C3plants in north China, with a previous study having shown that δ13C values of-alkanes in aerosols near the north China coast have terrestrial C3plant origins with the C4contribution being negligible (Guo., 2006).Moreover, soil organic matterδ13C values in a N–S section (34–52?N) through central and eastern Asia indicate that vegetation in the area comprises mainly C3plants (Feng., 2008). Records of δ13Cvalues in surface soils of northeast China indicate that the abundance of C4plants is relatively high in warm periods and almost exclusively C3plants exist in cold periods (Sun., 2018b). Previous studies have shown thatδ13C values of dominant C3plants in the Chinese Loess Plateau range from ?30.7‰ to ?22.6‰, with average value of 27.2‰ (Zheng and Shangguan, 2007) and ?27.1%±2.4‰ (=39; Liu., 2005). Both δ13C values of total organic carbon and long-chain-alkanesderived from terrestrial higher plants show minor variations among surface soil samples from northern China,indicating the major contributor is from local grasses with a uniform C3photosynthetic pathway (Rao., 2011). It is likely, therefore, that long-chain-alkanes in BS and NYS surface sediments are mainly derived from terrestrial higher plants, particularly C3plants.

    Furthermore, recent studies have also shown thatδ13C valuesof-alkanes in gymnosperms are heavier than those in angiosperms (Diefendorf., 2011; Lane, 2017; Zhao., 2018). And angiospermδ13C values generally decrease with increasing chain length of-alkanes, while gymnosperm values increase (Bush and McInerney, 2009).It is clear here that δ13C values of long-chain-alkanes decrease with increasing chain length (Fig.3). Average δ13Cvalues of C29and C31-alkanes are ?31.9%±0.6‰ and ?32.1%±1.0‰, respectively, similar to values for herbaceous plants in the modern Yellow River drainage basin (?31.1‰ to ?31.5‰ for C29-alkanes, and ?31.3‰ to ?32.6‰ for C31-alkanes in dust episode periods,Guo., 2006).This suggests that the contribution of C3angiosperms to the sedimentary long-chain-alkanes is greater. This is consistent with the predominance of angiosperms in the last glacial period and Holocene on the Chinese Loess Plateau (Li., 2016).

    4.2 Mid-Chain n-Alkanes

    C21, C23, and C25-alkanes are mainly contributed by aquatic plants. Previous studies have shown that theδ13C values of mid-chain-alkanes in aquatic emergent macro- phytes range from ?28.6‰to ?31.2‰ (Chikaraishi and Naraoka, 2003; Mead., 2005). Although non-emer- gent marine macrophytes can also produce mid-chain-alkanes, their δ13C values are relatively heavy, ranging from ?13.0‰ to ?22.0‰ (Ficken., 2000; Jaffé., 2001). In the NYS, there was little difference between stable carbon isotopic compositions of samples from muddy and non-muddy areas: average δ13C values of mid-chain-alkanes (C21, C23, and C25) in non-muddy areas were ?29.8‰, ?30.3‰, and ?30.2‰, respectively, and those in muddy areas were ?29.7‰, ?30.3‰, and ?30.2‰, respectively. This also applied to the BS, where average δ13C values were ?29.7‰, ?30.4‰, and ?30.2‰, respectively, indicating that stable carbon isotope compositions of mid-chain-alkanes in the BS and NYS were similar. The narrow range of these values may be due to there being a common source for BS and NYS sediments, namely the Yellow River (Bi., 2010). The δ13C values of C21, C23, and C25-alkanes fell within the range of values for the corresponding-alkanes in aquatic emergent macrophytes, with sediment mid-chain-alkanes in the study area thus being mainly derived from such plants. Furthermore, the Pmar-aq index provides a measure of the relative contributions of aquatic non-emergent/emergent plants and terrestrial vegetation, with values of <0.25 corresponding to terrigenous plants, 0.3–0.6 to aqua- tic emergent plants, and >0.6 to aquatic non-emergent macrophytes in coastal marine environments (Ficken, 2000; Mead, 2005). The Pmar-aq values ranged from 0.2 to 0.7 (average = 0.4) in the study area (Fig.4c). We concluded, therefore, that mid-chain-al- kanes were mainly derived from aquatic emergent macro- phytes in the BS and NYS.

    4.3 Short-Chain n-Alkanes

    Short-chain-alkanes are generally considered as being derived from microorganisms and marine algae. Those produced by marine planktonic algae are mainly C15, C17, and C19-alkanes with odd carbon predominance, while even-carbon-numbered short-chain-alka- nes (C16, C18,and C20) are derived from marine bacteria or petroleum hydrocarbons (Gogou., 2000; Wang and Fingas, 2006). Short-chain-alkanes in marine sediments are predominantly C17, indicating the major contribution of algae and photosynthetic bacteria (Han and Calvin, 1969), while even-carbon-numbered (C16–22)-alkanes in marine sediments are mainly attributable to non-photo- synthetic bacteria(Jeng and Huh, 2008). Most of sediments in the BS and NYS exhibited an even-carbon- number preference in the range of-C16to-C22(Fig.3), indicating that these short-chain-alkanes could be from non-photosynthetic bacterial sources. Thevalues of- C18/-C17can be used to compare the relative contributions of-alkanes from petroleum-derived-alkanes and natural-alkanes from algae and photosynthetic bacteria. Here, the calculated-C18/-C17values of surface sediments are higher than 1 at all stations, indicating that short-chain-alkanes are affected by petroleum pollution to some degree. Extremely depleted △14C values (?932‰ to ?979‰) for short-chain-alkanes (C16and C18) were found in BS and YS sediments, suggesting a predominant input from sedimentary rocks (organic carbon) or petroleum products(Tao., 2016). The average δ13C value of short-chain-alkanes, δ13C17, δ13C18, and δ13C19, is ?30.1%±0.5‰, ?28.7%±0.4‰, and ?29.8%±0.6‰, respectively (Fig.3). Previous studies show that the δ13CC17values of cyanobacteria vary from ?34.0‰ to ?36.0‰ (Kristen., 2010), while δ13C17and δ13C19values of petroleum hydrocarbons are about ?30.6‰ and ?31.0‰, respectively (Li., 2009). The average δ13C value of algae in Laizhou Bay is ?20.5‰ (Cai and Cai, 1993). Our results showed δ13C values of short-chain-alkanes were relatively lighter than those of algae, possibly due to biodegradation of bacteria and input of petroleum hydrocarbons or other sources.

