• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      基于改進(jìn)飛蛾撲火算法的單時(shí)刻參數(shù)可變機(jī)組組合優(yōu)化

      2021-02-18 12:43:58賴(lài)偉鵬陳璟華胡文波
      寧夏電力 2021年6期
      關(guān)鍵詞:飛蛾二進(jìn)制適應(yīng)度

      賴(lài)偉鵬,陳璟華,胡文波

      (廣東工業(yè)大學(xué) 自動(dòng)化學(xué)院,廣東 廣州 510006)

      0 引 言

      機(jī)組組合是指在滿足各種實(shí)際運(yùn)行約束條件的前提下,對(duì)機(jī)組進(jìn)行合理調(diào)度以實(shí)現(xiàn)系統(tǒng)低成本、高可靠性運(yùn)行的決策過(guò)程[1]。目前求解機(jī)組組合優(yōu)化問(wèn)題的常用方法可以分成經(jīng)典算法與智能算法。其中分支定界法(branch and bound method,BBM)、混合整數(shù)線性規(guī)劃(mixed integer linear programming,MILP)、動(dòng)態(tài)規(guī)劃法(dynamic programming,DP)、優(yōu)先次序法(priority rule,PL)、拉格朗日松弛法(Lagrangian relaxation,LR)等經(jīng)典算法因表達(dá)簡(jiǎn)單、魯棒性強(qiáng)、收斂速度快而被長(zhǎng)期應(yīng)用[2]。隨著機(jī)組數(shù)目不斷增加,高維度問(wèn)題的出現(xiàn)使得經(jīng)典算法求取最優(yōu)解出現(xiàn)各種問(wèn)題。

      智能優(yōu)化算法因具有良好的求解速率及全局搜索能力而被應(yīng)用于求解機(jī)組組合問(wèn)題。文獻(xiàn)[3-6]分別運(yùn)用帶精英策略的非支配排序遺傳算法(elitist non-donminated sorting genetic algorithm,NSGA-II)、改進(jìn)二進(jìn)制微分進(jìn)化算法(binary differential evolution,BDE)、離散鯨魚(yú)優(yōu)化算法、離散縱橫交叉算法對(duì)機(jī)組組合優(yōu)化問(wèn)題進(jìn)行求解。文獻(xiàn)[7]提出求解大規(guī)模系統(tǒng)的兩階段機(jī)組組合方法,運(yùn)用改進(jìn)PL法求解機(jī)組啟停狀態(tài),但PL所求解的質(zhì)量會(huì)隨系統(tǒng)規(guī)模增加而降低。文獻(xiàn)[8]將智能優(yōu)化算法與經(jīng)典算法相結(jié)合,該方法在搜索能力上有所提升,但由于采用經(jīng)典算法對(duì)所有候選解進(jìn)行調(diào)整,導(dǎo)致解的多樣性有所下降。文獻(xiàn)[9]提出結(jié)合PL法與雙重粒子群算法的機(jī)組組合降維求解方法,運(yùn)用PL法避免算法早熟,同時(shí)對(duì)機(jī)組組合進(jìn)行降維處理,構(gòu)建單時(shí)刻機(jī)組組合優(yōu)化以提升求解速率,但該文獻(xiàn)采用降維方式對(duì)機(jī)組組合進(jìn)行拆分,而未對(duì)單時(shí)刻變量進(jìn)行調(diào)整,使得單時(shí)刻變量?jī)?yōu)勢(shì)未得到發(fā)揮。在雙階段機(jī)組組合問(wèn)題中,負(fù)荷分配產(chǎn)生的總費(fèi)用將作為機(jī)組啟停的適應(yīng)度進(jìn)行啟停狀態(tài)優(yōu)化,因此能否在負(fù)荷分配階段獲取更優(yōu)秀的解是決定機(jī)組組合求解質(zhì)量的關(guān)鍵,而這需要算法具有更好的全局搜索能力。

