• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Pitfalls of barcodes in the study of worldwide SARSCoV-2 variation and phylodynamics

    2021-03-01 06:52:22JacoboPardo-Seco,AlbertoGómez-Carballa,XabierBello
    Zoological Research 2021年1期

    DEAR EDlTOR,

    Analysis of SARS-CoV-2 genome variation using a minimal number of selected informative sites conforming a genetic barcode presents several drawbacks.We show that purely mathematical procedures for site selection should be supervised by known phylogeny (i) to ensure that solid tree branches are represented instead of mutational hotspots with poor phylogeographic proprieties, and (ii) to avoid phylogenetic redundancy.We propose a procedure that prevents information redundancy in site selection by considering the cumulative informativeness of previously selected sites (as a proxy for phylogenetic-based criteria).This procedure demonstrates that,for short barcodes (e.g.,11 sites),there are thousands of informative site combinations that improve previous proposals.We also show that barcodes based on worldwide databases inevitably prioritize variants located at the basal nodes of the phylogeny,such that most representative genomes in these ancestral nodes are no longer in circulation. Consequently, coronavirus phylodynamics cannot be properly captured by universal genomic barcodes because most SARS-CoV-2 variation is generated in geographically restricted areas by the continuous introduction of domestic variants.

    Analysis of SARS-CoV-2 genetic variation has been widely stimulated by the availability of thousands of coronavirus genomes uploaded to public databases.In particular,the Global Initiative on Sharing all Individual Data (GISAID;https://www.gisaid.org/) offers full open access to SARS-CoV-2 genomic data provided by hundreds of laboratories worldwide.The scientific community can analyze the wholegenome sequences available in these resources to make inferences about SARS-CoV-2 genetic variation and its phylogenetic roots,natural selection,and phylodynamics (Boni et al.,2020; Forster et al.,2020; Gómez-Carballa et al.,2020a,2020b; Gudbjartsson et al.,2020; Rambaut et al.,2020; Rockett et al.,2020; Van Dorp et al.,2020; Yu et al.,2020).Furthermore,the fact that the coronavirus genome is only~30 kb allows for relatively easy computational treatment.

    In an attempt to simplify the interpretation of SARS-CoV-2 variation,several recent studies have explored tiny fractions of the genomes by selecting highly informative/variable sites to reconstruct patterns of variation and dispersion of SARS-CoV-2 worldwide using different approaches.These sites together conform a genetic signature or barcode.Zhao et al.(2020)explored informative subtype markers (ISMs) for subtyping SARS-CoV-2 variation to model the geographic distribution and temporal dynamics of COVID-19 spread.Their proposed algorithm identified a compact genetic signature of 11 bp nucleotides (initially 20 bp) in the coronavirus genome,which,according to the authors,defined the most variable (and hence informative) set of sites in these genomes.Similarly,Guan et al.(2020) analyzed a different (but overlapping with Zhao et al.(2020)) signature of 11 nucleotide sites to explore worldwide variation and monitor viral genetic diversity in response to future vaccines or treatments.Instead of using a mathematical algorithm for site selection (as in Zhao et al.(2020)),these authors established their selection on purely phylogenetic criteria.

    Based on analysis of >90 K SARS-CoV-2 genomes (herein referred to as the 90 K database) downloaded from GISAID(see Supplementary Data for details),we discuss several issues with these studies that need further consideration,including technical aspects of the methods employed for site selection,and the convenience of monitoring ISMs signatures based on current SARS-CoV-2 phylogeny.In addition,our proposed haplotype entropy (HE) algorithm (see Supplementary Data) corrects the issues of phylogenetic redundancy (Zhao et al.,2020).Most notably,we argue that barcodes provide very limited understanding of the current dispersion patterns of SARS-CoV-2.

    Zhao et al.(2020) used entropy to identify “a compact set of nucleotide sites that characterize the most variable (and thus more informative) positions in the viral genomes sequenced from different individuals”.However,there are several issues in the procedure employed by these authors that were not addressed in the publication, which require further consideration.First,their entropy-based algorithm is unable to discriminate variants that are diagnostic of the same phylogenetic branch,basically because these variants have similar frequency in the database (excluding possible phylogenetic homoplasies occurring along the evolutionary history of SARS-CoV-2 genomes) (Figure 1A).To eliminate redundant variants from the initial 20 best ISMs candidates and reduce the list to only 11,the authors examineda posteriorithe evolution of the entropy values over time(entropy covarying over time). We propose that this redundancy could have been eliminated by simply inspecting the SARS-CoV-2 phylogeny.For instance,the phylogenetic tree skeleton in Figure 1A (inspired by Figure 3 in Gómez-Carballa et al.(2020a)),which includes the initial 20 ISMs signature,shows that:variants C8782T–T28144C together define clade B (11 nt compressed ISMs CCTGCCAAGGG in Zhao et al.(2020));the sequence motif C241T–C3037T–A23403G characterizes clade A2 (CC CGCCAGGGG, immediate ancestral node of the most successful SARS-CoV-2 variant outside Asia,which most likely originated in Italy (Gómez-Carballa et al.,2020a)); and G28881A–G28882A–G28883C defines haplogroup A2a4(CCCGCCAGGGA,one of the most important sub-branches of A2 (CCCGCCAGGGG); here we favored the single multinucleotide polymorphism (MNP) event GGG28881AAC for nomenclature,as justified in Gómez-Carballa et al.(2020a)).In addition, their entropy-based algorithm sub-optimally prioritized positions that are diagnostic of nodes located along the same evolutionary pathway,but which add very little to the overall discrimination power of the ISMs set: A1(CCCGCCAAGTG) makes up 4.7% of the total database,while its sub-lineage A1a (CCCTTCAAGTG) represents 4.3%and A1a3 represents 1.8% (Figure 1A).As an alternative,we propose that an algorithm that selects a given ISMs and maximizes the information provided by previously selected ISMs would be more efficient; for example,such a procedure would not include G28882A if it was previously prioritized.Inspired by previous procedures that consider cumulative information provided by sets of genetic variants (Galanter et al.,2012; Pardo-Seco et al.,2014; Salas & Amigo,2010),we propose that an algorithm that exploresHEwould be much more efficient than simply considering individual-site entropy values (see below).