    5 Conclusions

    The relative inputs of terrestrial and marine organic matter were assessed using-alkane. Terrigenous plants are the main source of-alkanes in BS and NYS sediments. Long-chain-alkanes in sediments were mostly derived from terrestrial sources with some contribution from biogenic and/or petroleum sources.The average δ13C values of long-chain-C27,-C29, and-C31alkanes are ?30.8% ± 0.5‰, ?31.9% ± 0.6‰, and ?32.1% ± 1.0‰, respectively, within the range of-alkanes δ13C values of terrestrial C3plants. A hydrocarbon source distribution derived using a binary end-number mixing model based on δ13C values of long-chain-alkanes indicates that organic matter in BS and NYS sediments is mainly sourced from C3plants, particularly angiosperms. The relative contribution of C3plants decreases from estuary to ocean. δ13C values of mid-chain-alkanes in surface sediments indicate that mid-chain-alkanes are mainly of aquatic emergent macrophyte origin. δ13C17, δ13C18and δ13C19values,-C18/-C17ratios indicate that short-chain-alkanes in BS and NYS sediments have complex sources including petroleum pollution and bacterial action.

    Acknowledgements

    This work was financially supported by the Ministry of Science and Technology of People’s Republic of China (No. 2016YFA0600904), and the National Natural Science Foundation of China (No. 41476058).

    Alexander, C. R., DeMaster, D. J., and Nittrouer, C. A., 1991. Sediment accumulation in a modern epicontinental-shelf setting: The Yellow Sea., 98: 51-72, https:// doi.org/10.1016/0025-3227(91)90035-3.

    Ankit, Y., Mishra, P. K., Kumar, P., Jha, D. K., Kumar, V. V., Ambili, V., and Anoop, A., 2017. Molecular distribution and carbon isotope of-alkanes from Ashtamudi Estuary, South India: Assessment of organic matter sources and paleo- climatic implications.,196: 62-70, https:// doi.org/10.1016/j.marchem.2017.08.002.

    Bi, N., Yang, Z., Wang, H., Hu, B., and Ji, Y., 2010. Sediment dispersion pattern off the present Huanghe (Yellow River) subdelta and its dynamic mechanism during normal river discharge period., 86: 352-362, https://doi.org/10.1016/j.ecss.2009.06.005.

    Bourbonniere, R. A., and Meyers, P. A., 1996. Sedimentary geolipid records of historical changes in the watersheds and productivities of Lakes Ontario and Erie., 41: 352-359, https://doi.org/10.4319/lo.1996.41.2.03 52.

    Bray, E. E., and Evans, E. D., 1961. Distribution of-paraffins as a clue to recognition of source beds.,22: 2-15, https://doi.org/10.1016/0016-7037 (61)90069-2.

    Bush, R. T., and McInerney, F. A., 2013. Leaf wax-alkane distributions in and across modern plants: Implications for paleoecology and chemotaxonomy., 117: 161-179, https://doi.org/10.1016/j.gca. 2013.04.016.

    Bush, R. T., and McInerney, F. A., 2009. Re-evaluating the isotopic divide between angiosperms and gymnosperms using-alkane δ13C values.Washing- ton D. C., 1-9.

    Cai, D., and Cai, A., 1993. The organic carbon isotope geo- chemistry study of Yellow River Mouth.–, 23 (10): 1105-1113, https://doi.org/10.1360/zb1993-23-10-1105.

    Cao, Y., Xing, L., Wang, X., and Zhao, M., 2018. Study on the indication of-alkanes in surface sediments from the Bohai Sea and the North Yellow Sea., 48: 104-113, https://doi.org/10.16441/j.cnki. hdxb.20160341 (in Chinese with English abstract).

    Chikaraishi, Y., and Naraoka, H., 2003. Compound-specific δD- δ13C analyses of-alkanes extracted from terrestrial and aquatic plants., 63: 361-371, https://doi.org/ 10.1016/S0031-9422(02)00749-5.

    Collister, J. W., Rieley, G., Stern, B., Eglinton, G., and Fry, B., 1994. Compound-specific δ13C analyses of leaf lipids from plants with differing carbon dioxide metabolisms., 21: 619-627, https://doi.org/10.1016/0146-63 80(94)90008-6.

    Cranwell, P. A., Eglinton, G., Robinson, N., 1987. Lipids of aquatic organisms as potential contributors to lacustrine sedi- ments-II., 11: 513-527, https://doi. org/10.1016/0146-6380(87)90007-6.

    Cui, B. L., and Li, X. Y., 2011. Coastline change of the Yellow River estuary and its response to the sediment and runoff (1976-2005)., 127: 32-40, https://doi.org/10. 1016/j.geomorph.2010.12.001.

    Eglinton, G., 1969. Organicgeochemistry the organic chemist’s approach. In:.Eglinton, G., Murphy, M. T. J. eds., Springer, Berlin, Heidelberg, 20-73, https://doi. org/ 10.1007/978-3-642-87734-6_2.

    Feng, Z. D., Wang, L. X., Ji, Y. H., Guo, L. L., Lee, X. Q., and Dworkin, S. I., 2008. Climatic dependency of soil organic carbon isotopic composition along the S-N Transect from 34?N to 52?N in central-east Asia., 257: 335-343, https://doi.org/10. 1016/j.palaeo.2007.10.026.

    Ficken, K. J., Li, B., Swain, D. L., and Eglinton, G., 2000. An-alkane proxy for the sedimentary input of submerged/ floating freshwater aquatic macrophytes., 31: 745-749, https://doi.org/10.1016/S0146-6380(00)00 081-4.

