• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    電化學蝕刻鉭箔制備高容量薄膜鉭電解電容器

    2021-02-02 05:17:42郭永富王日明于淑會初寶進
    集成技術 2021年1期
    關鍵詞:電解電容器薄膜

    郭永富 王日明 于淑會 初寶進 孫 蓉

    1(深圳先進電子材料國際創(chuàng)新研究院 深圳 518103)

    2(中國科學院深圳先進技術研究院 深圳 518055)

    3(中國科學技術大學納米科學技術學院 蘇州 215123)

    4(中國科學技術大學 中國科學院能量轉換材料重點實驗室 合肥 230026)

    1 Introduction

    Fig. 1 Schematic illustration of (a) commercially available copper/dielectric layer/copper structured embedded capacitors, and (b) discrete thin film tantalum electrolytic capacitors圖1 埋入式電容與分立式薄膜電解電容對比圖: (a)商用銅/介電層/銅結構嵌入式電容器;(b)分立薄膜電解電容器

    Electronic devices are continuously progressing toward miniaturization, which puts forward requirements on the size of constituent components. However, the limited surface area on an integrated circuit (IC) board creates a bottleneck on the development of high-density integrated circuits. To solve this problem, the idea of embedding components in the printed circuit board or IC substrate has been proposed[1-6]. Capacitors account for more than half of the passive components on an IC board, covering around 40% of the surface area[7]. Thus, the development of embedded capacitors with high energy density is of vital importance in the advancement of high-density IC[8-9]. However, the current commercial embedded capacitors with BaTiO3filled polymer as dielectric layer (Fig. 1(a)) can only afford very small capacitance of <0.1 nF/mm2, which hinders its wide application[10]. Due to its small specific capacitance value, the embedded capacitance of this ceramic/polymer composite material needs to occupy a large internal space in the circuit board when a large capacitance is needed. So an alternative strategy of using small-sized surface-mounted capacitors as embedded components (Fig. 1(b)) is put forward[11]. Among all types of capacitors, multilayered ceramic capacitors (MLCC) and Tantalum (Ta) electrolytic capacitors are playing dominant roles. Although MLCC has been widely used in electronic devices for its excellent high-voltage and high-frequency performance, MLCC severely suffers from the unstable capacitance with the fluctuation of voltage, temperature, and stress[12-16]. By comparison, Ta possesses a small thermal expansion coefficient[17], and tantalum pentoxide (Ta2O5) exhibits stable physical and chemical properties[18], which both contribute to the outstanding stability of Ta electrolytic capacitors, endowing Ta electrolytic capacitors great potential for their application as embedded capacitors in high-density IC system. Traditionally, the anode of Ta electrolytic capacitors is produced by the sintering of Ta powders[19-20], and the Ta electrolytic capacitor based on sintered Ta anode can provide a high specific capacitance of 0.1 μF~1 000 μF. However, the sintering process is complicated, and usually requires a highly vacuum condition under a temperature of over 1 200 °C[21-25]. The thickness of the obtained Ta electrolytic capacitor is usually beyond millimeter level, and such a huge thickness impedes its application as embedded capacitors, because the substrate where the passives are embedded has a limited thickness of several hundred micrometers.

    Ta and Niobium (Nb) foils etchings have been reported, which involves the electrolyte containing hydrofluoric acid or its mixture[26], and the etched foils were used for catalysis. Similarly, isopropyl alcohol and n-butanol solutions of hydrofluoric acid were used to etch niobium foil, and a better etching effect was obtained[27-28]. Herein, we propose the utilization of invasive electrolyte (hydrofluoric acid n-butyl alcoholic solution) for the electrochemical etching of the Ta foils to fabricate anode for Ta electrolytic capacitors. The equation to calculate the capacitance of a parallel plate capacitor is listed as follows:

    whereεis the permittivity of the dielectric (ε=25 for the anodic oxide of Ta),ε0=8.85×10-14F/cm is the permittivity of free space,Sis the surface area, anddis the dielectric thickness. Based on this equation, it is clear that large capacitance requires largeSwhendis fixed.

    With the electrochemical etching approach, a thin Ta foil can be controllably etched, and the thin foil with enlarged surface area shows a specific capacitance as high as 74 nF/mm2with an oxidation voltage of 12 V when measured in 0.1 mol/L H2SO4. The etched Ta foils is then fabricated into electrolytic capacitors after the deposition of cathode layer, graphite layer, and silver paste[29]in sequence. The electrolytic capacitors based on electrochemically etched Ta foils demonstrate a stable capacitance of >30 nF/mm2over the frequency range of 100 Hz~1 MHz and a low leakage current of 2.7×10-6A. The electrolytic capacitor has a thickness of 75 μm, which is thin enough for their application as embedded capacitors.

    2 Experimental

    2.1 Materials

    Tantalum foils (99.9% purity) with a thickness of 50 μm were purchased from Sigma-Aldrich, China. Phosphoric acid (H3PO4, ≥85wt%) and hydrofluoric acid (HF, ≥40wt%) were purchased from Sinopharm Chemical Reagent. n-butanol (AR, 99%) was purchased from Aladdin. Platinum electrodes were used as counter electrode for both Ta etching and oxidation process. A polytetrafluoroethylene electrolytic cell (Shanghai Honghe Sealing Material Co. LTD), with a volume of 50 mL, was used for etching.