    Instead of using a mathematical algorithm,Guan et al.(2020) employed a strict phylogenetic procedure,but their rationale for site selection is also questionable.The authors used genomes from the initial period of the pandemic to reconstruct a phylogenetic tree that derived five major clades(with 15 subclades).Their barcode proposed included a hyper-redundant set of 11 sites where:(i) C8782T–T28144C defined haplogroup B,(ii) set C241T–C3037T–A23403G defined haplogroup A2,while C14408T on top of the A2 sequence motif led to the sublineage A2a, (iii)G1397A–T28688C were both diagnostic of A3a1, and G1440A–G2891A defined haplogroup A4.As in Zhao et al.(2020),these variants defined basal nodes of the SARS-CoV-2 phylogeny,resulting in an unsurprising overlap between their 11 ISMs signatures (Figure 1A).

    Another issue in the study of Zhao et al.(2020) relates to the fact that their selection of ISMs was based on entropy values >0.23,and a proportion of “N” and “–“ below 25%; this threshold led the authors to an initial selection of 20 ISMs,but the rationale behind this decision is unsatisfactory.Given the arbitrariness of these thresholds,we are compelled to wonder how much of the total variation has been captured (or,conversely,remains to be explained) by their ISMs barcodes(see below).

    Figure 1 Skeleton of the SARS-CoV-2 phylogeny based on lSMs signatures,interpolated frequency maps of haplogroup sub-lineages having differential geographic distributions,and comparative entropy values for lSMs signatures using different strategies

    In addition,Zhao et al.(2020) selected their ISMs using the global GISAID database.This decision conditioned their ability to capture more regional patterns and temporal variations.It is,therefore,not unexpected that their signatures only captured variation located at the basal nodes of the phylogeny. This explains why their algorithm selected diagnostic sites for haplogroups B (CCTGCCAAGGG),B1(CCTGCTAAGGG),A1 (CCCGCCAAGTG),A2 (CCCGCC AGGGG),and A3 (CCCTCCAAGGG) (Figure 1).These basal nodes all occurred at the very initial steps of the pandemic and have spread worldwide (Gómez-Carballa et al.,2020a);therefore,none of the genomes representative of these basal nodes are circulating today,but are only members of derivative phylogenetic branches (note that,according to the evolutionary rate,a mutation accumulates in the SARS-CoV-2 genome approximatelly every two weeks on average (Gómez-Carballa et al.,2020a,2020b)).Moreover,reducing whole SARS-CoV-2 variation to a compact signature of 11 ISMs has an important cost in terms of phylogeographic information.For example,the signature CCCGCCAGGGA (haplogroup A2a4)is widely distributed (>88 countries have representatives of this clade) (Figure 1B).Within A2a4,however,there are sublineages that predominate in different countries; for example,A2a4c1a is almost exclusively present in the UK with frequencies ranging from~1.5% (Wales and Scotland) to 6.4% (England),while the sub-lineage A2a4a3a is exclusively found in Iceland (Reykjavík) at a frequency of 7.8%(Figure 1B).Additionally,the signature CCCGCCGGGGG(haplogroup A2a5) is highly prevalent in Italy,Spain,and Russia based on Figure 5 in Zhao et al.(2020); whereas,according to Gómez-Carballa et al.(2020b),A2a5 most likely originated in Italy and gave rise to one of the most important outbreaks in Spain; furthermore,its sub-lineage A2a5c originated in Spain (most likely in its capital city,Madrid) and its geographic distribution clearly differs from its ancestral node A2a5 (Figure 1B).The information on A2a4a4,A2a4a3a,A2a5c,and many other regionally important clades are all masked by Zhao et al.(2020) under a single signature that corresponds to A2a4 (CCCGCCAGGGA) and A2a5(CCCGCCGGGGG).Moreover,the reductionist view provided by the 11 ISMs barcodes prevents more in-depth interpretation of the principal component analysis (PCA)carried out by Zhao et al.(2020).For example,although this plot does not indicate variation accounted for by PC1 and PC2,it is possible to envisage that the position of the Spanish dataset close to other Asian countries on PC1 is due to the presence of haplogroup B3a (derivative of Asian B3 captured by Zhao et al.(2020) in the signature CCTGCTAAGGG).This haplogroup is much more frequent in Spain than in any other European country (see detailed reconstruction of its origin in Gómez-Carballa et al.(2020b)),a characteristic shared by the USA (and located on the same side of PC1) due to the high frequency presence of B1a1 (captured by Zhao et al.(2020)with the same signature).In addition,the procedure used by Zhao et al.(2020) captured the known D614G spike protein mutation (through their signature CCCGCCAGGGG and derivates; see Figure 1),which is of anecdotal significance only.This amino-acid change corresponds to the RNA change A23403G,which is the most common variant worldwide because it is diagnostic of the basal haplogroup A2 (Figure 1,and Gómez-Carballa et al.(2020a)).The frequency of this variant in Spain is significantly lower (67.2%) than that observed in other European countries (Europe without Spain:85.1%) where haplogroup A derivative clades are much more common.Finally,mutational hotspots constitute an additional problem,because these variants are likely to be included by an algorithm for ISMs selection.This is the case of position 11 083(one of the most important hotspots in the SARS-CoV-2 genome; see Supplementary Material and Supplementary Table S1 in Gómez-Carballa et al.(2020a)).Hotspots are phylogenetically unstable and have poor phylogeographic properties and tracking phylodynamics using hotspots can lead to obscured patterns.

