• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Theoretical predictions of lattice parameters and mechanical properties of CL-20 under the temperature and pressure

    2021-01-28 03:21:04AN

    -, -, -, g, -, -, AN o-n, -

    (1.College of Science, East China University of Technology, Nanchang 330013, China;2.Institute of Fluid Physics, Chinese Academy of Engineering Physics, Mianyang 621900, China;3. College of Nuclear Science and Engineering, East China University of Technology, Nanchang 330013, China;4. College of Physics, Sichuan University, Chengdu 610064, China)

    Abstract: The molecular dynamics with condensed-phase optimized molecular potentials for atomistic simulation studies (COMPASS) force field have been employed to study high energetic material CL-20. The lattice parameters and elastic constants in the pressure range of 0~10 GPa (for ε-CL-20) and 0~20 GPa (for α-, β-, and -CL-20) at room temperature, and in the temperature range of 100~500 K at room pressure are predicted. The good agreement of lattice parameters, pressure-volume relation and elastic constants of the greatest stability phase ε-CL-20 shows the accuracy of our simulations. The theoretical predictions of lattice parameters and mechanical properties of CL-20 under temperature and pressure may provide powerful guidelines for the engineering application and await further experimental confirmation.

    Keywords: Molecular dynamics; Energetic materials; Lattice parameter; Elastic constants

    1 Introduction

    2,4,6,8,10,12-hexanitro -2,4,6,8,10,12-hexaazaisowurtzitane (CL-20) has the largest density in the current existing energetic materials, and it is superior to conventional high-energy propellants and explosives[1-2]. Thus, CL-20 is considered as the most potential and powerful high energy density materials. Its synthesis has been a breakthrough in the synthesis of high explosive investigations. CL-20 is a caged nitramine explosive with the formula C6H6N12O12, as shown in Fig. 1. The structure of CL-20 molecule consists of two five-member rings and a six-member ring. There exhibits four different crystal structures of CL-20, three pure crystallization phases, β,, and ε, and a hydrate phaseαat ambient conditions, as shown in Fig.2.

    Fig.1 Conformation and atomic numbering of C6H6N12O12 molecule in CL-20

    Fig.2 Unit cell of CL-20: (a) ε- CL-20, (b) - CL-20, (c) β- CL-20 and (d) α- CL-20

    At ambient conditions, the stabilities of these polymorphs are known to be ε>>α>β.ε-CL-20 has the largest density and best thermochemical stability among them, which makes it the popular phase for applications and investigation. Up to now, several experimental[3-4]and theoretical[5-7]studies have been reported for ε-CL-20. In experimental studies, Pinkerton has reported the pressure-volume relationship of this polymorph up to 2.5 GPa firstly[3]. Later, Gump and Peiris have measured the isothermal compression data of ε-CL-20 up to 5.6 GPa both at ambient temperature and 75 ℃[4]. The ambient-temperature isothermal bulk modulus of 13.6 GPa with a pressure derivative of 11.7 has also been reported according to the third-order Birch-Murnaghan equation of state (EOS)[4]. In theoretical studies, some efforts have been done to investigate the EOS of CL-20 through density functional theory (DFT)[5-6], Molecular dynamics (MD) simulation[7], and molecular packing (MP) method[7], respectively. Based on DFT, using GGA-PW91 method, the ultrasoft pseudopotentials (USP) with 396 and 545 eV planewave basis set have been employed to calculate the EOS of ε-CL-20, respectively[5]. Compared with the 396 eV predictions, the 545 eV predictions show larger deviations from the experiment, especially in the low range of pressure. It should be noted that the agreement of 396 eV results origin from the insufficiency of energy cutoff for the plane-wave basis set. Subsequently, Sorescu and Rice calculated the lattice parameters of CL-20 under pressure using DFT method with a plane-wave basis set of within the pseudopotential approximation[6]. The calculated pressure-volume relationship of CL-20 also has large deviations from the corresponding experimental data, as the similarity as of 545 eV results[6]. The large deviations in both the lattice parameters and EOS for energetic materials CL-20 are mainly due to a lacking reproduce of van der Waals (vdW) forces in current DFT. In addition, both of the MD within the rigid-molecule approximation and MP methods are employed to calculate the pressure-volume relation of CL-20[7]. The calculated zero pressure lattice parameters are accurate, but the deviations have been getting larger with increasing pressure for comparison with the experimental results. These results indicate that both of the two methods can not predict the accurate lattice parameters under high pressure[7]. The condensed-phase optimized molecular potentials for atomistic simulation studies (COMPASS) force field could give the well description of the intermolecular interaction potential. As this theory could effectively improve the accuracy of the simulations for energetic materials, it has been employed for simulating the energetic materials, such as HMX[8]and RDX[9]. In this paper, we also employ the MD simulations with COMPASS force field to investigate the lattice dynamics of CL-20.