    2.2 Electrochemical etching of Ta foils

    Hydrofluoric acid was diluted to 2 wt% with n-butanol, and was used as etching electrolyte. The tantalum foil was cut to an area of 5 mm×5 mm, the same size as the counter electrode. Tantalum foils were ultra-sonicated in 2-butanone for 10 min, followed by washing with ethanol and drying in oven at 80 ℃, and 20 mL etching electrolyte was added into an electrolytic cell. A series of samples were obtained by applying a pre-defined etching voltage (in the range of 20~80 V) at ambient temperature. The duration of etching time was 2~5 h. The electrochemically etched Ta foils were denoted as Ta-20V2H, Ta-40V2H, Ta-60V2H, Ta-80V2H, Ta-40V3H, Ta-40V4H, and Ta-40V5H, respectively, where the first two digits represented the applied voltage, i.e., 20 V, 40 V, 60 V, and 80 V, and the last digit represented etching hours, i.e., 2 hours, 3 hours, 4 hours, and 5 hours. During the etching process, the speed of the magnetic stirring was set as 800 r/min.

    2.3 Oxidation (Ta2O5 formation)

    The Ta foils were oxidized at a constant voltage of 12 V (formation voltage) for 3 h in 0.1 wt% H3PO4aqueous solution at 80 ℃.

    2.4 Characterizations

    The morphology of pristine and etched Ta foils was examined by field-emission scanning electric microscope (FE-SEM, FEI NovaNano SEM450). The surface elements of tantalum foil before etching, after etching and after oxidation were analyzed by X-ray photoelectron spectroscopy (XPS, Thermo Fisher EscaLab 250Xi). 3D Laser Scanning Microscope was used to analyze the surface of etched tantalum foil. Three 1 000 μm×1 000 μm areas were randomly selected for measurement, and the multi-line roughness Ra was measured.

    2.5 Measurement of specific capacitance

    The capacitance (C) was measured in 0.1 mol/L H2SO4by Precision Impedance Analyzer (Agilent 4294a) in the frequency range of 100 Hz~110 MHz as shown in Fig. 2 (a, c). The counter electrode material is platinum foil. The capacitor lead reserved on the tantalum anode is clamped with a platinum clip and the anode is immersed in sulfuric acid solution. The specific capacitance was acquired by dividing C tested at 100 Hz with the surface area of tantalum foils.

    Fig. 2 Schematic illustration of (a) and (c) measuring capacitance of anode in 0.1 mol/L H2SO4, (b) and (d) measuring capacitance of tantalun capacitor圖2 鉭薄膜電容的濕法測試和器件測試過程: (a)、(c)鉭電容陽極電容值的測量,(b)、(d)鉭電容器件的測試

    The oxidized Ta foils are also fabricated into Ta electrolytic capacitor by the deposition of Poly (2,3-dihydrothieno-1,4-dioxin), graphite layer, and silver paste. The leakage current was measured by an electrochemical workstation (Shanghai Chenhua Instrument Co., Ltd), and the testing process is shown in Fig. 2(b, d). The capacitive performance of Ta electrolytic capacitor is measured by Precision Impedance Analyzer (Agilent 4294A) in the frequency range of 100 Hz~110 MHz as shown in Fig. 2 (b, d).

    3 Results and Discussions

    3.1 Physical characterizations of electrochemically etched Ta foils

    The surface of pristine Ta foil is not absolutely smooth and has certain roughness before etching (Fig. 3(a)). After electrochemical etching, the surface roughness is enhanced. SEM images (Fig. 3(b-d)) indicate that the surface roughness is linked with the applied voltage, and the surface is more roughened with higher applied voltage. Although the surface of Ta-80V2H appears to be less rough (Fig. 3(e)), large density of holes and even cracks can be found under higher magnification (Fig. 3(f)). The cracks in Ta-80V2H significantly lowers the mechanical property of Ta foils, which makes it impossible to fabricate electrolytic capacitors.

    Fig. 3 SEM images of (a) pristine Ta foils, (b) Ta-20V2H, (c) Ta-40V2H, (d) Ta-60V2H, and (e-f) Ta-80V2H圖3 不同蝕刻條件下得到的鉭箔表面 SEM 圖:(a)無蝕刻,(b) Ta-20V2H,(c) Ta-40V2H,(d) Ta-60V2H,(e-f) Ta-80V2H

    The SEM images of Ta foils etched with 40 V for different hours are shown in Fig. 4, and deep etched holes can be found on all the samples. However, limited by the qualitative nature of SEM images, no significant difference is identified among the SEM images of different etching hours under either low magnification (Fig. 4(a, c, e, g)) or high magnification (Fig. 4(b, d, f, h)). Therefore, 3D Laser Scanning Microscope is used to quantify the influence of electrochemical etching on the Ta surface roughness.