    To reduce redundancy in the initial ISMs selection carried out by Zhao et al.(2020),we used theHEalgorithm (see Supplementary Data),which computes the entropy accounted for by haplotypes with an increased number of sites (note that,the 20 and 11 ISMs signatures defined by Zhao et al.(2020)are technically haplotypes).As expected,the computation ofHEprevents the selection of phylogenetically redundant ISMs(because they together define the same phylogenetic branch and/or because of the existence of more complex phylogenetic relationships among variants,e.g.,homoplasies)(Figure 1A).There is an expected overlap between the ISMs selected by theHEalgorithm and those selected by Zhao et al.(2020) because both algorithms tend to select ISMs with the highest individual entropy values and located at the basis of the phylogeny; however,theHEalgorithm significantly improves the overall entropy value compared to that captured by the 11 ISMs signature in Zhao et al.(2020).Thus,when applied to the 90 K database (see Supplementary Data),the entropy of the 11 ISMs signature from Zhao et al.(2020) is 3.1,whereas the 11 ISMs generated by ourHEalgorithm reach 3.6 (i.e.,increase of~16%).When considering profiles uploaded to GISAID until 17 June 2020 (>30 K; high quality genomes),as in Zhao et al.(2020),the total entropy of the 11 ISMs from Zhao et al.(2020) is 3.3,while the 11 ISMs signature based on theHEalgorithm using this dataset leads to a total entropy of 3.5 (increase of~6%).Table 1 shows the entropy values computed for the top ISMs obtained under different scenarios and algorithms; note that theHEalgorithm ranks the 20 ISMs selected by Zhao et al.(2020) in a different way,resulting in a different 11 ISMs signature.Finally,the 11 ISMs barcode proposed by Guan et al.(2020),with a total entropy of 1.3 on the 90 K database,misses the target by far,due to the existing phylogenetic redundancy mentioned above.

    TheHEalgorithm leads to a more efficient signature than that captured by the entropy procedure in Zhao et al.(2020);however,none of the algorithms provide information on how far these 11 ISMs signatures are from a hypothetical maximum entropy.To investigate this issue in more detail,we first computed the total entropy of the GISAID 90 K database by considering each genome as a haplotype,obtaining a value of 13.3.This indicates that the 11 ISMs signatures of both Zhao et al.(2020) and theHEalgorithm only capture~27% of the total entropy.We next computed theHEof signatures ranging in size from 1 to 400 ISMs,to see how much information a given ISMs adds to previously incorporated ISMs.Figure 1C indicates that a signature of 400 ISMs captures 9.2 of total entropy; therefore,the remaining 4.1 of entropy in the database (13.3 minus 9.2) is still retained by many other thousands of sites dispersed along the SARSCoV-2 genome.It is worth noting that the incorporation of additional ISMs to a signature adds progressively less and less entropy to the total system (Figure 1C).To further explore the efficiency of the 11 ISMs signature obtained by theHEalgorithm,we computed theHEof the 11 ISMs combined at random from the 50 sites with the highest individual entropy;this “brute force” method eliminated complex phylogenetic relationships that exist between sites (which might not be eliminated by theHEalgorithm).Because combinatorial algorithms are computationally highly demanding (i.e.,>1018possible combinations),we sampled only a reasonable number of combinations (2×106).None of these combinations improved the entropy captured by the 11 ISMs set obtained by theHEalgorithm; however,we observed a total of 12 751 combinations that yielded higher entropy than the signature proposed by Zhao et al.(2020); moreover,>95% of the combinations had higher entropy values than the barcode proposed by Guan et al.(2020) (Figure 1C).By visually exploring the cloud ofHEvalues in these random combinations,it can be inferred that the combination obtained using theHEalgorithm (Figure 1C) is most likely among the best-performing combinations,that is,nearly the topHEpossible with a signature of 11 ISMs.

    A final observation of our simulation experiments is that optimal ISMs signatures varied with time.The ISMs set obtained from the global database (from 24 December 2019 to 26 August 2020) differs slightly to the set obtained usinggenomes from the initial phase of the pandemic (from 24 December 2019 to 17 June 2020) and the latest phase in the database (from 17 June to 26 August 2020) (Table 1).