    Gao, S., Park, Y. A., Zhao, Y. Y., and Qin, Y. S., 1996. Trans- port and resuspension of fine-grained sediments over the southeastern Yellow Sea.. Seoul National Uni- versity Seoul, Korea, 83-98.

    Garcin, Y., Schefu?, E., Schwab, V. F., Garreta, V., Gleixner, G., Vincens, A., Todou, G., Séné, O., Onana, J. M., Achoun- dong, G., and Sachse, D., 2014. Reconstructing C3and C4vegetation cover using-alkane carbon isotope ratios in recent lake sediments from Cameroon, Western Central Africa., 142: 482-500, https://doi.org/10.1016/j.gca.2014.07.004.

    Gogou, A., Bouloubassi, I., and Stephanou, E. G., 2000. Marine organic geochemistry of the eastern Mediterranean: 1. Aliphatic and polyaromatic hydrocarbons in Cretan Sea surficial sediments., 68: 265-282, https:// doi.org/10.1016/S0304-4203(99)00082-1

    Guo, Z., Li, J., Feng, J., Fang, M., and Yang, Z., 2006. Com- pound-specific carbon isotope compositions of individual long-chain-alkanes in severe Asian dust episodes in the North China coast in 2002., 51: 2133-2140, https://doi.org/10.1007/s11434-006-2071-7.

    Han, J., and Calvin, M., 1969. Hydrocarbon distribution of algae and bacteria, and microbiological activity in sediments., 64 (2): 436- 443, https://doi.org/10.1073/pnas.64.2.436.

    圖像識(shí)別是一個(gè)至關(guān)重要的環(huán)節(jié),在這個(gè)環(huán)節(jié)中包含著多個(gè)不同的步驟,每一個(gè)步驟對(duì)于識(shí)別的結(jié)果都有重要的影響,決定著電力設(shè)備檢測(cè)工作能否順利進(jìn)行下去。

    Hayes, J. M., Freeman, K. H., Popp, B. N., and Hoham, C. H., 1990. Compound-specific isotopic analyses: A novel tool for reconstruction of ancient biogeochemical processes., 16: 1115-1128, https://doi.org/10.1016/0146- 6380(90)90147-R.

    Hedges, J. I., Keil, R. G., and Benner, R., 1997. What happens to terrestrial organic matter in the ocean?, 27: 195-212, https://doi.org/10.1016/S0146-6380 (97)00066-1.

    Hostettler, F. D., Pereira, W. E., Kvenvolden, K. A., Van Geen, A., Luoma, S. N., Fuller, C. C., and Anima, R., 1999. A record of hydrocarbon input to San Francisco Bay as traced by biomarker profiles in surface sediment and sediment cores., 64: 115-127, https://doi.org/10.1016/S03 04-4203(98)00088-7.

    Hu, L., Shi, X., Guo, Z., Wang, H., and Yang, Z., 2013. Sources, dispersal and preservation of sedimentary organic matter in the Yellow Sea: The importance of depositional hydrodyna- mic forcing., 335: 52-63, https://doi.org/10. 1016/j.margeo.2012.10.008.

    Jaffé, R., Mead, R., Hernandez, M. E., Peralba, M. C., and DiGuida, O. A., 2001. Origin and transport of sedimentary organic matter in two subtropical estuaries: A comparative, biomarker-based study., 32: 507-526, https://doi.org/10.1016/S0146-6380(00)00192-3.

    Jeng, W. L., and Huh, C. A., 2008. A comparison of sedimen- tary aliphatic hydrocarbon distribution between East China Sea and southern Okinawa Trough., 28: 582-592, https://doi.org/10.1016/j.csr.2007.11. 009.

    Kristen, I., Wilkes, H., Vieth, A., Zink, K. G., Plessen, B., Thorpe, J., Partridge, T. C., and Oberh?nsli, H., 2010. Bio- marker and stable carbon isotope analyses of sedimentary organic matter from Lake Tswaing: Evidence for deglacial wetness and early Holocene drought from South Africa., 44: 143-160, https://doi.org/10. 1007/s10933-009-9393-9.

    Kuang, H., Zhou, H., Hu, J., Yang, X., Peng, P., and Yang, H., 2013. Variations of-alkanes and compound specific carbon isotopes in sedments from Huguanyan Maar lake during the last glacial maximum and holoceneoptimum: Implications for paleovegetation., 33 (6): 1222-1233, https://doi.org/10.3969/j.issn.1001-7410.2013.06.18.

    Lane, C. S., 2017. Modern-alkane abundances and isotopic composition of vegetation in a gymnosperm-dominated ecosystem of the southeastern U.S. coastal plain.,105: 33-36, https://doi.org/10.1016/j.orggeo chem.2016.12.003.

    Li, Y., Xiong, Y., Yang, W., Xie, Y., Li, S., and Sun, Y., 2009. Compound-specific stable carbon isotopic composition of petroleum hydrocarbons as a tool for tracing the source of oil spills., 58: 114-117, https://doi.org/ 10.1016/j.marpolbul.2008.08.012.

    Li, Y., Yang, S., Wang, X., Hu, J., Cui, L., Huang, X., and Jiang, W., 2016. Leaf wax-alkane distributions in Chinese loess since the Last Glacial Maximum and implications for paleo- climate., 399: 190-197, https://doi. org/10.1016/j.quaint.2015.04.029.

    Lim, D. I., Choi, J. Y., Jung, H. S., Rho, K. C., and Ahn, K. S., 2007. Recent sediment accumulation and origin of shelf mud deposits in the Yellow and East China Seas., 73: 145-159, https://doi.org/10.1016/j.pocean. 2007.02.004.

    Liu, J., Yu, Z., Zang, J., Sun, T., Zhao, C., and Ran, X., 2015a. Distribution and budget of organic carbon in the Bohai and Yellow Seas., 30: 564-578, https:// doi.org/10.11867/j.issn.1001-8166.2015.05.0564 (in Chinese with English abstract).

    Liu, L. Y., Wang, J. Z., Guan, Y. F., and Zeng, E. Y., 2012. Use of aliphatic hydrocarbons to infer terrestrial organic matter in coastal marine sediments off China., 64: 1940-1946, https://doi.org/10.1016/j.marpolbul. 2012. 04.023.