    At present, CL-20 has not been fielded in military and civil applications yet because of its high sensitivity.Some efforts have been done to reduce the mechanical sensitivities of CL-20 based polymer bonded explosives such that the hazardous energetic material may be handled and even machined into desired shapes[10-13]. Whatever, it is fundamental and significant to know the mechanical properties of pure CL-20 from atomic and molecular scale. As is well known, the elastic constant is a key parameter to investigate the mechanism properties. Though the experimental approaches of elastic constants, such as Brillouin scattering, ultrasonic velocity measurements, and resonant ultrasound spectroscopy, are mature technology, it is still difficult to measure the elastic constants of energetic materials accurately. For example, HMX(C22,C33,C55,C66,C23)[14-16]and RDX(C11,C22,C44,C12)[17-19], the experimental data differ from each other and some deviations are very large. This is because that the samples of energetic materials are not perfect enough with some crystallographic defects. In literature, only one experimental study on the elastic constants of ε-CL-20 has been reported by Haycraft using Brillouin scattering spectroscopy at ambient conditions[20]. The theoretical investigation on the elastic properties of the other phase (α-, β-, and-CL-20) are lacking in literature, especially in high pressure and temperature range.

    The goal of this work is to predict the lattice parameters and mechanical properties under high temperature and pressure of four CL-20 crystal phases (α-, β-,-, and ε-CL-20). This work is respected to give a comparative and complementary theoretical support for experiments.

    2 Computational details

    2.1 Molecular dynamics calculations

    The MD simulations with COMPASS[21]force field are employed for four polymorphs (α-, β-,-, and ε-CL-20). The initial lattice parameters and internal atomic coordinates are taken from experimental data. ε- and-CL-20 belong to the monoclinic symmetry, while α- and β-CL-20 belong to the orthorhombic symmetry. The conformation and atomic numbering of C6H6N12O12molecule are shown in Fig. 1, together with the unit cell of four pure polymorphs, which are plotted in Fig. 2. The molecular dynamics simulations are performed with the Discover code. A computational supercell size of 2×2×2 unit cells are done. The MD simulations are carried out in the isothermal-isobaric NPT ensemble with the Andersen thermostat method[22]and Berendsen barostat method[23]to control the system pressures and temperatures respectively. The long-range non-bond Coulombic and vdW interactions are managed using the Ewald simulation method[24].The calculated system is relaxed for 1×105time steps with the time step of 1 fs in the equilibration run at each target of temperature and pressure.

    2.2 Elastic constants

    The elastic stiffness tensorcijklcan be expressed as

    (1)

    whereεklis the strain,cijklis the elastic constant (matrix) andσijis the stress. There are thirteen independent components of the elastic stiffness tensor for monoclinic crystal, and nine independent components for orthorhombic crystal.