    Table 1 lSMs selected using HE procedure described in the present study and 20 lSMs signature captured by Zhao et al.(2020)

    As expected,the optimal ISMs set is highly dependent on the variation located at the basal nodes, but optimal signatures can experience small changes depending on the evolution and dispersion of the different SARS-CoV-2 strains worldwide (Table 1).

    We have shown that a simple (conceptual) modification to the entropy algorithm employed by Zhao et al.(2020) can lead to a more efficient procedure preventing the selection of sites that have redundant phylogenetic information.Our analysis highlights the need to properly supervise ISMs signatures using known SARS-CoV-2 phylogeny as a more robust approach to shed light on what is really being captured by these signatures.By ignoring phylogeny,the method becomes a kind of ‘black box’ that is difficult to interpret,especially when requiring regional level resolution.The authors attempt to find a parallel between the Nextstrain phylogeny (Hadfield et al.,2018) and their signatures,which does not clarify the sections of the evolutionary tree being captured.Here,we showed (Figure 1A) that a single evolutionarily stable mutational change in the SARS-CoV-2 genome is enough to pinpoint a phylogenetic node in the evolutionary tree.Relatedly,the use of nucleotide strings in the nomenclature of the ISMs signatures represents a major drawback to interpretation and knowledge exchange,rather than an advantage (contraZhao et al. (2020)). Instead, the hierarchical nomenclature used by most scholars (inspired by cladistic theory) appears much more convenient.Guan et al.(2020) proposed a signature based exclusively on phylogenetic criteria.For some unexplained reason,these authors selected highly redundant informative sites and did not realize that their proposal retains only a tiny fraction of global entropy.From here,one can also learn that the use of phylogeny alone does not help to reach the optimal signature,while a strategy that combines mathematical predictions with phylogeny can lead to more appropriate site selection.Most importantly,small ISMs signatures provide a very reductionist view of the pandemic dynamics,which can only superficially inform the story of a few basal phylogenetic nodes(Figure 1A),without accounting for sub-nodes that explain regional patterns and/or arise at different points in time.Regional variation is based on ‘domestic’ mutations that add very little to the global entropy (i.e.,have very limited variation); this variation is,however,very relevant to the region affected in terms of disease spread because it may be responsible for a local/regional outbreak (e.g.,intervention of super-spreader events (Gómez-Carballa et al., 2020a,2020b)).In this regard,the geographic interpretation of signatures in Zhao et al.(2020) seems incomplete and does not really reveal region-specific variation. Briefly, their signature TCCGCCAGTGG (haplogroup A2a2a) is “prevalent in New York and some European countries” but (i) it is even more prevalent in other states of the USA (see their Figure 6)and (ii) it is present in at least 71 countries worldwide (e.g.,USA 48.8%,Israel 54.9%,Denmark 69.7%,Finland 72.9%,Canada 22.3%,Vietnam 21.2%) because it is derived from clade A2a,which earlier originated in Italy (Gómez-Carballa et al.,2020a).Their description around this signature is also confusing,e.g.,position G26144T belongs to a different phylogenetic branch (A1; 50 countries representing all continents); and both A2a2a and A1 emerged from a common ancestor,namely,haplogroup A (Figure 1A).Moreover,their signature CCTGCTAAGGG points to the basal haplogroup B1(Figure 1A; one of the potential phylogenetic roots of the SARS-CoV-2 genome (Gómez-Carballa et al.,2020a)),which is also present in 20 countries at low frequency,except for Canada (19.3%),USA (10.2%),and Mexico (8.5%).As noted by Zhao et al.(2020),it is also highly prevalent in Washington,which is because an ancestral B1 lineage most likely entered the country via early dispersion through the Pacific from Asia,while A2 sub-lineages (e.g.,A2a2a and other A2a derivatives)most likely entered the USA from Europe via the Atlantic side.The concept of a genetic barcode might be attractive for many researchers interested in tracking SARS-CoV-2 variation as a shortcut alternative to whole-genome sequencing.However,as discussed above,future attempts should evaluate the potential limitations of site selection.As demonstrated in the present study,barcodes that capture ancestral SARS-CoV-2 variation may have very limited ability to track recent SARS-CoV-2 dynamics and/or genetic diversity.We envisage that the barcode strategy may be useful to track functional SARS-CoV-2 issues (e.g.,related to virulence,dispersion,vaccine efficiency) that could emerge at any time during the pandemic.

    SUPPLEMENTARY DATA

    Supplementary data to this article can be found online.

    COMPETlNG lNTERESTS

    The authors declare that they have no competing interests.

    AUTHORS’ CONTRlBUTlONS

    A.S.and F.M.-T.conceived the study.A.S.,A.G.-C.,X.B.,and J.P.-S.carried out the phylogenetic and statistical analyses.A.S.prepared the manuscript.All authors read and approved the final version of the manuscript.

    ACKNOWLEDGEMENTS

    We gratefully acknowledge GISAID and contributing laboratories (Supplementary Table S1) for giving us access to the SAR-CoV-2 genomes used in the present study.