    Fig. 4 SEM images of (a-b) Ta-40V2H, (c-d) Ta-40V3H, (e-f) Ta-40V4H, and (g-h) Ta-40V5H圖4 不同蝕刻條件下得到的鉭箔表面 SEM 圖:(a-b) Ta-40V2H,(c-d) Ta-40V3H,(e-f) Ta-40V4H,(g-h) Ta-40V5H

    Fig. 6 XPS regional spectra of (a) pristine Ta foils, (b) Ta-40V2H foil, and (c) oxidized Ta-40V2H foil圖6 蝕刻和氧化前后鉭箔表面元素的 XPS 區(qū)域光譜變化:(a)無蝕刻鉭箔;(b)蝕刻后鉭箔;(c)氧化后鉭箔

    Ra represents the arithmetic mean of the absolute value of contour offset on the sample surface, and can be used to approximately quantify the surface roughness. Fig. 5 shows the Ra value of the pristine Ta foil and etched Ta foils. The Ra shows a steady increasing trend with both etching voltage and etching time, both of which first undergo a slight increase and then go up sharply. The pristine Ta foil has a Ra of 3 μm, while the Ra of Ta-80V2H foil is almost twice of pristine Ta foil (Fig. 5(a)). Ta-40V5H foil possesses a Ra of ~17 μm, about 5.7 times higher than pristine Ta foil (Fig. 5(b)).

    The surface elements of pristine Ta foil, Ta-40V2H foil, and oxidized Ta-40V2H foil are analyzed by XPS. Ta4f regional spectra of all three samples exhibit strong Ta2O5peaks, and the regional Ta4f spectra of the above-mentioned foils are shown in Fig. 6. And pristine Ta foils (Fig. 6(a)) and HFetched Ta foils also show clear peaks corresponding to metallic Ta (Fig. 6(b)), while no metallic Ta peaks are seen on oxidized Ta foils (Fig. 6(c)). The Ta2O5observed on pristine Ta foils is native oxide as reported in literature[30], which also explains the difficulty of Ta electrochemical etching in noninvasive electrolytes, i.e. the inert native oxide films on the surface of pristine Ta foils severely impede the electrochemical etching.

    After electrochemical etching in HF electrolyte, the Ta2O5is still obvious in XPS regional spectra (Fig. 6(b)), which may be caused by the continuous formation of Ta2O5during electrochemical etching. Considering that metallic Ta is resistant to HF corrosion, we speculate that the electrochemical etching of Ta foils is a combination of the following two reactions[31]:

    The XPS results (Table 1) also demonstrate that a large percent of oxygens exist in all three samples.

    Table 1 Elemental contents of pristine Ta foil, Ta-40V2H, and oxidized Ta-40V2H as determined by XPS表1 原始鉭箔、Ta-40V2H 鉭箔和氧化 Ta-40V2H 鉭箔的元素含量數(shù)據(jù)

    Since Ta is leaching into the electrolyte during electrochemical etching, the weight loss percentage is measured (Fig. 7). The weight loss percentage shows a nearly linear relation with etching voltage and etching time, highlighting the controllable manner of electrochemical methods. Similar with Ra values, the weight loss percentage shows a steeper slope with etching time than etching voltage.

    3.2 Capacitance enhancement by electrochemical etching

    The specific capacitance of the pristine Ta foil and etched Ta foils are summarized in Fig. 8. In line with Ra and weight loss percentage, the specific capacitance steadily increases with etching voltage (Fig. 8(a)) and time (Fig. 8(b)). Fig. 8(a) shows that the increase of etching voltage leads to the increase of weight loss, and accordingly, the specific capacitance goes up, except for the etching voltage of 80 V, where the specific capacitance almost levels up with 60 V. The weight loss is nearly proportional to the applied voltage in the range from 20 V to 80 V, while the increase of specific capacitance slows down at higher voltage, which may indicate the limited effect of applied voltage on the specific capacitance. It means that the high voltage, such as 80 V, can still increase the weight loss, but does not contribute to the enhancement of surface roughness.

    Fig. 7 Weight loss percentage of (a) Ta foils etched with various voltages for 2 hours, and (b) Ta foils etched with 40 V voltage for various hours圖7 以電壓和時間為變量時鉭箔蝕刻后質(zhì)量變化:(a) 鉭箔在不同電壓下蝕刻 2 h 的失重百分比;(b) 鉭箔在 40 V 電壓下蝕刻不同時間的失重百分比

    Fig. 8 Specific capacitance of (a) Ta foils etched with various voltages for 2 hours, and (b) Ta foils etched with 40 V voltage for various hours圖8 以電壓和時間為變量時鉭箔蝕刻并氧化后電容值的變化:(a) 鉭箔在不同電壓下蝕刻 2 h 的電容值;(b) 鉭箔在 40 V 電壓下蝕刻不同時間的電容值

    The longer etching time results in more weight loss, and the specific capacitance is raised simultaneously, as displayed in Fig. 8(b). Although the SEM images does not show clear difference between the samples with difference etching time, the specific capacitance varies among these samples. It is speculated that the longer etching time at 40 V contributes to deeper etching, thereby increasing the weight loss. At the same time, deeper etching results in the increase of specific area, thus, the specific capacitance is raised.