    For monoclinic phase[25]

    BV=(1/9)[C11+C22+C33+2(C12+C13+

    C23)]

    (2)

    GV=(1/15)[C11+C22+C33+3(C44+C55+

    C66)]-(C12+C13+C23),

    (3)

    BR=h[a(C11+C22-2C12)+b(2C12-2C11-

    C23)+c(C15-2C25)+c(C15-2C25)+

    d(2C12+2C23-C13-2C22)+2e(C25-

    C15)+f]-1

    (4)

    GR=15{4[a(C11+C22+C12)+b(C11-C12-

    C23)+c(C15+C25)+d(C22-C12-C23-

    C13)+e(C15-C25)+f]/h+3[g/h+

    (5)

    b=C23C55-C25C35

    c=C13C35-C15C33

    d=C13C55-C15C35

    e=C13C25-C15C23

    C15C25)+C15(C12C25-C15C22)+

    C25(C23C35-C25C33)

    2C12C13C23

    h=2[C15C25(C33C12-C13C23)+

    C15C35(C22C13-C12C23)+

    C25C35(C11C23-C12C13)]-

    For orthorhombic phase[26]

    BV=(1/9)[C11+C12+C33+2(C12+C13+

    C23)

    (6)

    GV=(1/15)[C11+C22+C33+3(C44+C55+

    C66)-(C12+C13+C23)

    (7)

    BR=Δ[C11(C22+C33-2C23)+C22(C33-

    2C13)-2C33C12]+C12(2C23-C12)+

    C13(2C12-C13)+C23(2C13-C23)]-1

    (8)

    GR=15{4[C11(C22+C33+C23)+C22(C33+

    C13)+C33C12}-C12(2C23+C12)-

    C13(2C12+C13)-C23(C13+C23)]/Δ+

    3[(1/C44)+(1/C55)+(1/C66)]}-1

    (9)

    Δ=C13(C12C23-C13C22)+C23(C12C13-

    The arithmetic average of the Voigt and Reuss bounds is named the Voigt-Reuss-Hill (VRH) average and employed to estimate the elastic moduli of polycrystals[27-29]:

    BV+BR=2BH,GV+GR=2GH

    (10)

    Young’s modulusEcan be calculated by

    E=9BG/(3B+G)

    (11)

    Possion’s ratioνare obtained by the following formula

    ν=(3B-2G)/[2(3B+G)]

    (12)

    3 Results and discussion

    3.1 Lattice parameters

    The calculated lattice constants and unit cell volume at ambient conditions from our NPT-MD optimizations are shown in Tab. 1, together with the available experimental[30-31]and other theoretical data[6-7]. With regard to experiments, the deviation of our calculated unit cell volume are -0.46% (ε-CL-20), -3.48% (-CL-20), 2.02% (α-CL-20), and -1.61% (β-CL-20). Our calculated results agree with the experimental and theoretical results.

    Tab.1 Calculated equilibrium lattice parameters at ambient conditions in comparison to the theoretical and experimental values

    (Tab.1 Continued)

    3.2 Equation of state

    The EOS is important for mitigation of hazardous materials like CL-20 in preparation, transportation, storage, and handing process. We plot the variation of lattice parameters under pressure or temperature in Fig.3.

    Fig.3 Variation of cell volume and lattice constants of ε-CL-20 (a~d), -CL-20 (e~h), α-CL-20 (i~l), β-CL-20 (m~p) with pressure at 298 K, or with temperature at room pressure