      飛蛾撲火算法(moth flame optimization,MFO)在搜索方式上與其他算法有所不同,MFO會(huì)在整個(gè)搜索空間中提供多個(gè)火焰,飛蛾圍繞相應(yīng)火焰進(jìn)行搜索,而非僅圍繞單一空間最優(yōu)解進(jìn)行搜尋,該特性為算法提供優(yōu)秀的全局搜索能力,在經(jīng)濟(jì)調(diào)度[10-11]、穩(wěn)定器參數(shù)優(yōu)化[12]和最優(yōu)潮流計(jì)算[13]等方面都取得了很好的效果。本文在飛蛾撲火算法基礎(chǔ)上進(jìn)行改進(jìn),進(jìn)一步提升算法搜索能力,同時(shí)提出參數(shù)可變策略,對(duì)單時(shí)刻變量進(jìn)行調(diào)整以提升運(yùn)算收斂速率;提出PL法概率調(diào)整策略,在保證候選解多樣性的同時(shí)提升解的質(zhì)量。

      1 機(jī)組組合數(shù)學(xué)模型

      1.1 目標(biāo)函數(shù)

      火電機(jī)組組合問(wèn)題目標(biāo)函數(shù)通常為在調(diào)度周期內(nèi)總費(fèi)用(機(jī)組煤耗費(fèi)用與啟停費(fèi)用)最小,即:

      (1)

      式中:TC—火電機(jī)組運(yùn)行總費(fèi)用;

      SUi—機(jī)組i的啟動(dòng)費(fèi)用,機(jī)組停機(jī)費(fèi)用往往遠(yuǎn)小于開(kāi)機(jī)費(fèi)用,故在啟停費(fèi)用中只考慮開(kāi)機(jī)費(fèi)用而忽略停機(jī)費(fèi)用。

      機(jī)組的耗能特性函數(shù)一般表示為出力的二次函數(shù),如式(2)所示:

      (2)

      式中:ai,bi,ci—常數(shù),代表機(jī)組i的運(yùn)行耗量特性。

      火電機(jī)組的啟動(dòng)方式主要有冷啟動(dòng)和壓火啟動(dòng)兩類(lèi)。SUi根據(jù)機(jī)組的啟動(dòng)方式不同而不同,如式(3)所示:

      (3)

      式中:Ki—機(jī)組i啟動(dòng)的固定費(fèi)用;

      Bi,τi—機(jī)組i的啟動(dòng)耗能系數(shù);

      1.2 約束條件

      1)功率平衡約束

      (4)

      2)發(fā)電機(jī)輸出功率上下限約束

      (5)

      3)機(jī)組旋轉(zhuǎn)備用容量約束

      (6)

      4)機(jī)組爬坡、滑坡速率約束

      (7)

      5)機(jī)組最小啟停時(shí)間約束

      (8)

      Ng—機(jī)組數(shù)目;

      URi,DRi—機(jī)組i出力爬坡速率的上下限;

      MUTi,MDTi—機(jī)組最小連續(xù)開(kāi)機(jī)和停機(jī)時(shí)間。

      2 優(yōu)化算法

      本文將機(jī)組組合問(wèn)題拆分為單時(shí)刻機(jī)組啟停狀態(tài)主問(wèn)題及經(jīng)濟(jì)分配子問(wèn)題。本文采用成熟且廣泛使用的二進(jìn)制粒子群算法求解機(jī)組啟停狀態(tài)主問(wèn)題,采用全局搜索能力更優(yōu)的改進(jìn)飛蛾撲火算法求解負(fù)荷分配子問(wèn)題。

      2.1 二進(jìn)制粒子群算法

      二進(jìn)制粒子群算法將離散問(wèn)題空間映射到連續(xù)空間中,使粒子在狀態(tài)空間中取值僅為0與1。

      二進(jìn)制粒子群算法速度更新公式為

      (9)

      二進(jìn)制粒子群算法位置更新公式為

      (10)

      (11)

      式中:w—慣性權(quán)重;

      c1與c2—學(xué)習(xí)因子;

      r1與r2— 0到1的隨機(jī)數(shù);