    3.3 Capacitive performance of Ta electrolytic capacitors fabricated with etched Ta foils

    Fig. 9 Capacitive performance of the Ta electrolytic capacitor fabricated with Ta-40V5H anode, (a) capacitance over the frequency range of 100 Hz~110 MHz with the capacitor area 3 mm×3 mm, (b) equivalent series resistance (ESR) over the frequency range of 100 Hz~110 MHz, (c) the leakage current under 10 V DC voltage, and (d) the comparison of capacitance variation between the thin-film tantalum capacitor and commercial tantalum capacitor over the frequency range of 100 Hz~110 MHz圖9 采用 Ta-40V5H 鉭芯子制作鉭電解電容器,在頻率為 100 Hz~110 MHz 時測試其電學性能:(a)電容值的變化; (b)等效串聯(lián)電阻的變化; (c)10 V 直流電壓下的泄漏電流;(d)薄膜鉭電容器和商業(yè)鉭電容器電容變化對比

    The electrochemically etched Ta foil, Ta-40V5H, was fabricated into Ta electrolytic capacitor after oxidation and the deposition of cathode material (Poly(2,3-dihydrothieno-1,4-dioxin), graphite layer and silver layer). The frequency dependent capacitance and Equivalent Series Resistance (ESR) are summarized in Fig. 9(a) & (b). The Ta electrolytic capacitor based on etched Ta foils shows a high capacitance of >250 nF at the frequency of 1 kHz, and more than 70% of the capacitance is maintained even when the frequency rises to 1 MHz, as shown in Fig. 9(a). As seen from Fig. 9(b), the ESR is about 1 Ω at the low frequency range (<10 kHz), and gradually decreases to 0.5 Ω at MHz level. The leakage current under 10 V is shown in Fig. 9(c), and a relatively stable leakage current of ~10-6A is exhibited which is slightly larger than the commercial capacitor. The effective frequency is more than two orders of magnitude higher than commercial Ta electrolytic capacitors (Fig. 9(d)). The effective frequency of traditional Ta electrolytic capacitors is usually limited to 10 kHz, because the highly porous structure contains large amount of cascaded resistance-capacitance (RC) networks, which causes capacitance drop as frequency rises over 100 kHz[20]. The etched surface can diminish this phenomenon, since the cascaded RC network is restricted on the Ta surface with electrochemical etching method. However, there are disadvantages for embedded tantalum capacitors based on electrochemically etched Ta anode. One is that they are prone to short circuit, so tantalum capacitors are usually used at reduced voltage. As shown in Fig. 9(d), the leakage current of the capacitor is about 2×10-6A, which is slightly larger than that of the commercial capacitor.

    The size of fabricated Ta electrolytic capacitor is compared with the commercial one in Fig. 10(a). A thickness of ~75 μm of our Ta electrolytic capacitor is highlighted in Fig. 10(b), while the commercial Ta capacitor has thickness of ~1.6 mm. A cross-sectional SEM image of the Ta electrolytic capacitor fabricated with Ta-40V5H anode is shown in Fig. 10(c). The thickness of the anode is about 55 μm, while the cathode material accounts for a thickness of around 20 μm. A total thickness of ~75 μm endows this Ta electrolytic capacitor configuration a promising potential for its application as embedded capacitors in IC industry.

    Fig. 10 (a) Sizes of chip tantalum electrolytic capacitors and thin film tantalum electrolytic capacitors, (b) optical microscope cross section of tantalum thin film electrolytic capacitor, and (c) SEM cross section of tantalum film electrolytic capacitor圖10 鉭薄膜電解電容器的實物圖:(a)片狀鉭電解電容器和薄膜鉭電解電容器的尺寸;(b)鉭薄膜電解電容器的光學顯微鏡截面圖;(c)鉭薄膜電解電容器的 SEM 截面圖

    3.4 Discussion and analysis

    Ta and Nb foil etching has been reported[26-28], but the etching results were mediocre according to their SEM images, and the etched Ta or Nb foils were not made into capacitors. In this study, in order to apply the etching method to tantalum capacitors, a thin Ta electrolytic capacitor has been developed based on electrochemically etched Ta foils, and an enhanced capacitance is demonstrated. On the other hand, tantalum thin film capacitors have been studied at home and abroad with the method of tantalum powder sintering[19,20,32]. Electrochemical etching of Ta foils, instead of tantalum powder sintering, has less cost and simpler fabrication process. However, compared with the method of tantalum powder sintering, the capacitance of thin film tantalum capacitors prepared by electrochemical etching is smaller. In addition, the electrical property of tantalum capacitors produced by electrochemical etching needs to be improved, especially the proneness to short circuit.

    4 Conclusions

    In conclusion, we proposed the use of electro- chemical etching as an efficient method to produce thin Ta anode to facilitate its application as embedded capacitor. Both qualitative and quantitative techniques are used to characterize the influence of electrochemical etching on the surface roughness. The applied voltage and the electrochemical etching duration play important roles in determining the surface roughness, which shows a very close relation with specific capacitance. By optimizing the electrochemical etching parameters, the specific capacitance of etched Ta anode can reach as high as 74 nF/mm2. The Ta electrolytic capacitor device fabricated based on the etched Ta foils shows a stable capacitance of >30 nF/mm2in the frequency range of 100 Hz~1 MHz, and a low leakage current of 2.7×10-6A under 10 V DC. The electrochemical etching of thin Ta foils holds promising potential to produce Ta electrolytic capacitor for embedded application.