    国产成人一区二区三区免费视频网站| 色哟哟哟哟哟哟| 国产av一区在线观看免费| bbb黄色大片| 国产色视频综合| 嫩草影院精品99| 亚洲久久久国产精品| 成人av一区二区三区在线看| 激情在线观看视频在线高清| 99精品在免费线老司机午夜| 国产日韩一区二区三区精品不卡| 99久久精品国产亚洲精品| 在线观看免费日韩欧美大片| 国产一区二区三区视频了| 欧美激情高清一区二区三区| 免费高清视频大片| 国产精品久久久av美女十八| 亚洲伊人色综图| 亚洲三区欧美一区| 免费在线观看视频国产中文字幕亚洲| 亚洲欧美日韩高清在线视频| 视频区图区小说| 香蕉国产在线看| 99riav亚洲国产免费| 亚洲黑人精品在线| 国产成人精品在线电影| 久久香蕉国产精品| 国产精品国产av在线观看| 久久婷婷成人综合色麻豆| 亚洲欧美激情在线| 欧美日韩av久久| 香蕉久久夜色| 黄色怎么调成土黄色| 中文字幕精品免费在线观看视频| 亚洲五月色婷婷综合| 国产伦一二天堂av在线观看| 午夜久久久在线观看| 97超级碰碰碰精品色视频在线观看| 麻豆国产av国片精品| 久久精品成人免费网站| 精品国产乱码久久久久久男人| 午夜a级毛片| 欧美在线黄色| 日韩精品青青久久久久久| 在线观看66精品国产| 欧美不卡视频在线免费观看 | 久久性视频一级片| 久久99一区二区三区| 亚洲精品美女久久久久99蜜臀| 91成人精品电影| 在线十欧美十亚洲十日本专区| 成人三级做爰电影| 久99久视频精品免费| 麻豆国产av国片精品| 欧美日韩视频精品一区| 日韩大码丰满熟妇| 久久人妻福利社区极品人妻图片| 日韩视频一区二区在线观看| 88av欧美| 男女下面进入的视频免费午夜 | 午夜福利在线免费观看网站| 欧美激情极品国产一区二区三区| 国产一区二区在线av高清观看| 天堂动漫精品| 午夜免费观看网址| 久久天堂一区二区三区四区| 国产精品一区二区精品视频观看| 亚洲午夜理论影院| 夜夜躁狠狠躁天天躁| 91老司机精品| 成人影院久久| 欧美成人免费av一区二区三区| 中国美女看黄片| 一区二区三区精品91| a级毛片在线看网站| 国产精品av久久久久免费| 国产精品九九99| 他把我摸到了高潮在线观看| 88av欧美| 日本精品一区二区三区蜜桃| 99热只有精品国产| 亚洲熟妇熟女久久| 久久久水蜜桃国产精品网| 国产精品爽爽va在线观看网站 | 男女之事视频高清在线观看| 亚洲狠狠婷婷综合久久图片| 99在线人妻在线中文字幕| 五月开心婷婷网| 露出奶头的视频| 国产精品一区二区三区四区久久 | 19禁男女啪啪无遮挡网站| 国产午夜精品久久久久久| 久久香蕉国产精品| 亚洲性夜色夜夜综合| а√天堂www在线а√下载| 超色免费av| 久久久国产成人免费| 色婷婷av一区二区三区视频| 女警被强在线播放| 丝袜人妻中文字幕| 亚洲一区二区三区欧美精品| 久久久久九九精品影院| 日韩有码中文字幕| 无人区码免费观看不卡| av福利片在线| 大香蕉久久成人网| 如日韩欧美国产精品一区二区三区| 午夜精品在线福利| 久久香蕉激情| 黄色片一级片一级黄色片| aaaaa片日本免费| 热99re8久久精品国产| 日本wwww免费看| 麻豆av在线久日| 十八禁人妻一区二区| 欧美色视频一区免费| 欧美日韩福利视频一区二区| 欧美中文日本在线观看视频| 国产精品一区二区在线不卡| 黄色怎么调成土黄色| 9色porny在线观看| 久久久久久久久免费视频了| 91精品国产国语对白视频| 国产aⅴ精品一区二区三区波| 制服人妻中文乱码| 人人妻人人添人人爽欧美一区卜| 久久国产精品人妻蜜桃| 国产激情欧美一区二区| 可以在线观看毛片的网站| 亚洲精品久久午夜乱码| 看黄色毛片网站| 亚洲欧美精品综合一区二区三区| 欧美成人午夜精品| 精品一区二区三区视频在线观看免费 | 精品熟女少妇八av免费久了| 丝袜人妻中文字幕| 麻豆国产av国片精品| 很黄的视频免费| 亚洲欧美激情综合另类| 少妇的丰满在线观看| 亚洲avbb在线观看| 丰满人妻熟妇乱又伦精品不卡| 丰满迷人的少妇在线观看| 成人18禁高潮啪啪吃奶动态图| 国产av一区在线观看免费| 中文字幕最新亚洲高清| 老司机福利观看| 亚洲男人的天堂狠狠| av天堂久久9| 亚洲在线自拍视频| 真人做人爱边吃奶动态| 精品国产国语对白av| 欧美人与性动交α欧美软件| 免费在线观看视频国产中文字幕亚洲| 老司机亚洲免费影院| 一边摸一边做爽爽视频免费| 免费在线观看影片大全网站| 久久人人97超碰香蕉20202| 女人高潮潮喷娇喘18禁视频| 村上凉子中文字幕在线| 久久人人精品亚洲av| 久久午夜综合久久蜜桃| 亚洲精品久久午夜乱码| 不卡av一区二区三区| 自线自在国产av| 亚洲成人精品中文字幕电影 | 亚洲av熟女| 一进一出抽搐动态| 黑人猛操日本美女一级片| netflix在线观看网站| 国产99白浆流出| 国产xxxxx性猛交| 亚洲,欧美精品.