      2.2 改進(jìn)的飛蛾撲火算法

      2.2.1 飛蛾撲火算法

      飛蛾撲火算法[14]作為一種新型群智能優(yōu)化算法,其靈感來(lái)源于夜間飛蛾圍繞燈光螺旋飛行的生物特性。螺旋飛行代表飛蛾圍繞火焰周?chē)w行,而非在兩者直線空間搜索,從而使算法具有更廣的搜索空間,保證了算法的全局搜索及局部開(kāi)發(fā)能力。飛蛾作為搜索空間中的候選解,用矩陣M表示,數(shù)組ZM儲(chǔ)存各飛蛾對(duì)應(yīng)的適應(yīng)度?;鹧孀鳛楦黠w蛾在搜尋過(guò)程中獲取的局部最優(yōu)解,用矩陣F表示,數(shù)組ZF存儲(chǔ)各火焰相應(yīng)的適應(yīng)度值。

      式中:N—飛蛾的個(gè)數(shù);

      dm—維度,即待求變量的個(gè)數(shù)。

      飛蛾的位置更新公式為

      (14)

      式中:Mn—第n只飛蛾更新后的位置;

      Dn—第n只飛蛾與第j個(gè)火焰的距離;

      b—等角螺線參數(shù);

      t—從1線性遞減到-1的隨機(jī)數(shù)。

      為提升算法收斂速率及收斂精度,MFO采用火焰自適應(yīng)減少機(jī)制,根據(jù)公式(15)確定火焰數(shù)目,僅保留NF內(nèi)最佳火焰。

      (15)

      式中:NF—當(dāng)前火焰數(shù)目;

      NFmax—最大火焰數(shù)量;

      k—當(dāng)前迭代次數(shù);

      T—最大迭代數(shù)。

      2.2.2 Tent混沌序列

      各類(lèi)元啟發(fā)式算法通常隨機(jī)生成初始種群,而隨機(jī)生成的種群分布不均勻,造成算法的優(yōu)化速度及收斂性能降低。為提升初始種群的質(zhì)量,增加種群多樣性,提高算法的搜索效率,本文基于混沌理論,采用Tent混沌序列對(duì)算法初始種群進(jìn)行改良,構(gòu)建混沌飛蛾撲火算法(adaptive binary particle swarm optimization algorithm-adaptive chaos moth flame optimization,ABPSO-ACMFO),具體步驟如下:

      (1)生成1個(gè)N行dm列的隨機(jī)數(shù)組,構(gòu)成飛蛾初始種群M,各參數(shù)含義同公式(12)。

      (2)根據(jù)公式(16)對(duì)數(shù)組的每個(gè)元素進(jìn)行計(jì)算,生成Tent混沌映射數(shù)組,并將該數(shù)組作為算法初始種群進(jìn)行后續(xù)算法運(yùn)算。

      圖1是分別采用隨機(jī)生成與Tent混沌映射生成的50個(gè)初始功率值,對(duì)比可知,Tent混沌映射產(chǎn)生的初始種群重疊數(shù)更少,初始種群質(zhì)量更好。

      (a)隨機(jī)生成種群

      Tent映射公式為

      (16)

      3 單時(shí)刻參數(shù)可調(diào)機(jī)組組合優(yōu)化

      機(jī)組組合問(wèn)題變量往往為包含調(diào)度時(shí)刻及機(jī)組數(shù)目的矩陣變量。以矩陣形式處理約束條件通常采用以下三種方法:忽略次要約束條件,加入懲罰系數(shù),運(yùn)用調(diào)整策略。其中,忽略次要約束條件可導(dǎo)致出現(xiàn)無(wú)用解;運(yùn)用懲罰系數(shù)法難以處理離散約束條件,此外過(guò)大的懲罰系數(shù)會(huì)導(dǎo)致懲罰函數(shù)值在可行域的邊界附近呈現(xiàn)病態(tài);運(yùn)用調(diào)整策略能較好處理約束條件,然而新生成的矩陣變量不一定能滿足約束條件,需要修正調(diào)整,這將導(dǎo)致計(jì)算復(fù)雜度增加。故本文將機(jī)組組合問(wèn)題拆分為單時(shí)刻機(jī)組組合優(yōu)化,將矩陣形式轉(zhuǎn)化為向量形式,降低計(jì)算復(fù)雜度。

      3.1 二進(jìn)制粒子群算法解決機(jī)組啟停

      3.1.1 粒子群種群初始化

      在粒子群種群初始化時(shí),對(duì)初始化粒子進(jìn)行調(diào)整,保證收斂速度。

      (17)