    猜你喜歡
    電解電容器薄膜
    復合土工薄膜在防滲中的應用
    電容器的實驗教學
    物理之友(2020年12期)2020-07-16 05:39:20
    輕輕松松學“電解”
    含有電容器放電功能的IC(ICX)的應用及其安規(guī)符合性要求
    電子制作(2019年22期)2020-01-14 03:16:28
    無功補償電容器的應用
    山東冶金(2019年5期)2019-11-16 09:09:38
    β-Ga2O3薄膜的生長與應用
    光源與照明(2019年4期)2019-05-20 09:18:18
    高強化平行流電解提高A級銅表面質(zhì)量實踐
    山東冶金(2018年6期)2019-01-28 08:15:06
    一種不易起皮松散的柔軟型聚四氟乙烯薄膜安裝線
    電線電纜(2017年2期)2017-07-25 09:13:35
    石墨烯在超級電容器中的應用概述
    CIGS薄膜太陽電池柔性化
    電源技術(2015年12期)2015-08-21 08:58:58
    久久这里只有精品中国| 欧美成狂野欧美在线观看| 午夜免费成人在线视频| 久久草成人影院| 观看美女的网站| 噜噜噜噜噜久久久久久91| 丝袜人妻中文字幕| 免费在线观看亚洲国产| 99久久成人亚洲精品观看| 久久精品亚洲精品国产色婷小说| 国产午夜福利久久久久久| 国产男靠女视频免费网站| 亚洲专区中文字幕在线| 成年女人看的毛片在线观看| 白带黄色成豆腐渣| 国产成+人综合+亚洲专区| 99国产精品99久久久久| 天堂网av新在线| 国产精品电影一区二区三区| 人妻丰满熟妇av一区二区三区| 亚洲精品乱码久久久v下载方式 | 99在线人妻在线中文字幕| 丰满的人妻完整版| 美女午夜性视频免费| 美女大奶头视频| www.自偷自拍.com| 99国产精品一区二区三区| 麻豆成人av在线观看| 国产高潮美女av| 搡老岳熟女国产| 国产精品免费一区二区三区在线| 国产精品av久久久久免费| 毛片女人毛片| 一本一本综合久久| 免费在线观看亚洲国产| 中文字幕久久专区| 国产精品99久久99久久久不卡| 久久久久亚洲av毛片大全| 久久精品国产清高在天天线| 国产精品,欧美在线| 成人三级黄色视频| 日韩成人在线观看一区二区三区| 日韩成人在线观看一区二区三区| 免费看a级黄色片| 男人舔奶头视频| 最新中文字幕久久久久 | 99在线视频只有这里精品首页| 国产乱人视频| 亚洲自拍偷在线| 国产一区二区激情短视频| 亚洲黑人精品在线| 亚洲欧美日韩高清专用| 成人亚洲精品av一区二区| 中文字幕最新亚洲高清| 精品99又大又爽又粗少妇毛片 | 欧美日韩亚洲国产一区二区在线观看| 男人的好看免费观看在线视频| a级毛片在线看网站| 午夜免费激情av| 狂野欧美激情性xxxx| 国产综合懂色| 好看av亚洲va欧美ⅴa在| 欧美日韩综合久久久久久 | 91麻豆av在线| tocl精华| 男女之事视频高清在线观看| 国产精品爽爽va在线观看网站| 日韩av在线大香蕉| 国产淫片久久久久久久久 | 999久久久国产精品视频| 一进一出好大好爽视频| 亚洲欧美一区二区三区黑人| 国产成人av教育| 国产 一区 欧美 日韩| 高潮久久久久久久久久久不卡| 亚洲专区字幕在线| 欧美激情久久久久久爽电影| 老司机在亚洲福利影院| 在线a可以看的网站| 性欧美人与动物交配| 亚洲七黄色美女视频| 国产欧美日韩精品亚洲av| 久久久久久久久久黄片| 精品国产乱码久久久久久男人| a级毛片a级免费在线| 免费观看人在逋| 久久亚洲真实| 又大又爽又粗| 老司机午夜十八禁免费视频| 国产精品亚洲av一区麻豆| 老司机午夜福利在线观看视频| 免费在线观看亚洲国产| 亚洲成a人片在线一区二区| 免费看十八禁软件| 麻豆国产av国片精品| 日本黄色片子视频| 精品久久久久久成人av| 成人18禁在线播放| 国产精品美女特级片免费视频播放器 | 国产精品影院久久| 久久欧美精品欧美久久欧美| 美女免费视频网站| 精品国产美女av久久久久小说| 男人舔女人下体高潮全视频| 亚洲片人在线观看| 久久久成人免费电影| 久久99热这里只有精品18| 99精品欧美一区二区三区四区| 国产蜜桃级精品一区二区三区| 久久亚洲精品不卡| 国产高潮美女av| av在线蜜桃| 又粗又爽又猛毛片免费看| 一进一出抽搐gif免费好疼| 日韩人妻高清精品专区| av国产免费在线观看| 亚洲色图av天堂| 在线观看舔阴道视频| 两性午夜刺激爽爽歪歪视频在线观看| 在线观看66精品国产| 成人国产一区最新在线观看| 国产私拍福利视频在线观看| 欧美zozozo另类| 成人av在线播放网站| 