    Liu, W., Ning, Y., An, Z., Wu, Z., Lu, H., and Cao, Y., 2005. Carbon isotopic composition of modern soil and paleosol as a response to vegetation change on the Chinese Loess Plateau., 48 (1): 93-99, https://doi.org/10.1360/02yd 0148.

    Liu, W., Yang, H., Wang, H., An, Z., Wang, Z., and Leng, Q., 2015b. Carbon isotope composition of long chain leaf wax- alkanes in lake sediments: A dual indicator of paleoenviron- ment in the Qinghai-Tibet Plateau., 83-84: 190-201, https://doi.org/10.1016/j.orggeochem.2015. 03.017.

    Lu, X., Chen, Y., Huang, G., Liu, D., Tang, J., Li, J., and Zhang, G., 2011. Distribution and sources of lipid biomakers in surface sediments of the Yellow Sea and Bohai Sea., 20: 1117-1122, https://doi.org/ 10.16258/j.cnki.1674-5906.2011.z1.013.

    Mead, R., Xu, Y., Chong, J., and Jaffé, R., 2005. Sediment and soil organic matter source assessment as revealed by the molecular distribution and carbon isotopic composition of-alkanes.,36: 363-370. https://doi. org/10.1016/j.orggeochem.2004.10.003

    Meyers, P. A., and Ishiwatari, R., 1993. The early diagenesis of organic matter in lacustrine sediments,, Springer, 185-209. https://doi.org/10.1007/978-1-4615-2890- 6_8.

    Mügler, I., Sachse, D., Werner, M., Xu, B., Wu, G., Yao, T., and Gleixner, G., 2008. Effect of lake evaporation on δD va- lues of lacustrine n-alkanes: A comparison of Nam Co (Tibe- tan Plateau) and Holzmaar (Germany)., 39: 711-729, https://doi.org/10.1016/j.orggeochem. 2008.02.008.

    Pancost, R. D., Baas, M., Van Geel, B., and Sinninghe Damsté, J. S., 2002. Biomarkers as proxies for plant inputs to peats: An example from a sub-boreal ombrotrophic bog., 33: 675-690, https://doi.org/10.1016/S0146- 6380(02)00048-7.

    Qiao, S., Shi, X., Wang, G., Zhou, L., Hu, B., Hu, L., Yang, G., Liu, Y., Yao, Z., and Liu, S., 2017. Sediment accumulation and budget in the Bohai Sea, Yellow Sea and East China Sea., 390: 270-281, https://doi.org/10.1016/j. margeo.2017.06.004.

    Rao, Z., Jia, G., Zhu, Z., Wu, Y., and Zhang, J., 2008. Compara- tive study and significance on carbon isotopes of total organic matter and long-chain-alkanes in topsoil of eastern China., 53: 2077-2084.

    Rao, Z., Zhu, Z., Jia, G., Zhang, X., and Wang, S., 2011. Compound-specific hydrogen isotopes of long-chain-alka- nes extracted from topsoil under a grassland ecosystem in northern China., 54: 1902-1911, https://doi.org/10.1007/s11430-011-4252-8.

    Schefu?, E., Ratmeyer, V., Stuut, J. B. W., Jansen, J. H. F., and Sinninghe Damsté, J. S., 2003. Carbon isotope analyses of-alkanes in dust from the lower atmosphere over the central eastern Atlantic., 67: 1757-1767, https://doi.org/10.1016/S0016-7037(02)01414-X.

    Sikes, E. L., Uhle, M. E., Nodder, S. D., and Howard, M. E., 2009. Sources of organic matter in a coastal marine environ- ment: Evidence from-alkanes and their δ13C distributions in the Hauraki Gulf, New Zealand., 113: 149- 163, https://doi.org/10.1016/j.marchem.2008.12.003.

    Silliman, J. E., and Schelske, C. L., 2003. Saturated hydro- carbons in the sediments of Lake Apopka, Florida., 34: 253-260, https://doi.org/10.1016/S0146- 6380(02)00169-9.

    Sun, D., Tang, J., He, Y., Liao, W., and Sun, Y., 2018a. Sources, distributions, and burial efficiency of terrigenous organic matter in surface sediments from the Yellow River Mouth, Northeast China.,118: 89-102, https:// doi.org/10.1016/j.orggeochem.2017.12.009.

    Sun, W., Zhang, E., Liu, E., Chang, J., Chen, R., and Shen, J., 2018b. Glacial-interglacial vegetation changes in Northeast China inferred from isotopic composition of pyrogenic carbon from Lake Xingkai sediments.,121: 80-88, https://doi.org/10.1016/j.orggeochem.2018.03.004.

    Tao, S., Eglinton, T. I., Montlu?on, D. B., McIntyre, C., and Zhao, M., 2016. Diverse origins and pre-depositional histo- ries of organic matter in contemporary Chinese marginal sea sediments., 191: 70-88, https://doi.org/10.1016/j.gca.2016.07.019.

    Tao, S., Eglinton, T. I., Montlu?on, D. B., McIntyre, C., and Zhao, M., 2015. Pre-aged soil organic carbon as a major component of the Yellow River suspended load: Regional significance and global relevance.,414: 77-86, https://doi.org/10.1016/j.epsl.2015. 01.004.

    Wang, S., Liu, G., Yuan, Z., and Da, C., 2018.-Alkanes in sediments from the Yellow River Estuary, China: Occurrence, sources and historical sedimentary record., 150: 199-206, https://doi.org/10.1016/j. ecoenv.2017.12.016.

    Wang, Y., Liu, D., Richard, P., and Li, X., 2013. A geochemical record of environmental changes in sediments from Sishili Bay, northern Yellow Sea, China: Anthropogenic influence on organic matter sources and composition over the last 100 years.,77: 227-236, https://doi.org/ 10.1016/j.marpolbul.2013.10.001.

    Wang, Z., and Fingas, M., 2006. Oil and petroleum product fingerprinting analysis by gas chromatographic techniques., 93: 1027.