      2)確定算法基本優(yōu)化參數(shù)。狀態(tài)保持不變的機(jī)組處于已知狀態(tài),剩余未確定狀態(tài)的機(jī)組通過(guò)算法進(jìn)行求解,而不同時(shí)間段已知的機(jī)組狀態(tài)數(shù)目有所差異,導(dǎo)致二進(jìn)制粒子群算法需計(jì)算的未知量有較大差距。按照最多未知量來(lái)設(shè)定算法基本參數(shù)將造成未知量少時(shí)算力浪費(fèi),而基本參數(shù)設(shè)定較少將造成未知量多時(shí)算法無(wú)法收斂;因此本文采用可變化基本參數(shù),對(duì)未知變量數(shù)劃分區(qū)間,在不同區(qū)間,二進(jìn)制粒子群算法的迭代次數(shù)及種群數(shù)按公式(18)進(jìn)行調(diào)整,構(gòu)建參數(shù)可變二進(jìn)制粒子群算法(adaptive binary particle swarm optimization algorithm,ABPSO)。

      式中:Nt—第t時(shí)刻的算法種群數(shù);

      Tt—t時(shí)刻的算法迭代次數(shù);

      3)劣解初始粒子概率調(diào)整。劣解粒子代表機(jī)組運(yùn)行數(shù)目過(guò)多或者過(guò)少,機(jī)組運(yùn)行數(shù)目過(guò)多將造成系統(tǒng)備用容量過(guò)多,增加運(yùn)行費(fèi)用。機(jī)組運(yùn)行數(shù)目過(guò)少將導(dǎo)致系統(tǒng)不滿足功率平衡約束及備用容量約束。而直接對(duì)粒子運(yùn)用策略調(diào)整將對(duì)種群多樣性造成影響,容易陷入局部最優(yōu)解。本文采用概率調(diào)整策略。對(duì)于開(kāi)啟機(jī)組數(shù)目過(guò)少、機(jī)組最大輸出總功率小于負(fù)荷的粒子根據(jù)公式(19)開(kāi)啟最優(yōu)機(jī)組,直至滿足功率平衡約束及備用容量約束。對(duì)于開(kāi)啟機(jī)組數(shù)目過(guò)多,機(jī)組最小輸出總功率大于負(fù)荷的粒子,根據(jù)公式(19)確定開(kāi)啟機(jī)組中的最劣機(jī)組,如果最劣機(jī)組停機(jī)后系統(tǒng)不滿足約束,則停止機(jī)組調(diào)整;如果滿足,則按概率停止該機(jī)組。

      機(jī)組排序指標(biāo)為

      (19)

      式中:Pait—發(fā)電機(jī)t時(shí)刻輸出功率上下限的平均值。

      3.1.2 粒子群算法更新

      粒子群按式(9)—(11)進(jìn)行速度及方向的更新。離散粒子群算法迭代過(guò)程中,將粒子代表的機(jī)組啟停排序過(guò)度到飛蛾撲火算法,運(yùn)用飛蛾撲火算法計(jì)算出該排序的最優(yōu)機(jī)組出力以及最少總費(fèi)用,將該排序的最少總費(fèi)用作為該粒子適應(yīng)度,以確定該代的全局最優(yōu)解以及粒子的局部最優(yōu)解。多次重復(fù)迭代過(guò)程直到確定當(dāng)前調(diào)度時(shí)刻的最優(yōu)機(jī)組組合狀態(tài)及對(duì)應(yīng)的最優(yōu)負(fù)荷分配。在迭代更新過(guò)程中,對(duì)劣解粒子通過(guò)機(jī)組排序指標(biāo)進(jìn)行概率調(diào)整。

      3.2 基于飛蛾撲火算法的負(fù)荷分配

      3.2.1 飛蛾撲火算法初始化

      1)運(yùn)行機(jī)組數(shù)目隨粒子不同及時(shí)刻變化而呈現(xiàn)不確定性,飛蛾撲火算法只需求解開(kāi)啟機(jī)組的輸出功率,因此將粒子開(kāi)啟機(jī)組數(shù)目作為飛蛾撲火算法待求變量數(shù)。通過(guò)公式(18)確定飛蛾數(shù)目及迭代次數(shù),從而提升優(yōu)化過(guò)程效率,減少算力浪費(fèi)。