精品一区二区三区四区五区乱码| 免费在线观看成人毛片| 天堂网av新在线| 国产熟女xx| 国产精品乱码一区二三区的特点| 亚洲中文字幕日韩| 中文字幕人成人乱码亚洲影| 97超视频在线观看视频| 亚洲国产欧洲综合997久久,| 久久久国产精品麻豆| 免费搜索国产男女视频| 久久性视频一级片| 给我免费播放毛片高清在线观看| 国产淫片久久久久久久久 | 国产亚洲欧美98| 午夜福利成人在线免费观看| 怎么达到女性高潮| 亚洲一区二区三区不卡视频| 精品福利观看| 亚洲电影在线观看av| 人人妻人人澡欧美一区二区| 他把我摸到了高潮在线观看| 国产三级黄色录像| 亚洲aⅴ乱码一区二区在线播放| 毛片女人毛片| 99久国产av精品| 成人精品一区二区免费| 亚洲中文字幕日韩| 久久精品国产清高在天天线| 十八禁人妻一区二区| 看片在线看免费视频| av国产免费在线观看| 性色avwww在线观看| 国产1区2区3区精品| 国产男靠女视频免费网站| 亚洲精品中文字幕一二三四区| 老司机午夜福利在线观看视频| 成人国产综合亚洲| 黄色成人免费大全| 综合色av麻豆| 日韩欧美国产在线观看| 亚洲真实伦在线观看| 岛国在线免费视频观看| 欧美中文综合在线视频| 免费在线观看影片大全网站| 免费观看人在逋| 一卡2卡三卡四卡精品乱码亚洲| 网址你懂的国产日韩在线| 久久久久久久久久黄片| 欧美中文日本在线观看视频| 午夜福利在线观看免费完整高清在 | 搞女人的毛片| 中文字幕人妻丝袜一区二区| 久久久国产成人精品二区| 欧美日韩国产亚洲二区| 久久久久久久久久黄片| 成人亚洲精品av一区二区| 身体一侧抽搐| 91久久精品国产一区二区成人 | 99国产精品99久久久久| 久久99热这里只有精品18| 成人性生交大片免费视频hd| av福利片在线观看| 中文字幕熟女人妻在线| 国内久久婷婷六月综合欲色啪| 久久国产精品影院| a级毛片a级免费在线| www.精华液| 亚洲 欧美 日韩 在线 免费| cao死你这个sao货| 日韩欧美在线乱码| 男女做爰动态图高潮gif福利片| 99在线视频只有这里精品首页| 9191精品国产免费久久| avwww免费| 99精品久久久久人妻精品| 99国产精品一区二区三区| 亚洲av美国av| 两人在一起打扑克的视频| 看黄色毛片网站| 久久精品夜夜夜夜夜久久蜜豆| 黄片大片在线免费观看| 亚洲国产精品合色在线| 九九热线精品视视频播放| 夜夜夜夜夜久久久久| 一二三四在线观看免费中文在| 亚洲熟妇熟女久久| 级片在线观看| 搡老岳熟女国产| 免费观看的影片在线观看| 国产亚洲精品综合一区在线观看| 久久精品国产亚洲av香蕉五月| 国产成人av教育| 成人高潮视频无遮挡免费网站| 欧美黑人欧美精品刺激| 国产成人啪精品午夜网站| 日韩免费av在线播放| 91久久精品国产一区二区成人 | 国产免费男女视频| 亚洲无线在线观看| 一级毛片女人18水好多| 欧美午夜高清在线| 国产v大片淫在线免费观看| 两个人的视频大全免费| a在线观看视频网站| 久久久久免费精品人妻一区二区| 一二三四社区在线视频社区8| 狂野欧美激情性xxxx| 两个人的视频大全免费| 午夜免费激情av| 欧美乱码精品一区二区三区| 国产精品一区二区三区四区久久| 欧洲精品卡2卡3卡4卡5卡区| 日本五十路高清| 一个人观看的视频www高清免费观看 | 在线观看免费视频日本深夜| cao死你这个sao货| 欧美绝顶高潮抽搐喷水| 视频区欧美日本亚洲| 日本在线视频免费播放| 无遮挡黄片免费观看| 免费观看的影片在线观看| 在线十欧美十亚洲十日本专区| 亚洲av成人av| 日本一本二区三区精品| 一进一出好大好爽视频| 少妇的丰满在线观看| 国产精品综合久久久久久久免费| 免费观看的影片在线观看| 欧美日韩瑟瑟在线播放| 日韩欧美免费精品| 少妇的逼水好多| 免费av毛片视频| 中文字幕精品亚洲无线码一区| 变态另类成人亚洲欧美熟女| 91av网站免费观看| 一区二区三区国产精品乱码| 国产精品一区二区三区四区久久| 两人在一起打扑克的视频| 我的老师免费观看完整版| 国产精品 国内视频| 黄色丝袜av网址大全| 久久久国产欧美日韩av| 岛国在线免费视频观看| 中文资源天堂在线| 亚洲av免费在线观看| 成熟少妇高潮喷水视频| 国产三级中文精品| 久久久国产成人免费| 国内精品一区二区在线观看| 久久中文字幕人妻熟女| 91在线观看av| www.999成人在线观看| 嫁个100分男人电影在线观看| 亚洲第一欧美日韩一区二区三区| 亚洲自偷自拍图片 自拍| 国产精品影院久久| 久久中文字幕一级| 久久草成人影院| 日韩精品中文字幕看吧| 午夜免费成人在线视频| 69av精品久久久久久| 91字幕亚洲| 国产一区二区在线av高清观看| 