| 日韩欧美免费精品| 午夜精品久久久久久毛片777| 丰满迷人的少妇在线观看| 女人爽到高潮嗷嗷叫在线视频| 午夜视频精品福利| 国产免费av片在线观看野外av| 中文字幕另类日韩欧美亚洲嫩草| 后天国语完整版免费观看| 欧美中文综合在线视频| 久久国产亚洲av麻豆专区| 欧美日韩精品网址| 国产男靠女视频免费网站| 美女高潮到喷水免费观看| 日韩人妻精品一区2区三区| 美女 人体艺术 gogo| 欧美黄色淫秽网站| 亚洲色图综合在线观看| 亚洲专区国产一区二区| 美女午夜性视频免费| 国产亚洲欧美在线一区二区| 麻豆av在线久日| 精品熟女少妇八av免费久了| 国产精品亚洲av一区麻豆| 丰满人妻熟妇乱又伦精品不卡| 怎么达到女性高潮| 看免费av毛片| 老司机深夜福利视频在线观看| 亚洲一区中文字幕在线| 在线观看www视频免费| 欧美+亚洲+日韩+国产| 国产在线观看jvid| 在线永久观看黄色视频| 亚洲第一青青草原| 国产精品二区激情视频| 欧美激情极品国产一区二区三区| 成人亚洲精品一区在线观看| 男人操女人黄网站| www.精华液| 在线观看舔阴道视频| 一边摸一边做爽爽视频免费| 免费看a级黄色片| 午夜福利,免费看| 99国产精品一区二区蜜桃av| 日韩有码中文字幕| 看片在线看免费视频| 亚洲欧美一区二区三区久久| 一边摸一边做爽爽视频免费| 美女大奶头视频| 宅男免费午夜| 久久99一区二区三区| 精品久久蜜臀av无| 搡老熟女国产l中国老女人| 三上悠亚av全集在线观看| 久久亚洲精品不卡| 天堂中文最新版在线下载| 欧美丝袜亚洲另类 | 女性生殖器流出的白浆| 天堂中文最新版在线下载| 一级,二级,三级黄色视频| 视频在线观看一区二区三区| 欧美黄色淫秽网站| 久久国产精品人妻蜜桃| 国产亚洲精品久久久久久毛片| 丰满的人妻完整版| 国产成人精品无人区| 久久久国产成人精品二区 | 99国产精品免费福利视频| 大型av网站在线播放| 久久久国产成人免费| 成人手机av| 成人影院久久| 成人精品一区二区免费| 精品第一国产精品| 在线国产一区二区在线| 国产精品一区二区精品视频观看| 嫩草影视91久久| 成年人免费黄色播放视频| 久久精品国产亚洲av高清一级| 在线观看免费午夜福利视频| 黄色怎么调成土黄色| 色哟哟哟哟哟哟| 亚洲精品美女久久久久99蜜臀| av在线天堂中文字幕 | 国产成人一区二区三区免费视频网站| 国产成人啪精品午夜网站| 91精品国产国语对白视频| 夜夜看夜夜爽夜夜摸 | 天堂动漫精品| 中文欧美无线码| 欧美中文综合在线视频| 欧美激情久久久久久爽电影 | 亚洲国产精品sss在线观看 | 国产成人精品在线电影| 免费高清在线观看日韩| av片东京热男人的天堂| 日韩国内少妇激情av| 亚洲欧美日韩无卡精品| cao死你这个sao货| 夫妻午夜视频| 精品少妇一区二区三区视频日本电影| 欧美日本中文国产一区发布| 巨乳人妻的诱惑在线观看| 国产精品九九99| 午夜免费激情av| 女警被强在线播放| 色播在线永久视频| 亚洲成人免费电影在线观看| 亚洲视频免费观看视频| 精品福利永久在线观看| 夜夜夜夜夜久久久久| 久久精品亚洲精品国产色婷小说| 91成人精品电影| 国产精品爽爽va在线观看网站 | 久久国产亚洲av麻豆专区| 热99国产精品久久久久久7| 午夜视频精品福利| videosex国产| 亚洲人成伊人成综合网2020| 精品久久久久久久久久免费视频 | 18禁国产床啪视频网站| 人人妻人人澡人人看| 看片在线看免费视频| 12—13女人毛片做爰片一| 国产精品国产av在线观看| 中国美女看黄片| 精品日产1卡2卡| 欧美人与性动交α欧美软件| ponron亚洲| 黑丝袜美女国产一区| 精品午夜福利视频在线观看一区| 亚洲一区中文字幕在线| 黄色视频不卡| 可以免费在线观看a视频的电影网站| 女人爽到高潮嗷嗷叫在线视频| 日本 av在线| 欧美日韩视频精品一区| 美国免费a级毛片| 最好的美女福利视频网| 最近最新中文字幕大全免费视频| www.