      2)根據(jù)公式(20)求出單時(shí)刻機(jī)組最大、最小輸出功率,將機(jī)組最大、最小輸出功率作為種群上下限。

      單時(shí)刻機(jī)組最大、最小輸出功率具體計(jì)算公式為

      (20)

      3)應(yīng)用Tent混沌映射生成初始種群,提升種群多樣性。將參數(shù)可變策略與Tent混沌應(yīng)用于飛蛾撲火算法,構(gòu)建參數(shù)可變ABPSO-ACMFO。

      3.2.2 飛蛾撲火算法更新

      為使所求解滿足功率平衡約束及備用容量約束,將公式(21)作為算法適應(yīng)度函數(shù)。在算法種群初始化后,運(yùn)用適應(yīng)度函數(shù)求解各飛蛾對(duì)應(yīng)適應(yīng)度。通過(guò)適應(yīng)度大小對(duì)比,將更好的飛蛾作為新火焰對(duì)矩陣進(jìn)行調(diào)整,并通過(guò)公式(14)、(15)進(jìn)行飛蛾位置更新及減少火焰數(shù)目。多次迭代并將最終所得最優(yōu)總費(fèi)用作為該粒子的適應(yīng)度返回二進(jìn)制粒子群算法。

      (21)

      3.2.3 粒子群算法與飛蛾撲火算法流程

      1)初始時(shí)刻確定二進(jìn)制粒子群算法的基本參數(shù)并產(chǎn)生初始種群,并對(duì)劣解粒子進(jìn)行概率調(diào)整。

      2)劣解粒子概率調(diào)整,得到改進(jìn)粒子種群。

      3)根據(jù)粒子的開(kāi)機(jī)數(shù)目確定飛蛾撲火算法基本參數(shù),并以單時(shí)刻機(jī)組最大、最小輸出功率作為種群上下限,采用Tent混沌映射生成初始種群。

      4)運(yùn)用公式(21)求解適應(yīng)度,將飛蛾按適應(yīng)度遞增進(jìn)行排列后賦值給第一代火焰。運(yùn)用公式(14)更新飛蛾位置,并計(jì)算新飛蛾適應(yīng)度。將新飛蛾適應(yīng)度與火焰適應(yīng)度進(jìn)行排序,選取適應(yīng)度更優(yōu)的空間位置作為新一代火焰,通過(guò)公式(15)減少火焰數(shù)目。多次迭代求出最優(yōu)出力及最優(yōu)總費(fèi)用。

      5)將最優(yōu)總費(fèi)用作為二進(jìn)制粒子適應(yīng)度以確定全局最優(yōu)解及個(gè)體極值。通過(guò)公式(9)、公式(10)進(jìn)行二進(jìn)制粒子更新。

      6)重復(fù)采用飛蛾撲火算法求解粒子適應(yīng)度及粒子位置更新過(guò)程直到二進(jìn)制粒子群算法迭代結(jié)束,得到初始時(shí)刻最優(yōu)機(jī)組出力、機(jī)組最優(yōu)啟停狀態(tài)及最優(yōu)總費(fèi)用。

      7)進(jìn)入下一調(diào)度時(shí)刻,根據(jù)最小啟停約束確定部分機(jī)組狀態(tài),將狀態(tài)不確定的機(jī)組數(shù)作為待求變量,根據(jù)公式(18)確定算法基本參數(shù),并生成初始種群。

      8)重復(fù)步驟(2)—(7)直到求出整個(gè)調(diào)度時(shí)刻的最優(yōu)機(jī)組啟停狀態(tài)及最優(yōu)機(jī)組出力。

      4 仿真及分析

      為驗(yàn)證本文所提方法的有效性,分別采用12機(jī)及100、200機(jī)算例進(jìn)行仿真,其中12機(jī)發(fā)電機(jī)參數(shù)及負(fù)荷數(shù)據(jù)見(jiàn)文獻(xiàn)[15],100機(jī)組與200機(jī)組參數(shù)及負(fù)荷數(shù)據(jù)由文獻(xiàn)[16]的10機(jī)組數(shù)據(jù)復(fù)制生成。程序在Wndows10、Matlab2018b平臺(tái)上實(shí)現(xiàn)。