成年人黄色毛片网站| 中文在线观看免费www的网站| 欧美日韩黄片免| 国产亚洲欧美在线一区二区| 亚洲av日韩精品久久久久久密| 成在线人永久免费视频| 精品一区二区三区四区五区乱码| 99国产精品一区二区三区| 国产91精品成人一区二区三区| 熟女人妻精品中文字幕| 脱女人内裤的视频| 国产极品精品免费视频能看的| 九九热线精品视视频播放| 亚洲avbb在线观看| 99视频精品全部免费 在线 | 精品久久久久久久末码| 精品久久久久久久久久久久久| 日本成人三级电影网站| 中文字幕人妻丝袜一区二区| 好男人在线观看高清免费视频| 国产主播在线观看一区二区| 老鸭窝网址在线观看| 99热这里只有是精品50| 日韩欧美 国产精品| 九色成人免费人妻av| av片东京热男人的天堂| 国产伦一二天堂av在线观看| 日韩欧美精品v在线| 18美女黄网站色大片免费观看| 欧美大码av| 亚洲专区中文字幕在线| 制服丝袜大香蕉在线| 国产亚洲欧美98| 国语自产精品视频在线第100页| 免费观看人在逋| 中文字幕高清在线视频| 国产成人福利小说| 亚洲 欧美一区二区三区| 亚洲av免费在线观看| 久久伊人香网站| 国产精品久久久av美女十八| 少妇的丰满在线观看| 免费看a级黄色片| 一进一出抽搐动态| 午夜福利高清视频| 99久久国产精品久久久| 伊人久久大香线蕉亚洲五| 精品欧美国产一区二区三| 成人特级黄色片久久久久久久| 母亲3免费完整高清在线观看| 国产免费男女视频| 国产精品,欧美在线| 午夜激情福利司机影院| 免费一级毛片在线播放高清视频| 两个人看的免费小视频| 午夜福利18| 亚洲欧美日韩高清专用| 国产成+人综合+亚洲专区| 亚洲熟妇熟女久久| 老司机午夜福利在线观看视频| 国产高清视频在线播放一区| av视频在线观看入口| 久久这里只有精品19| 夜夜看夜夜爽夜夜摸| www.999成人在线观看| www国产在线视频色| 老熟妇仑乱视频hdxx| 亚洲熟妇熟女久久| 亚洲欧美激情综合另类| 少妇熟女aⅴ在线视频| 国产一区在线观看成人免费| 成人午夜高清在线视频| 亚洲第一电影网av| 嫩草影视91久久| 18美女黄网站色大片免费观看| 香蕉久久夜色| 精品乱码久久久久久99久播| 国产亚洲欧美98| 九九在线视频观看精品| 久久婷婷人人爽人人干人人爱| 搡老熟女国产l中国老女人| 88av欧美| 亚洲一区高清亚洲精品| 欧美激情久久久久久爽电影| 99国产极品粉嫩在线观看| 日本免费a在线| 午夜精品一区二区三区免费看| 亚洲成人中文字幕在线播放| 69av精品久久久久久| 91九色精品人成在线观看| 18禁国产床啪视频网站| 后天国语完整版免费观看| 国产亚洲精品av在线| 丰满人妻一区二区三区视频av | 又粗又爽又猛毛片免费看| 亚洲av熟女| 人妻久久中文字幕网| av在线蜜桃| 最近最新免费中文字幕在线| 真人做人爱边吃奶动态| 男人舔女人下体高潮全视频| 国产美女午夜福利| 亚洲色图av天堂| 极品教师在线免费播放| 国产精品电影一区二区三区| 久久热在线av| 无遮挡黄片免费观看| 又大又爽又粗| www日本在线高清视频| 99热只有精品国产| e午夜精品久久久久久久| 日日夜夜操网爽| 99久久精品热视频| 欧美成人性av电影在线观看| 又爽又黄无遮挡网站| 国产亚洲精品久久久com| 国产精品电影一区二区三区| 美女午夜性视频免费| 欧美日韩一级在线毛片| 欧美日韩综合久久久久久 | 三级国产精品欧美在线观看 | 国产激情偷乱视频一区二区| 亚洲精品色激情综合| 久久久久性生活片| 亚洲 欧美 日韩 在线 免费| 天天添夜夜摸| 国产在线精品亚洲第一网站| 亚洲真实伦在线观看| 久久精品91无色码中文字幕| 一级作爱视频免费观看| 亚洲专区字幕在线| 国产三级在线视频| 欧美日韩乱码在线| 精品日产1卡2卡| 久久久久久久久免费视频了| 国产精品久久久久久亚洲av鲁大| 精品免费久久久久久久清纯| 中文字幕高清在线视频| 日本与韩国留学比较| 18美女黄网站色大片免费观看| 久久久久免费精品人妻一区二区| 他把我摸到了高潮在线观看| 亚洲成人久久爱视频| 91在线观看av| 亚洲精品粉嫩美女一区| aaaaa片日本免费| www日本在线高清视频| 日韩 欧美 亚洲 中文字幕| 青草久久国产| 国产精品电影一区二区三区| 99久久精品热视频| av片东京热男人的天堂| 动漫黄色视频在线观看| 国产高清激情床上av| 麻豆国产av国片精品| 中文亚洲av片在线观看爽| 午夜影院日韩av| 国产精品久久久久久人妻精品电影| 国产人伦9x9x在线观看| 97人妻精品一区二区三区麻豆| 亚洲国产精品成人综合色| 国产伦精品一区二区三区四那| 少妇丰满av| 可以在线观看的亚洲视频| www日本在线高清视频| 