精华液| 亚洲熟女毛片儿| 日本黄色日本黄色录像| 午夜老司机福利片| 精品国产国语对白av| 一级a爱片免费观看的视频| 亚洲人成电影观看| 成人三级做爰电影| 超碰成人久久| 亚洲精品一二三| 日本一区二区免费在线视频| 久久精品国产综合久久久| 两个人免费观看高清视频| 香蕉国产在线看| 看片在线看免费视频| ponron亚洲| 偷拍熟女少妇极品色| 成人亚洲精品av一区二区| 亚洲午夜理论影院| 又粗又爽又猛毛片免费看| 精品久久久久久久久av| 欧美色视频一区免费| 怎么达到女性高潮| 国产精品影院久久| 日本免费a在线| 婷婷丁香在线五月| 国产精品98久久久久久宅男小说| 午夜a级毛片| 18禁裸乳无遮挡免费网站照片| 国产精品久久电影中文字幕| 波野结衣二区三区在线| 国产主播在线观看一区二区| 嫁个100分男人电影在线观看| 亚洲av成人精品一区久久| 国产亚洲精品久久久久久毛片| av欧美777| 简卡轻食公司| 91狼人影院| 亚洲成人中文字幕在线播放| 亚洲aⅴ乱码一区二区在线播放| 校园春色视频在线观看| 亚洲人成网站在线播放欧美日韩| 波多野结衣高清作品| 国产亚洲欧美98| 国产精品一区二区三区四区免费观看 | 精华霜和精华液先用哪个| 亚洲aⅴ乱码一区二区在线播放| 国产 一区 欧美 日韩| 日韩精品青青久久久久久| 嫩草影院新地址| 直男gayav资源| av在线蜜桃| 深爱激情五月婷婷| 成年免费大片在线观看| 在线观看舔阴道视频| 亚洲片人在线观看| 中国美女看黄片| 国产 一区 欧美 日韩| 99视频精品全部免费 在线| 欧美一区二区国产精品久久精品| 亚洲第一电影网av| 一级毛片久久久久久久久女| 一级av片app| 久久香蕉精品热| 色综合站精品国产| 91麻豆av在线| 亚洲中文字幕一区二区三区有码在线看| 舔av片在线| 国产在视频线在精品| 国产男靠女视频免费网站| 国产精华一区二区三区| 国产伦精品一区二区三区四那| 精品人妻视频免费看| 禁无遮挡网站| 赤兔流量卡办理| 亚洲真实伦在线观看| 免费观看人在逋| 国产 一区 欧美 日韩| 久久欧美精品欧美久久欧美| 成人无遮挡网站| 日韩欧美在线乱码| 免费电影在线观看免费观看| 国产成人av教育| 亚洲成av人片在线播放无| 久久久久亚洲av毛片大全| 国产伦人伦偷精品视频| 成人亚洲精品av一区二区| 日本黄大片高清| 亚洲狠狠婷婷综合久久图片| 色视频www国产| 亚洲经典国产精华液单 | 高清毛片免费观看视频网站| 脱女人内裤的视频| 亚洲av成人不卡在线观看播放网| 午夜亚洲福利在线播放| 日韩欧美在线二视频| 亚洲 欧美 日韩 在线 免费| 高清日韩中文字幕在线| 最近在线观看免费完整版| 久久久久久久久中文| av中文乱码字幕在线| 日日干狠狠操夜夜爽| 精品人妻一区二区三区麻豆 | 九九久久精品国产亚洲av麻豆| 午夜免费激情av| av专区在线播放| 蜜桃亚洲精品一区二区三区| 天堂av国产一区二区熟女人妻| 午夜福利18| 国产精品久久视频播放| 窝窝影院91人妻| 日韩成人在线观看一区二区三区| 99国产精品一区二区蜜桃av| 观看免费一级毛片| 国产三级中文精品| 国产高清有码在线观看视频| 国产大屁股一区二区在线视频| 嫩草影视91久久| 毛片一级片免费看久久久久 | 免费人成视频x8x8入口观看| 十八禁国产超污无遮挡网站| 嫩草影视91久久| 91在线精品国自产拍蜜月| 久久久久精品国产欧美久久久| 99久久久亚洲精品蜜臀av| 免费观看人在逋| 乱码一卡2卡4卡精品| 91字幕亚洲| 毛片一级片免费看久久久久 | 亚洲欧美日韩高清专用| 欧美日本视频| 日韩欧美一区二区三区在线观看| av女优亚洲男人天堂| 亚洲va日本ⅴa欧美va伊人久久| 亚洲av.av天堂| 久99久视频精品免费| 亚洲最大成人中文| 国产精品免费一区二区三区在线| 免费在线观看成人毛片| 波野结衣二区三区在线| 99在线人妻在线中文字幕| 最新在线观看一区二区三区| 波野结衣二区三区在线| 亚洲,欧美精品.