    As shown in Fig. 3(a), for the ε-CL-20, the zero pressure theoretical crystal volume with DFT method overshoot the experimental results[3-4]and then the discrepancy gets smaller with increasing pressure. Due to the poor description of vdW force, which plays an important role in CL-20 molecular crystal, the DFT calculation overestimates the cell volume[7]. While the dispersion-corrected simulations using a semi-empirical correction term proportional added to Kohn-Sham energy functional improve the accuracy[7]. The zero pressure theoretical crystal volumes from the MP and NPT-MD method agree well with the experimental results, while the discrepancy increases with increasing pressure. These results suggest that the intermolecular potential used in the MP and NPT-MD methods can not predict lattice parameters accurately under high pressure[14]. Our calculated results of NPT-MD method with CMPASS force field agree well with experimental data[3-4]. Similarly, our theoretical predictions of lattice parameters consist well with the experiments in the temperature range of 100 to 298 K[30]. Though the experimental data for comparison is insufficient, our theoretical predictions of lattice parameters should be accurate in the higher pressure or temperature range. In addition, we predict the lattice parameters of α-CL-20, β-CL-20, and-CL-20 in the pressure range of 0 to 20 GPa or in the temperature range of 100 to 500 K, as is shown in Fig. 3(e) ~ 3(p).

    There are several different formulations of EOS. Here, we fit theP-Vdata of CL-20 to Murnaghan EOS[32]and Birch-Murnaghan EOS[33]respectively. The third-order Birch-Murnaghan EOS can be written as follows,

    (13)

    (14)

    Tab. 2 The calculated bulk modulus B0 and its first pressure derivative of CL-20 compared with experimental and theoretical values

    3.3 Elastic and mechanical properties

    Though the experimental approaches of elastic constants, such as Brillouin scattering, ultrasonic velocity measurements, and resonant ultrasound spectroscopy (RUS), are mature technology, it is still difficult to measure the elastic constants of energetic materials accurately. Several experimental efforts have been done on the conventional explosives, RDX and HMX. The experimental data differ from each other and some deviations are large, such as HMX (C22, C33, C55, C66, C23)[14-16]and RDX (C11, C22, C44, C12)[17-19]. Due to the poor description of vdW force, which plays an important role in CL-20 molecular crystal, the DFT calculation can not predict the elastic constants of CL-20 accurately. The good predictions of lattice parameters and EOS above indicate that the molecular dynamics simulations with COMPASS force field can give accurate description of interatomic binding forces and intermolecular interaction in CL-20 crystal. The elastic constants of four polymorphs at ambient conditions (α-, β-,-CL-20, and ε-CL-20) are listed in Tab.3. The good agreement of experimental and theoretical elastic constants for ε-CL-20 proves the validity and accuracy of the calculation for CL-20. The elastic modulus of CL-20 under temperature at room pressure or under pressure at 298 K are calculated and listed in Tab. 4. The temperature and pressure are the influencing factors in preparation, transportation, storage, and handing process. The predicted elasticity under temperature and pressure can provide powerful guidelines for the engineering application and further experimental investigations.

    We plot the variation of bulk modulusB, shear modulusG, Young’s modulusE, and Possion’s ratioνas a function of the pressure as shown in Fig. 4. The mechanical moduli of α-, β-,-, and ε-CL-20 are found to increase with increasing pressure. On account of the greatest stability of ε phase among the four polymorphs, we also calculate the temperature dependence of bulk modulusB, shear modulusG, Young’s modulusE, and Possion’s ratioνfor ε-CL-20, as listed in Tab.5. Though there are no experimental mechanical moduli at different temperature for comparison, the good agreement of bulk modulusBHand shear modulusGHat ambient conditions

    shows the accuracy of our simulations[20]. The mechanical moduli under temperature can be fitted to a third order polynomial,i.e.,

    Tab.3 The calculated Cij of CL-20 at ambient conditions and the experimental data for ε-CL-20

    Tab.4 The calculated elastic modulus Cij of CL-20 under temperature at room pressure or under pressure at 298 K

    (Tab.4 Continued)

    Fig.4 The calculated pressure dependence of bulk modulus BH (squares), shear modulus GH(circles), Young’s modulus E(triangles), and Possion’s ratio ν (stars) for CL-20

    Tab.5 The calculated temperature dependence of bulk modulus B, shear modulus G, Young’s modulus E, and Possion’s ratio ν for ε-CL-20

    aThe data in Ref. [20] is calculated on the basis of the ambient experimental elastic constants by the Voigt-Reuss-Hill approximation.