      4.1 12機(jī)系統(tǒng)仿真及分析

      為驗(yàn)證改進(jìn)飛蛾撲火算法的全局搜索能力,選取12機(jī)算例中第12 h負(fù)荷分配過(guò)程作為單時(shí)刻算例,并運(yùn)用改進(jìn)飛蛾撲火算法、飛蛾撲火算法與連續(xù)粒子群算法進(jìn)行求解。其中設(shè)置前11 h機(jī)組啟停狀態(tài)及輸出功率相同,第12 h機(jī)組啟停狀態(tài)為僅7、8機(jī)組關(guān)閉。其中二進(jìn)制粒子群參數(shù)為c1=c2=2,w=0.4。飛蛾撲火算法參數(shù)為b=1,t=[-1,1]。三種算法的收斂曲線如圖2所示。由圖2可知,改進(jìn)的飛蛾撲火算法在62代收斂于3.691×104美元,未改進(jìn)飛蛾撲火算法在92代收斂于3.709×104美元,粒子群算法在52代收斂于3.736×104美元。與粒子群算法相比,飛蛾撲火算法能獲得更低的運(yùn)行費(fèi)用,表明該算法具有更優(yōu)的全局搜索能力。從迭代次數(shù)及運(yùn)行費(fèi)用對(duì)比可知,與未改進(jìn)相比,改進(jìn)之后的飛蛾撲火算法在收斂精度及收斂速度上有進(jìn)一步提升。

      圖2 單時(shí)刻算法收斂曲線

      為驗(yàn)證改進(jìn)飛蛾撲火算法在全時(shí)刻機(jī)組組合問(wèn)題方面的求解能力,分別采用二進(jìn)制粒子群算法及飛蛾撲火算法(binary particle swarm optimization algorithm-moth flame optimization,BPSO-MFO)、二進(jìn)制粒子群算法及混沌飛蛾撲火算法(binary particle swarm optimization algorithm-chaos moth flame optimization,BPSO-CMFO)及文獻(xiàn)[9]的混合遺傳算法(hybrid genetic algorithm,HGA)、混沌優(yōu)化算法(chaotic optimization algorithm COA)、混沌混合遺傳算法(hybrid chaotic genetic algorithm,HCGA)、雙重粒子群算法(dimension reduction particle swarm optimization,DRPSO)求解12機(jī)算例,結(jié)果對(duì)比如表1所示。由表1可知:運(yùn)用BPSO-MFO求得運(yùn)行費(fèi)用比文獻(xiàn)[15]所提的TOPSO相比更少;而對(duì)飛蛾撲火算法進(jìn)行改進(jìn)后,運(yùn)行費(fèi)用進(jìn)一步降低,與TOPSO所求運(yùn)行費(fèi)用相比減少了8674美元,表明在求解機(jī)組組合問(wèn)題上,采用改進(jìn)飛蛾撲火算法具有很好的經(jīng)濟(jì)效益。

      表1 優(yōu)化結(jié)果對(duì)比

      4.2 大規(guī)模機(jī)組組合仿真及分析

      本文采用對(duì)10機(jī)系統(tǒng)進(jìn)行復(fù)制的方式,生成100及200機(jī)系統(tǒng),并分別采用參數(shù)固定的二進(jìn)制粒子群及飛蛾撲火算法(binary particle awarm optimization algorithm-chaos moth flame Optimization,BPSO-CMFO)、參數(shù)可調(diào)的二進(jìn)制粒子群及飛蛾撲火算法(adaptive binary particle swarm optimization algorithm-adaptive chaos moth flame optimization,ABPSO-ACMFO)、PL法概率調(diào)整BPSO-CMFO與運(yùn)用PL法概率調(diào)整的ABPSO-ACMFO對(duì)多機(jī)系統(tǒng)進(jìn)行求解,結(jié)果如表2所示。由表2可知,采用BPSO-CMFO求解200機(jī)系統(tǒng)所得運(yùn)行費(fèi)用為采取100機(jī)系統(tǒng)運(yùn)行費(fèi)用的192.4%,求解200機(jī)系統(tǒng)所用耗時(shí)為求解100機(jī)系統(tǒng)耗時(shí)的182.8%,表明運(yùn)行費(fèi)用及計(jì)算耗時(shí)隨機(jī)組規(guī)模增加平穩(wěn)上升,算法搜索能力及運(yùn)算速率并未出現(xiàn)明顯下降。