| 欧美黄色淫秽网站| 日本黄大片高清| 在线观看美女被高潮喷水网站 | 内射极品少妇av片p| 久久久久久久久久黄片| 99热这里只有是精品在线观看 | 亚洲七黄色美女视频| 国产精品一区二区免费欧美| 午夜福利18| 国产亚洲av嫩草精品影院| 一个人看视频在线观看www免费| 成年女人毛片免费观看观看9| 波野结衣二区三区在线| 亚洲无线在线观看| 色尼玛亚洲综合影院| 日韩精品青青久久久久久| 性插视频无遮挡在线免费观看| 成人精品一区二区免费| 日韩欧美一区二区三区在线观看| 少妇人妻精品综合一区二区 | 极品教师在线视频| 我的老师免费观看完整版| 免费大片18禁| 精品一区二区三区av网在线观看| 精品人妻视频免费看| 亚洲国产色片| 一个人看的www免费观看视频| 十八禁网站免费在线| 免费看日本二区| 一进一出抽搐gif免费好疼| 欧美日韩乱码在线| 蜜桃亚洲精品一区二区三区| 看十八女毛片水多多多| 久久精品综合一区二区三区| 丰满人妻熟妇乱又伦精品不卡| 91午夜精品亚洲一区二区三区 | 亚洲人成网站高清观看| 午夜免费成人在线视频| 成年人黄色毛片网站| 伊人久久精品亚洲午夜| 长腿黑丝高跟| 人妻久久中文字幕网| 日本免费一区二区三区高清不卡| 欧美黑人巨大hd| 色5月婷婷丁香| 90打野战视频偷拍视频| 欧美最黄视频在线播放免费| 99久久精品热视频| 一级黄片播放器| 夜夜看夜夜爽夜夜摸| 少妇裸体淫交视频免费看高清| 日本一本二区三区精品| 色噜噜av男人的天堂激情| 三级毛片av免费| 亚洲成人免费电影在线观看| 搡老妇女老女人老熟妇| av专区在线播放| 国产私拍福利视频在线观看| 女人被狂操c到高潮| 日韩欧美 国产精品| 一边摸一边抽搐一进一小说| 一个人看视频在线观看www免费| 国产三级黄色录像| 久久国产精品人妻蜜桃| 3wmmmm亚洲av在线观看| 亚洲人成伊人成综合网2020| 精品国产亚洲在线| 中亚洲国语对白在线视频| 久久久久久久久久成人| 亚洲最大成人av| 亚洲三级黄色毛片| 搡女人真爽免费视频火全软件 | 真人做人爱边吃奶动态| 97超视频在线观看视频| 成熟少妇高潮喷水视频| 久久久久亚洲av毛片大全| 别揉我奶头~嗯~啊~动态视频| 国产黄片美女视频| 性色av乱码一区二区三区2| 看片在线看免费视频| 亚洲18禁久久av| 在线播放国产精品三级| 色噜噜av男人的天堂激情| 国产亚洲欧美98| 久久精品人妻少妇| 成年人黄色毛片网站| 在线观看免费视频日本深夜| 69av精品久久久久久| 国产在线男女| 久久人人爽人人爽人人片va | 亚洲国产日韩欧美精品在线观看| 麻豆国产97在线/欧美| 免费黄网站久久成人精品 | 欧美成人一区二区免费高清观看| 日本熟妇午夜| 深爱激情五月婷婷| a级一级毛片免费在线观看| 国产免费av片在线观看野外av| 国产亚洲欧美98| 99国产极品粉嫩在线观看| 亚洲人成电影免费在线| 不卡一级毛片| 禁无遮挡网站| 熟女电影av网| 成人无遮挡网站| 波野结衣二区三区在线| 国产高清有码在线观看视频| 色5月婷婷丁香| 丰满乱子伦码专区| 国产av麻豆久久久久久久| 五月玫瑰六月丁香| 国内精品久久久久精免费| 色吧在线观看| 中文在线观看免费www的网站| 日本 av在线| 校园春色视频在线观看| 欧美在线黄色| 一级av片app| av国产免费在线观看| 人妻久久中文字幕网| 午夜福利欧美成人| 91麻豆av在线| 国产一区二区在线观看日韩| 色av中文字幕| 少妇被粗大猛烈的视频| 一卡2卡三卡四卡精品乱码亚洲| eeuss影院久久| 亚洲欧美精品综合久久99| av国产免费在线观看| 如何舔出高潮| 男人舔女人下体高潮全视频| 欧洲精品卡2卡3卡4卡5卡区| 亚洲片人在线观看| 蜜桃久久精品国产亚洲av| 色噜噜av男人的天堂激情| 老司机福利观看| 在线观看一区二区三区| 特大巨黑吊av在线直播| 久久国产乱子伦精品免费另类| 麻豆av噜噜一区二区三区| 亚洲欧美日韩无卡精品| 久久草成人影院| 3wmmmm亚洲av在线观看| 欧美另类亚洲清纯唯美| 久久精品夜夜夜夜夜久久蜜豆| 欧美高清性xxxxhd video| 男女做爰动态图高潮gif福利片| 亚洲avbb在线观看| 久久精品夜夜夜夜夜久久蜜豆| 亚洲美女搞黄在线观看 | 亚洲一区高清亚洲精品| 美女大奶头视频| 欧美高清性xxxxhd video| av欧美777| 黄色丝袜av网址大全| 久久中文看片网| 亚洲在线观看片| 少妇的逼好多水| 中文字幕av在线有码专区|