    BH(T)=13.411-0.011T+3.823×

    10-6T2-1.502×10-8T3

    (15)

    GH(T)=7.682-0.006T+6.633×

    10-6T2-1.338×10-8T3

    (16)

    E(T)=19.320-0.015T+1.539×

    10-5T2-3.344×10-8T3

    (17)

    ν(T)=0.262-3.463×10-5T-3.632×

    10-8T2-8.412×10-11T3

    (18)

    4 Conclusions

    Molecular dynamics simulations have been employed to study the lattice parameters, EOS, elastic constants, and mechanical modulus under pressure and temperature. The good agreement between molecular dynamics results and experimental data prove that the molecular dynamics simulations with COMPASS force field can give good description of interatomic binding forces and intermolecular interaction in CL-20 crystal. From the above investigations, we have the following conclusions:

    (1) The calculated equilibrium lattice parameters of four polymorphs (α-, β-,-, and ε-CL-20) at ambient conditions are in good agreement with the experiments. We predict the lattice parameters of CL-20 under pressure and temperature. The bulk modulusB0and its pressure derivativeB0′are obtained by fitting the pressure-volume points to Birch-Murnaghan EOS and Murnaghan EOS respectively.

    (2) The elastic constants of four polymorphs (α-, β-,-, and ε-CL-20) under pressure and temperature are predicted. Our molecular dynamics simulated results of elastic constants ofε-CL-20 at ambient conditions present good agreement with the experimental data. The predicted elastic constants of four polymorphs under pressure and temperature should be accurate and provide powerful guidelines for further experimental measurements. In terms of the Voigt-Reuss-Hill approximation, the mechanical modulus are obtained.