亚洲18禁久久av| 日本黄色片子视频| 黑人巨大精品欧美一区二区mp4| 日本a在线网址| 国产激情欧美一区二区| 在线视频色国产色| 在线观看日韩欧美| 五月伊人婷婷丁香| 99久国产av精品| 日韩 欧美 亚洲 中文字幕| 色尼玛亚洲综合影院| 国产精品久久久久久精品电影| 中文在线观看免费www的网站| 97超视频在线观看视频| 国产精品电影一区二区三区| 久久中文字幕人妻熟女| 超碰成人久久| 99久久无色码亚洲精品果冻| 精品不卡国产一区二区三区| 亚洲欧美日韩高清专用| 97碰自拍视频| 国产激情久久老熟女| 国产欧美日韩一区二区三| 日本一本二区三区精品| 亚洲av日韩精品久久久久久密| 无限看片的www在线观看| 欧美激情在线99| 女同久久另类99精品国产91| 在线观看免费午夜福利视频| 国产三级在线视频| 亚洲天堂国产精品一区在线| 久久久水蜜桃国产精品网| 一级毛片高清免费大全| 亚洲黑人精品在线| 动漫黄色视频在线观看| 亚洲人成伊人成综合网2020| 最新中文字幕久久久久 | 亚洲 国产 在线| 老司机午夜福利在线观看视频| 草草在线视频免费看| 久久国产精品人妻蜜桃| 成在线人永久免费视频| 曰老女人黄片| 欧美日韩一级在线毛片| 美女大奶头视频| 亚洲精品乱码久久久v下载方式 | 女警被强在线播放| 一级a爱片免费观看的视频| 午夜福利成人在线免费观看| 久久精品影院6| 国产午夜精品论理片| 狠狠狠狠99中文字幕| 欧美三级亚洲精品| 99热6这里只有精品| 国产一区在线观看成人免费| 日韩大尺度精品在线看网址| 露出奶头的视频| 757午夜福利合集在线观看| 黄片大片在线免费观看| 成人国产一区最新在线观看| 精品99又大又爽又粗少妇毛片 | 熟妇人妻久久中文字幕3abv| a在线观看视频网站| www.自偷自拍.com| 欧美中文综合在线视频| 亚洲精品美女久久久久99蜜臀| 久久久久久久久中文| 日本 欧美在线| 国产高清视频在线播放一区| 色视频www国产| 丰满的人妻完整版| 免费观看精品视频网站| 18禁美女被吸乳视频| 亚洲 欧美 日韩 在线 免费| 精品一区二区三区四区五区乱码| 免费av毛片视频| 亚洲 欧美一区二区三区| 国产黄色小视频在线观看| 在线观看66精品国产| 午夜精品久久久久久毛片777| 欧美av亚洲av综合av国产av| 亚洲国产精品久久男人天堂| 亚洲国产欧洲综合997久久,| 久久精品亚洲精品国产色婷小说| 亚洲成av人片免费观看| 女人高潮潮喷娇喘18禁视频| 最近最新中文字幕大全电影3| 色综合站精品国产| 亚洲va日本ⅴa欧美va伊人久久| 精品欧美国产一区二区三| av中文乱码字幕在线| 国内久久婷婷六月综合欲色啪| 国产一区二区激情短视频| 国产成+人综合+亚洲专区| 俺也久久电影网| 女人高潮潮喷娇喘18禁视频| 国内久久婷婷六月综合欲色啪| 淫秽高清视频在线观看| 变态另类成人亚洲欧美熟女| 亚洲成a人片在线一区二区| 少妇丰满av| 国内精品久久久久精免费| 日本免费a在线| 亚洲精品在线美女| 少妇的丰满在线观看| 长腿黑丝高跟| netflix在线观看网站| 午夜免费激情av| 婷婷精品国产亚洲av在线| 成人18禁在线播放| 露出奶头的视频| 手机成人av网站| 一进一出抽搐动态| 最新中文字幕久久久久 | 88av欧美| 成人永久免费在线观看视频| 两性夫妻黄色片| 91av网一区二区| 精品久久久久久久久久免费视频| av视频在线观看入口| 一区二区三区高清视频在线| 久久精品国产99精品国产亚洲性色| 国产高清视频在线观看网站| 国产午夜精品论理片| 国产亚洲av嫩草精品影院| 啦啦啦免费观看视频1| 人妻丰满熟妇av一区二区三区| 九色成人免费人妻av| 久久久久久久久中文| 日本熟妇午夜| 90打野战视频偷拍视频| 国产伦精品一区二区三区四那| 国产欧美日韩一区二区三| 一夜夜www| 亚洲午夜精品一区,二区,三区| 国产精品久久久久久人妻精品电影| 色视频www国产| 国产乱人视频| 少妇的丰满在线观看| 国产真人三级小视频在线观看| 亚洲avbb在线观看| 国产免费av片在线观看野外av| 伦理电影免费视频| 老汉色av国产亚洲站长工具| 亚洲中文日韩欧美视频| 香蕉丝袜av| 欧美日韩瑟瑟在线播放| 两个人视频免费观看高清| 日韩欧美在线乱码| 天堂动漫精品| 又黄又粗又硬又大视频| 亚洲aⅴ乱码一区二区在线播放| 变态另类成人亚洲欧美熟女| 一本久久中文字幕| 999久久久国产精品视频| 亚洲精品456在线播放app | 亚洲成人中文字幕在线播放| 成人亚洲精品av一区二区| 国产又色又爽无遮挡免费看| 欧美日韩亚洲国产一区二区在线观看| 日本五十路高清| 桃色一区二区三区在线观看|