    Xing, L., Zhang, H., Yuan, Z., Sun, Y., and Zhao, M., 2011. Terrestrial and marine biomarker estimates of organic matter sources and distributions in surface sediments from the East China Sea shelf., 31: 1106-1115, https://doi.org/10.1016/j.csr.2011.04.003.

    Yang, Z. S., and Liu, J. P., 2007. A unique Yellow River-deri- ved distal subaqueous delta in the Yellow Sea., 240: 169-176, https://doi.org/10.1016/j.margeo.2007.02. 008.

    Zhang, S., Li, S., Dong, H., Zhao, Q., Lu, X., and Shi, J., 2014. An analysis of organic matter sources for surface sediments in the central South Yellow Sea, China: Evidence based on macroelements and-alkanes., 88: 389-397, https://doi.org/10.1016/j.marpolbul.2014.07.064.

    Zhang, Z., Zhao, M., Lu, H., and Faiia, A. M., 2003. Lower temperature as the main cause of C4plant declines during the glacial periods on the Chinese Loess Plateau., 214: 467-481, https://doi.org/10. 1016/S0012-821X(03)00387-X.

    Zhao, B., Zhang, Y., Huang, X., Qiu, R., Zhang, Z., and Meyers, P. A., 2018. Comparison of-alkane molecular, carbon and hydrogen isotope compositions of different types of plants in the Dajiuhu peatland, central China., 124: 1-11, https://doi.org/10.1016/j.orggeochem.2018.07.008.

    Zheng, S. X., and Shangguan, Z. P., 2007. Foliar δ13C values of nine dominant species in the Loess Plateau of China., 45 (1): 110-119, https://doi.org/10.1007/s11099- 007-0017-1.

    June 16, 2020;

    September 23, 2020;

    November 3, 2020

    ? Ocean University of China, Science Press and Springer-Verlag GmbH Germany 2021

    . E-mail: xinglei@ouc.edu.cn

    (Edited by Ji Dechun)