    精品午夜福利在线看| 国产精品女同一区二区软件 | 又爽又黄a免费视频| 欧美成狂野欧美在线观看| 久久中文看片网| av福利片在线观看| 亚洲在线观看片| 成人亚洲精品av一区二区| 久久精品国产亚洲av香蕉五月| 日本撒尿小便嘘嘘汇集6| 在线观看av片永久免费下载| 18禁黄网站禁片午夜丰满| 日韩欧美国产一区二区入口| 97超级碰碰碰精品色视频在线观看| 每晚都被弄得嗷嗷叫到高潮| 久久久色成人| av国产免费在线观看| 欧美bdsm另类| 变态另类成人亚洲欧美熟女| 怎么达到女性高潮| 在线看三级毛片| 老鸭窝网址在线观看| 波多野结衣高清作品| 国产探花极品一区二区| 男女视频在线观看网站免费| 午夜两性在线视频| 麻豆成人午夜福利视频| 人人妻,人人澡人人爽秒播| 久久精品国产99精品国产亚洲性色| 999久久久精品免费观看国产| 日韩欧美精品免费久久 | 国产高清视频在线观看网站| 美女被艹到高潮喷水动态| 九九热线精品视视频播放| 色5月婷婷丁香| 99国产精品一区二区蜜桃av| 一个人看的www免费观看视频| av视频在线观看入口| 波野结衣二区三区在线| 美女cb高潮喷水在线观看| 日韩免费av在线播放| 两人在一起打扑克的视频| 五月伊人婷婷丁香| 精品久久久久久久久久久久久| 一区二区三区高清视频在线| 日韩 亚洲 欧美在线| 午夜影院日韩av| 亚洲avbb在线观看| 国产欧美日韩一区二区三| 天堂网av新在线| 中文字幕熟女人妻在线| 99国产精品一区二区三区| 嫩草影院入口| 国产一区二区三区视频了| 午夜激情欧美在线| 亚洲成人中文字幕在线播放| 乱码一卡2卡4卡精品| 波多野结衣高清作品| 欧美高清成人免费视频www| 两个人视频免费观看高清| 国产亚洲精品久久久久久毛片| 精品久久久久久久末码| 一进一出抽搐gif免费好疼| 老司机午夜十八禁免费视频| 久久精品综合一区二区三区| 日本一本二区三区精品| 琪琪午夜伦伦电影理论片6080| 午夜日韩欧美国产| 色播亚洲综合网| av欧美777| 亚洲av熟女| 日日摸夜夜添夜夜添小说| 欧美乱色亚洲激情| 嫩草影院精品99| 人人妻人人澡欧美一区二区| 黄色日韩在线| 日本 欧美在线| 69人妻影院| 真人一进一出gif抽搐免费| 国内久久婷婷六月综合欲色啪| 久久久久久久久大av| 我要搜黄色片| 国产v大片淫在线免费观看| 淫妇啪啪啪对白视频| 两性午夜刺激爽爽歪歪视频在线观看| 国产极品精品免费视频能看的| 好男人电影高清在线观看| 国产成年人精品一区二区| 精品久久久久久久末码| 天堂影院成人在线观看| 人妻夜夜爽99麻豆av| 精品乱码久久久久久99久播| 国产精品嫩草影院av在线观看 | 直男gayav资源| 久久人妻av系列| 亚洲欧美日韩卡通动漫| 久久99热6这里只有精品| 免费人成视频x8x8入口观看| 露出奶头的视频| 国产欧美日韩一区二区三| 精品一区二区三区人妻视频| 国产亚洲精品综合一区在线观看| 99riav亚洲国产免费| 亚洲无线在线观看| 欧美黑人欧美精品刺激| 国产精品一区二区三区四区久久| av在线观看视频网站免费| 国产亚洲精品久久久久久毛片| 麻豆一二三区av精品| 亚洲欧美激情综合另类| 久久午夜亚洲精品久久| 俄罗斯特黄特色一大片| 亚洲国产精品999在线| 成人欧美大片| 免费人成视频x8x8入口观看| 日本精品一区二区三区蜜桃| 午夜免费成人在线视频| 欧美+日韩+精品| 熟女电影av网| 国产成人福利小说| aaaaa片日本免费| 国产精品人妻久久久久久| 欧美又色又爽又黄视频| 精品免费久久久久久久清纯| 国产久久久一区二区三区| 亚洲欧美日韩东京热| 成人三级黄色视频| 日韩高清综合在线| av专区在线播放| 老熟妇仑乱视频hdxx| 床上黄色一级片| 一级作爱视频免费观看| 欧美日韩国产亚洲二区| 久久精品夜夜夜夜夜久久蜜豆| 舔av片在线| 