      從表2中ABPSO-ACMFO與BPSO-CMFO求解的耗時(shí)數(shù)據(jù)對(duì)比可知,采用參數(shù)可變策略后,求解100機(jī)及200機(jī)系統(tǒng)的運(yùn)行時(shí)間分別降低12.8%與15.8%,體現(xiàn)參數(shù)可調(diào)策略能根據(jù)變量數(shù)目調(diào)整算法運(yùn)行參數(shù),減少不必要運(yùn)算時(shí)間。PL法概率調(diào)整BPSO-CMFO及BPSO-CMFO求解的運(yùn)行費(fèi)用數(shù)據(jù)對(duì)比可知,采用PL法概率調(diào)整策略后運(yùn)行費(fèi)用分別降低17 289美元及98 734美元,表明PL法概率調(diào)整策略通過(guò)改善候選解質(zhì)量,能有效提升最終解的質(zhì)量。從表2中PL法概率調(diào)整ABPSO-ACMFO的耗時(shí)及運(yùn)行費(fèi)用數(shù)據(jù)可知,綜合采用PL法概率調(diào)整策略及參數(shù)可變策略能有效提升求解過(guò)程中運(yùn)行速率及運(yùn)行效率,體現(xiàn)了本方法在求解大規(guī)模機(jī)組組合問(wèn)題上的優(yōu)越性。

      表2 大規(guī)模機(jī)組優(yōu)化結(jié)果對(duì)比

      5 結(jié) 論

      本文提出基于二進(jìn)制粒子群及改進(jìn)飛蛾撲火算法的單時(shí)刻參數(shù)可調(diào)機(jī)組組合優(yōu)化方法,將總調(diào)度周期優(yōu)化拆分為單時(shí)刻啟停狀態(tài)優(yōu)化及單時(shí)刻負(fù)荷分配優(yōu)化。采用二進(jìn)制粒子群算法求解單時(shí)刻的機(jī)組啟停,改進(jìn)飛蛾撲火算法求解單時(shí)刻負(fù)荷分配,兩種算法相互迭代,更快速、有效地求解最優(yōu)機(jī)組組合。提出參數(shù)可調(diào)策略,根據(jù)算法待求變量數(shù)目的不同,調(diào)節(jié)算法種群數(shù)目和迭代次數(shù)以提升算法運(yùn)行速率,同時(shí)運(yùn)用PL法對(duì)候選解進(jìn)行概率調(diào)整以提升解的質(zhì)量及平衡種群的多樣性。經(jīng)典算例仿真結(jié)果證明了本文所提優(yōu)化求解策略具有更好的經(jīng)濟(jì)效益,同時(shí)在求解大規(guī)模機(jī)組組合問(wèn)題上的有效性及優(yōu)越性。

      猜你喜歡
      飛蛾二進(jìn)制適應(yīng)度
      改進(jìn)的自適應(yīng)復(fù)制、交叉和突變遺傳算法
      用二進(jìn)制解一道高中數(shù)學(xué)聯(lián)賽數(shù)論題
      可愛(ài)的你
      Trolls World Tour魔發(fā)精靈2
      飛蛾說(shuō)
      有趣的進(jìn)度
      二進(jìn)制在競(jìng)賽題中的應(yīng)用
      勇敢的小飛蛾
      基于空調(diào)導(dǎo)風(fēng)板成型工藝的Kriging模型適應(yīng)度研究
      少數(shù)民族大學(xué)生文化適應(yīng)度調(diào)查
      吴忠市| 千阳县| 利川市| 邓州市| 台湾省| 宝兴县| 宜良县| 延吉市| 永济市| 高邑县| 沿河| 涿鹿县| 加查县| 江油市| 绵阳市| 敖汉旗| 辛集市| 达日县| 旬邑县| 洪洞县| 修武县| 五华县| 古田县| 南城县| 农安县| 紫阳县| 息烽县| 辽阳县| 马鞍山市| 广安市| 新建县| 河池市| 沙田区| 西宁市| 朝阳县| 淄博市| 石阡县| 当阳市| 望谟县| 张掖市| 西峡县|