    猜你喜歡
    順利進(jìn)行圖像識(shí)別電力設(shè)備
    加強(qiáng)電力設(shè)備運(yùn)維云平臺(tái)安全性管理
    基于Resnet-50的貓狗圖像識(shí)別
    電子制作(2019年16期)2019-09-27 09:34:50
    高速公路圖像識(shí)別技術(shù)應(yīng)用探討
    科學(xué)課,合理的材料利于課的進(jìn)行
    科學(xué)課,合理的材料利于課的進(jìn)行
    圖像識(shí)別在物聯(lián)網(wǎng)上的應(yīng)用
    電子制作(2018年19期)2018-11-14 02:37:04
    圖像識(shí)別在水質(zhì)檢測(cè)中的應(yīng)用
    電子制作(2018年14期)2018-08-21 01:38:16
    電力設(shè)備運(yùn)維管理及安全運(yùn)行探析
    基于壓縮感知的電力設(shè)備視頻圖像去噪方法研究
    基于改進(jìn)Canny算子的電力設(shè)備圖像檢測(cè)研究
    欧美日韩瑟瑟在线播放| 国产亚洲欧美98| 中出人妻视频一区二区| 亚洲色图综合在线观看| 精品高清国产在线一区| 色老头精品视频在线观看| 黑人巨大精品欧美一区二区mp4| 国产无遮挡羞羞视频在线观看| 亚洲伊人色综图| 日韩欧美一区视频在线观看| 亚洲,欧美精品.| 亚洲av成人av| 亚洲国产欧美一区二区综合| 欧美黄色淫秽网站| 国产激情欧美一区二区| 久久国产精品影院| 亚洲国产精品sss在线观看 | cao死你这个sao货| 欧美中文日本在线观看视频| 99精品在免费线老司机午夜| 亚洲午夜精品一区,二区,三区| 国产视频一区二区在线看| 乱人伦中国视频| 在线永久观看黄色视频| 免费观看人在逋| 国产精华一区二区三区| 亚洲精品国产一区二区精华液| 免费在线观看日本一区| 亚洲熟女毛片儿| 国产av在哪里看| 午夜免费观看网址| 国产伦人伦偷精品视频| 男人操女人黄网站| 十分钟在线观看高清视频www| 两个人看的免费小视频| 欧美精品亚洲一区二区| 久久欧美精品欧美久久欧美| 亚洲美女黄片视频| 亚洲美女黄片视频| 日韩成人在线观看一区二区三区| av天堂在线播放| 国产亚洲av高清不卡| 一区二区三区激情视频| 国产精品亚洲一级av第二区| 亚洲国产欧美网| 看黄色毛片网站| 日日夜夜操网爽| 可以在线观看毛片的网站| www国产在线视频色| 操美女的视频在线观看| 极品人妻少妇av视频| 成熟少妇高潮喷水视频| www日本在线高清视频| 午夜精品国产一区二区电影| www.999成人在线观看| 久久久久久久精品吃奶| 精品午夜福利视频在线观看一区| 日日爽夜夜爽网站| 久久婷婷成人综合色麻豆| 在线观看免费视频网站a站| 亚洲av电影在线进入| 91国产中文字幕| 久久久国产一区二区| 看黄色毛片网站| 又紧又爽又黄一区二区| 免费少妇av软件| 国产精品日韩av在线免费观看 | 99香蕉大伊视频| 夫妻午夜视频| 免费日韩欧美在线观看| 日韩欧美国产一区二区入口| 精品久久久久久久毛片微露脸| 亚洲九九香蕉| 亚洲,欧美精品.| 日本精品一区二区三区蜜桃| 亚洲 欧美一区二区三区| 老鸭窝网址在线观看| 午夜福利在线免费观看网站| 极品教师在线免费播放| 亚洲国产精品一区二区三区在线| 亚洲av熟女| 精品福利永久在线观看| 高清黄色对白视频在线免费看| 夜夜爽天天搞| 久久久久九九精品影院| 波多野结衣一区麻豆| 夜夜爽天天搞| 久久久久九九精品影院| 欧美日韩一级在线毛片| 女人精品久久久久毛片| 亚洲免费av在线视频| 久久久国产成人精品二区 | 精品高清国产在线一区| 欧美 亚洲 国产 日韩一| 波多野结衣高清无吗| 日本精品一区二区三区蜜桃| 欧美色视频一区免费| 搡老乐熟女国产| 国产精品久久久久成人av| 亚洲五月色婷婷综合| 美女福利国产在线| 久久久国产一区二区| x7x7x7水蜜桃| 老司机午夜十八禁免费视频| 女人精品久久久久毛片| 精品久久久久久电影网| 老司机午夜福利在线观看视频| 国产亚洲欧美精品永久| 伦理电影免费视频| 看免费av毛片| 免费在线观看视频国产中文字幕亚洲| 老司机深夜福利视频在线观看| 亚洲人成网站在线播放欧美日韩| 色哟哟哟哟哟哟| 新久久久久国产一级毛片| 波多野结衣av一区二区av| 极品教师在线免费播放| 一级片'在线观看视频| 又黄又粗又硬又大视频| 国产一区在线观看成人免费| 视频在线观看一区二区三区| 久久久久久久久免费视频了| 97碰自拍视频| а√天堂www在线а√下载| 成人黄色视频免费在线看| 久久精品国产99精品国产亚洲性色 | 人人妻,人人澡人人爽秒播| 成人亚洲精品一区在线观看| 女人精品久久久久毛片| 久久影院123| 欧美成人免费av一区二区三区| 国产精品久久久人人做人人爽| 亚洲第一青青草原| 欧美日韩中文字幕国产精品一区二区三区 | 欧美在线黄色| 中文字幕高清在线视频| 亚洲精品中文字幕在线视频| 国产主播在线观看一区二区| 亚洲精品国产精品久久久不卡| 日韩高清综合在线| 午夜久久久在线观看| 亚洲av成人一区二区三| 国产精品免费视频内射| 一区福利在线观看| 免费人成视频x8x8入口观看| 十分钟在线观看高清视频www| 免费观看精品视频网站| 热99国产精品久久久久久7| 久久国产精品男人的天堂亚洲| 免费女性裸体啪啪无遮挡网站| 女人精品久久久久毛片| 日韩大尺度精品在线看网址 | 精品国产超薄肉色丝袜足j| 国产精品国产av在线观看| 嫁个100分男人电影在线观看| 男女高潮啪啪啪动态图| 一级黄色大片毛片| 婷婷精品国产亚洲av在线| 日本精品一区二区三区蜜桃| 国产黄色免费在线视频| 久久久久国产一级毛片高清牌| 在线观看舔阴道视频| 精品国产超薄肉色丝袜足j| 久久精品国产亚洲av香蕉五月| 中文字幕另类日韩欧美亚洲嫩草| 久久久久九九精品影院| 亚洲第一欧美日韩一区二区三区| 国产精品国产高清国产av| 男女做爰动态图高潮gif福利片 | 亚洲成人国产一区在线观看| a在线观看视频网站| 正在播放国产对白刺激| 亚洲欧美日韩另类电影网站| 久久精品国产清高在天天线| 日日干狠狠操夜夜爽| 免费不卡黄色视频| 中文字幕高清在线视频| 久久人人精品亚洲av| 