99久久精品国产亚洲精品| 99久久99久久久精品蜜桃| 国产精品久久久久久亚洲av鲁大| 国产一区二区三区在线臀色熟女| 久久99热6这里只有精品| 久久久久久久久久成人| 久久这里只有精品中国| 免费人成视频x8x8入口观看| 亚洲三级黄色毛片| 国产三级在线视频| 天天躁日日操中文字幕| 高潮久久久久久久久久久不卡| 国产精品一区二区三区四区免费观看 | а√天堂www在线а√下载| 精品日产1卡2卡| 国产精品国产高清国产av| 精品国产三级普通话版| 男人和女人高潮做爰伦理| 怎么达到女性高潮| 精品人妻1区二区| 日韩欧美免费精品| 尤物成人国产欧美一区二区三区| 国产极品精品免费视频能看的| 久久久久久久久久黄片| 狂野欧美白嫩少妇大欣赏| 中文字幕av在线有码专区| 亚洲精品一区av在线观看| а√天堂www在线а√下载| 欧洲精品卡2卡3卡4卡5卡区| 99久久久亚洲精品蜜臀av| 国产一区二区激情短视频| 三级毛片av免费| 国产亚洲精品av在线| 97人妻精品一区二区三区麻豆| 小说图片视频综合网站| 国产精品久久久久久人妻精品电影| 欧美最新免费一区二区三区 | 日韩欧美免费精品| 精品一区二区三区视频在线观看免费| 久久久精品欧美日韩精品| 国产精品98久久久久久宅男小说| 简卡轻食公司| 美女黄网站色视频| 亚洲精品一卡2卡三卡4卡5卡| 精品免费久久久久久久清纯| 亚洲在线自拍视频| 非洲黑人性xxxx精品又粗又长| 亚洲成a人片在线一区二区| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 精品国产亚洲在线| 欧美午夜高清在线| 国产精品自产拍在线观看55亚洲| 久久九九热精品免费| 99久国产av精品| 欧美黄色片欧美黄色片| 亚洲 欧美 日韩 在线 免费| 欧美一区二区精品小视频在线| 国产野战对白在线观看| 欧美黄色片欧美黄色片| 两个人视频免费观看高清| 久99久视频精品免费| 亚洲久久久久久中文字幕| 免费人成在线观看视频色| 欧美不卡视频在线免费观看| 又粗又爽又猛毛片免费看| 久久久成人免费电影| 中文字幕熟女人妻在线| 一级毛片久久久久久久久女| 日韩人妻高清精品专区| 男人舔女人下体高潮全视频| 色哟哟·www| 99久久无色码亚洲精品果冻| 国产麻豆成人av免费视频| 老司机福利观看| 女人被狂操c到高潮| 中文字幕精品亚洲无线码一区| 男人和女人高潮做爰伦理| 婷婷丁香在线五月| 亚洲在线观看片| 欧美不卡视频在线免费观看| av天堂在线播放| 88av欧美| 99久久无色码亚洲精品果冻| 欧美色欧美亚洲另类二区| 国产高清三级在线| 婷婷亚洲欧美| 深夜a级毛片| a级毛片免费高清观看在线播放| 一区二区三区免费毛片| 别揉我奶头~嗯~啊~动态视频| 国产美女午夜福利| 非洲黑人性xxxx精品又粗又长| 国产精品久久久久久久久免 | 国产 一区 欧美 日韩| ponron亚洲| 亚洲七黄色美女视频| 精品久久久久久久久久免费视频| 日韩欧美精品v在线| 高清毛片免费观看视频网站| 欧美精品啪啪一区二区三区| 综合色av麻豆| 久久久精品大字幕| 国产高清激情床上av| 一进一出抽搐动态| 在线国产一区二区在线| 亚洲男人的天堂狠狠| 亚洲最大成人av| 男女视频在线观看网站免费| 精品一区二区免费观看| 日本精品一区二区三区蜜桃| 国内毛片毛片毛片毛片毛片| 国产亚洲欧美98| 欧美激情国产日韩精品一区| 久久久久久九九精品二区国产| 亚洲中文字幕一区二区三区有码在线看| 免费在线观看影片大全网站| 十八禁网站免费在线| 一边摸一边抽搐一进一小说| 老司机午夜福利在线观看视频| 欧美日本视频| 精品久久久久久,| 五月玫瑰六月丁香| 欧美成人a在线观看| 一级av片app| 99国产精品一区二区三区| 好男人电影高清在线观看| 亚洲av日韩精品久久久久久密| 成年人黄色毛片网站| 