51午夜福利影视在线观看| 美女 人体艺术 gogo| 国产成人精品久久二区二区免费| 国产无遮挡羞羞视频在线观看| 在线观看一区二区三区| 色精品久久人妻99蜜桃| 国产人伦9x9x在线观看| 国产一区二区三区视频了| 在线永久观看黄色视频| 久久久久久久久久久久大奶| √禁漫天堂资源中文www| 国产精品一区二区精品视频观看| 亚洲精品久久成人aⅴ小说| 国产欧美日韩一区二区三| 男女下面插进去视频免费观看| 国产欧美日韩综合在线一区二区| 亚洲第一欧美日韩一区二区三区| 一级毛片女人18水好多| 99精品在免费线老司机午夜| 午夜日韩欧美国产| 我的亚洲天堂| 又黄又爽又免费观看的视频| 悠悠久久av| 午夜福利一区二区在线看| 男女之事视频高清在线观看| 国产欧美日韩综合在线一区二区| 婷婷丁香在线五月| 最近最新免费中文字幕在线| 91精品国产国语对白视频| 日韩中文字幕欧美一区二区| 亚洲国产精品sss在线观看 | 一区二区日韩欧美中文字幕| 嫩草影院精品99| 国产熟女午夜一区二区三区| 日韩大码丰满熟妇| 在线播放国产精品三级| 亚洲精品一卡2卡三卡4卡5卡| 亚洲国产精品sss在线观看 | 国产精品久久久久久人妻精品电影| 在线观看日韩欧美| 欧美中文综合在线视频| 亚洲一区二区三区不卡视频| 老汉色∧v一级毛片| 色在线成人网| 美女午夜性视频免费| 淫秽高清视频在线观看| a在线观看视频网站| 欧美日韩亚洲国产一区二区在线观看| 丁香六月欧美| 麻豆久久精品国产亚洲av | 欧美日韩一级在线毛片| 91大片在线观看| 变态另类成人亚洲欧美熟女 | e午夜精品久久久久久久| 中文字幕精品免费在线观看视频| 啦啦啦 在线观看视频| 欧美黄色淫秽网站| 亚洲中文字幕日韩| 日本免费a在线| 久久伊人香网站| 欧美成人午夜精品| videosex国产| 国产精品一区二区免费欧美| 欧美人与性动交α欧美软件| 亚洲第一青青草原| 免费看十八禁软件| 精品熟女少妇八av免费久了| 国产精品久久久久成人av| 男女午夜视频在线观看| 久久精品亚洲av国产电影网| 在线观看免费高清a一片| 国产欧美日韩一区二区三区在线| 国产亚洲精品久久久久5区| 一级片'在线观看视频| 精品福利观看| 女生性感内裤真人,穿戴方法视频| 亚洲一区高清亚洲精品| 欧美亚洲日本最大视频资源| 亚洲精品中文字幕一二三四区| 精品久久久久久成人av| 欧美一区二区精品小视频在线| 欧美激情高清一区二区三区| 正在播放国产对白刺激| 久久人人精品亚洲av| www.www免费av| 色播在线永久视频| 日韩成人在线观看一区二区三区| 在线观看日韩欧美| 国产亚洲精品综合一区在线观看 | 国产极品粉嫩免费观看在线| 757午夜福利合集在线观看| 亚洲视频免费观看视频| 久久婷婷成人综合色麻豆| 欧美激情极品国产一区二区三区| 三级毛片av免费| 在线观看舔阴道视频| 亚洲成人国产一区在线观看| 国产麻豆69| 黄色成人免费大全| 国产精品爽爽va在线观看网站 | 国产真人三级小视频在线观看| 久久精品91无色码中文字幕| 国产精品 欧美亚洲| 在线观看www视频免费| 国产一区二区三区综合在线观看| svipshipincom国产片| 久久久久久人人人人人| 免费搜索国产男女视频| netflix在线观看网站| 国产欧美日韩一区二区三| av福利片在线| 色老头精品视频在线观看| 免费高清视频大片| 中出人妻视频一区二区| 自线自在国产av| 亚洲黑人精品在线| 亚洲 欧美一区二区三区| 免费av毛片视频| 午夜老司机福利片| 又紧又爽又黄一区二区| 香蕉丝袜av| 久久影院123| 亚洲成人免费av在线播放| tocl精华| 亚洲精品成人av观看孕妇| 亚洲av电影在线进入| 久久久久精品国产欧美久久久| 亚洲全国av大片| 久久亚洲真实| 高清欧美精品videossex| 日韩三级视频一区二区三区| 国产av一区在线观看免费| 国产深夜福利视频在线观看| av超薄肉色丝袜交足视频| 看黄色毛片网站| 久久精品国产清高在天天线| 夜夜夜夜夜久久久久| 亚洲 国产 在线| 一个人观看的视频www高清免费观看 | 亚洲九九香蕉| 精品久久久久久久久久免费视频 | 国产成人精品无人区| av片东京热男人的天堂| 成年版毛片免费区| 成在线人永久免费视频| 人人澡人人妻人| 色在线成人网| 亚洲五月天丁香| 级片在线观看| 动漫黄色视频在线观看| 亚洲成人国产一区在线观看| 国产亚洲欧美98| 超碰97精品在线观看| 久久精品国产亚洲av高清一级| 国产日韩一区二区三区精品不卡| 国产不卡一卡二| 国产极品粉嫩免费观看在线| 久久香蕉精品热| 国产有黄有色有爽视频| 啦啦啦在线免费观看视频4| 一a级毛片在线观看| 成年人黄色毛片网站| 侵犯人妻中文字幕一二三四区| 成在线人永久免费视频| 欧美最黄视频在线播放免费 | а√天堂www在线а√下载| 50天的宝宝边吃奶边哭怎么回事| 免费少妇av软件| 成人国语在线视频| 黑人巨大精品欧美一区二区蜜桃| 一区在线观看完整版| 国产精品一区二区精品视频观看| 满18在线观看网站| netflix在线观看网站| 黄片小视频在线播放| 中文字幕色久视频| 黑人巨大精品欧美一区二区蜜桃| 一区二区三区精品91| 中文亚洲av片在线观看爽| www.www免费av| 女同久久另类99精品国产91| 青草久久国产| 少妇粗大呻吟视频| 无人区码免费观看不卡| 波多野结衣高清无吗| 国产成人一区二区三区免费视频网站| 日本五十路高清| 美女 人体艺术 gogo| 国产深夜福利视频在线观看| 夜夜夜夜夜久久久久| 最好的美女福利视频网| 精品无人区乱码1区二区| 好男人电影高清在线观看| 无人区码免费观看不卡| 国产三级在线视频| 国产成人欧美在线观看| 啦啦啦免费观看视频1| 精品欧美一区二区三区在线| 日本 av在线| av片东京热男人的天堂| 男女午夜视频在线观看| 久久这里只有精品19| 老汉色∧v一级毛片| 久久久久久久久久久久大奶| 黑人巨大精品欧美一区二区mp4| 久久99一区二区三区| 欧美乱码精品一区二区三区| 国产精品爽爽va在线观看网站 | 老鸭窝网址在线观看| av电影中文网址| 国产黄a三级三级三级人| 91大片在线观看| 日韩 欧美 亚洲 中文字幕| 午夜精品久久久久久毛片777| 在线观看免费视频日本深夜| 老鸭窝网址在线观看| 国产成+人综合+亚洲专区| 美女高潮喷水抽搐中文字幕| 国产片内射在线| 国产主播在线观看一区二区| 美女扒开内裤让男人捅视频| 欧美av亚洲av综合av国产av| 久久这里只有精品19| 99久久久亚洲精品蜜臀av| 久久99一区二区三区| 精品福利观看| 免费av毛片视频| 12—13女人毛片做爰片一| 国产成人精品久久二区二区91| 欧美大码av| 12—13女人毛片做爰片一| 欧美激情极品国产一区二区三区| 国产国语露脸激情在线看| 中文字幕高清在线视频| 美女午夜性视频免费| 十八禁人妻一区二区| 可以在线观看毛片的网站| av天堂在线播放| 日韩人妻精品一区2区三区| av天堂久久9| 色哟哟哟哟哟哟| 久久中文字幕人妻熟女| 少妇粗大呻吟视频| 国产精品爽爽va在线观看网站 | 可以免费在线观看a视频的电影网站| 欧美日韩av久久| 精品一区二区三卡| 亚洲黑人精品在线| 日日爽夜夜爽网站| 欧美日本亚洲视频在线播放| 黄色视频,在线免费观看| 国产精品 欧美亚洲| 欧美+亚洲+日韩+国产| 久久人妻熟女aⅴ| 欧美中文综合在线视频| 天天躁夜夜躁狠狠躁躁| 51午夜福利影视在线观看| 99香蕉大伊视频| 精品国内亚洲2022精品成人| 夫妻午夜视频| 丰满人妻熟妇乱又伦精品不卡| 亚洲午夜理论影院| 日韩免费av在线播放| www.999成人在线观看| 高清毛片免费观看视频网站 | 一进一出抽搐动态| 国产成人精品久久二区二区免费| 99久久人妻综合| 黄色视频,在线免费观看| 99久久综合精品五月天人人| 无遮挡黄片免费观看| 两人在一起打扑克的视频| 色哟哟哟哟哟哟| 一区二区三区精品91| 手机成人av网站| 高清黄色对白视频在线免费看| 老司机亚洲免费影院| 午夜亚洲福利在线播放| 精品久久久精品久久久| 香蕉丝袜av| 男男h啪啪无遮挡| 日韩欧美免费精品| 又黄又粗又硬又大视频| 欧美激情高清一区二区三区| 又黄又粗又硬又大视频| 亚洲av成人av| av天堂久久9| 国产一卡二卡三卡精品| 久久国产精品人妻蜜桃| 美女高潮喷水抽搐中文字幕| 午夜成年电影在线免费观看| 亚洲专区中文字幕在线| 狠狠狠狠99中文字幕| 一级片'在线观看视频| 亚洲精品在线美女| 黄频高清免费视频| 黑人欧美特级aaaaaa片| 丝袜在线中文字幕| 黄频高清免费视频| 国产精品 欧美亚洲| www.自偷自拍.com| 精品福利永久在线观看| 在线观看免费高清a一片| 午夜福利一区二区在线看| 99香蕉大伊视频| 九色亚洲精品在线播放| 19禁男女啪啪无遮挡网站| 婷婷丁香在线五月| 日韩中文字幕欧美一区二区| 日本黄色日本黄色录像| 一区在线观看完整版| 在线观看免费高清a一片| 国产男靠女视频免费网站| 天天添夜夜摸| 国产激情久久老熟女| 亚洲午夜精品一区,二区,三区| 国产野战对白在线观看| 露出奶头的视频| 国产成人啪精品午夜网站| 身体一侧抽搐| 日韩av在线大香蕉| 老司机亚洲免费影院| 精品福利永久在线观看| 欧美日韩国产mv在线观看视频| 人人妻人人爽人人添夜夜欢视频| 日韩有码中文字幕| 亚洲一区中文字幕在线| 日韩三级视频一区二区三区| 中文字幕色久视频| 色哟哟哟哟哟哟| 免费高清在线观看日韩| 怎么达到女性高潮| 亚洲欧美日韩无卡精品| 一区二区三区精品91| 91九色精品人成在线观看| 亚洲激情在线av| 日本撒尿小便嘘嘘汇集6| 日本免费一区二区三区高清不卡 | 国产成人啪精品午夜网站| 一级a爱视频在线免费观看| 国产亚洲精品久久久久5区| 国产精品乱码一区二三区的特点 | 天堂中文最新版在线下载| 午夜日韩欧美国产| 大陆偷拍与自拍| 一本大道久久a久久精品| 国产亚洲精品久久久久5区| 欧美 亚洲 国产 日韩一| 中文字幕另类日韩欧美亚洲嫩草| 色老头精品视频在线观看| 最近最新免费中文字幕在线| 欧美精品亚洲一区二区| 久久久久久久精品吃奶| 无人区码免费观看不卡| 一级黄色大片毛片| 最近最新免费中文字幕在线| a级毛片黄视频| 母亲3免费完整高清在线观看| 欧美精品亚洲一区二区| 亚洲国产精品一区二区三区在线| 9热在线视频观看99| 久久精品91无色码中文字幕| 亚洲欧美精品综合一区二区三区| 中国美女看黄片| 国产精品久久久久成人av| 日日干狠狠操夜夜爽| 成人影院久久| 一区福利在线观看| 国产精品一区二区在线不卡| 久久精品影院6| 99国产精品99久久久久| 日本黄色日本黄色录像| 国产成人精品久久二区二区免费| 免费女性裸体啪啪无遮挡网站| 欧美 亚洲 国产 日韩一| 亚洲国产精品一区二区三区在线| 91九色精品人成在线观看| 我的亚洲天堂| 亚洲精品美女久久av网站| av国产精品久久久久影院| 国产av精品麻豆| 国产乱人伦免费视频| 99riav亚洲国产免费| 99久久久亚洲精品蜜臀av| 久久久久久亚洲精品国产蜜桃av| 99久久人妻综合| 国产97色在线日韩免费| 午夜福利欧美成人| 最近最新中文字幕大全电影3 | 大码成人一级视频| 国产一区在线观看成人免费| 久久影院123| 成年人免费黄色播放视频| 丝袜美足系列| 精品久久久久久久毛片微露脸| 超碰成人久久| 满18在线观看网站| 中文亚洲av片在线观看爽| 中文字幕人妻熟女乱码| 乱人伦中国视频| 日本撒尿小便嘘嘘汇集6| 在线观看一区二区三区| 50天的宝宝边吃奶边哭怎么回事| 极品教师在线免费播放| 777久久人妻少妇嫩草av网站| 久久午夜亚洲精品久久| 国产亚洲精品第一综合不卡| 亚洲国产中文字幕在线视频| 亚洲av成人av| 老司机深夜福利视频在线观看| 国产成人影院久久av| 91字幕亚洲| 国产97色在线日韩免费| 村上凉子中文字幕在线| 久久久久精品国产欧美久久久| 1024香蕉在线观看| 久久久久久久久中文| 交换朋友夫妻互换小说| 一区二区三区激情视频| 国产精品秋霞免费鲁丝片| 99re在线观看精品视频| 久久人人爽av亚洲精品天堂| 久久精品人人爽人人爽视色| 美女国产高潮福利片在线看| 国产成人精品无人区| 亚洲成人免费电影在线观看| 久99久视频精品免费| 亚洲国产精品999在线| 这个男人来自地球电影免费观看| 中文字幕av电影在线播放| 亚洲少妇的诱惑av| 国产片内射在线| 亚洲人成77777在线视频| 老熟妇乱子伦视频在线观看| 一区二区三区精品91| 国产三级在线视频| 国产日韩一区二区三区精品不卡|