免费人成在线观看视频色| 神马国产精品三级电影在线观看| 俄罗斯特黄特色一大片| 亚洲第一电影网av| 在线a可以看的网站| 国产成年人精品一区二区| 无人区码免费观看不卡| 国产探花极品一区二区| 黄片小视频在线播放| 亚洲欧美激情综合另类| 国产黄片美女视频| 琪琪午夜伦伦电影理论片6080| 51国产日韩欧美| 日本熟妇午夜| 丰满人妻一区二区三区视频av| 欧美xxxx黑人xx丫x性爽| av专区在线播放| 精品人妻视频免费看| 嫩草影院入口| 久久人妻av系列| 国产精品影院久久| 岛国在线免费视频观看| 日韩有码中文字幕| 欧美日韩国产亚洲二区| 色噜噜av男人的天堂激情| 国产欧美日韩一区二区精品| 国产高清三级在线| 国产午夜精品久久久久久一区二区三区 | 99视频精品全部免费 在线| 国产精品一及| 亚洲成人久久爱视频| 成人欧美大片| 村上凉子中文字幕在线| 日本a在线网址| 日本黄色片子视频| 黄色配什么色好看| 久久久久久久久大av| 在现免费观看毛片| 中文字幕高清在线视频| 亚洲成人精品中文字幕电影| 中国美女看黄片| 免费观看精品视频网站| 日本五十路高清| 91久久精品国产一区二区成人| 国产精品久久电影中文字幕| 日本黄大片高清| 亚洲最大成人av| 亚洲美女搞黄在线观看 | 熟女人妻精品中文字幕| 国产午夜精品论理片| 搡女人真爽免费视频火全软件 | av在线观看视频网站免费| 一级作爱视频免费观看| 91久久精品电影网| 国产精品嫩草影院av在线观看 | 我的老师免费观看完整版| 97热精品久久久久久| 黄色配什么色好看| 国产一区二区激情短视频| 老司机午夜福利在线观看视频| 国产白丝娇喘喷水9色精品| 在线免费观看的www视频| 熟女人妻精品中文字幕| 精品久久久久久久人妻蜜臀av| 亚洲精品在线美女| 欧美性猛交黑人性爽| 日本撒尿小便嘘嘘汇集6| 99久久九九国产精品国产免费| 亚洲av成人av| 亚洲第一欧美日韩一区二区三区| 亚洲专区国产一区二区| 色哟哟·www| 极品教师在线视频| 在线a可以看的网站| 欧美日韩中文字幕国产精品一区二区三区| 欧美乱妇无乱码| 淫妇啪啪啪对白视频| 97碰自拍视频| 亚洲国产精品成人综合色| 国产色婷婷99| 深夜a级毛片| 国产亚洲av嫩草精品影院| 丁香六月欧美| 亚洲精品日韩av片在线观看| 精品久久久久久久末码| 真人做人爱边吃奶动态| 婷婷色综合大香蕉| 在现免费观看毛片| 亚洲va日本ⅴa欧美va伊人久久| 国内揄拍国产精品人妻在线| 久久久国产成人免费| 国内精品一区二区在线观看| 天堂√8在线中文| 亚洲av不卡在线观看| 日本黄大片高清| 欧美性感艳星| 日本撒尿小便嘘嘘汇集6| 天堂av国产一区二区熟女人妻| 亚洲精品在线美女| 亚洲av成人av| 日本黄色片子视频| 在线天堂最新版资源| 深爱激情五月婷婷| 真实男女啪啪啪动态图| 亚洲自拍偷在线| 亚洲成av人片免费观看| 一个人看视频在线观看www免费| 国产不卡一卡二| 久9热在线精品视频| 黄色一级大片看看| 琪琪午夜伦伦电影理论片6080| 中出人妻视频一区二区| 免费在线观看影片大全网站| 国产高清有码在线观看视频| 日日夜夜操网爽| www.色视频.com| 久99久视频精品免费| 两个人的视频大全免费| 熟女人妻精品中文字幕| 麻豆成人av在线观看| 18禁在线播放成人免费| 别揉我奶头 嗯啊视频| 大型黄色视频在线免费观看| eeuss影院久久| 午夜a级毛片| 美女高潮的动态| 人妻夜夜爽99麻豆av| 国产黄a三级三级三级人| 亚洲av不卡在线观看| 精品人妻1区二区| 国产精品美女特级片免费视频播放器| 91九色精品人成在线观看| 丰满人妻一区二区三区视频av| 久9热在线精品视频| 亚洲国产精品合色在线| 国产欧美日韩精品亚洲av| 日本三级黄在线观看| 成人毛片a级毛片在线播放| 亚洲aⅴ乱码一区二区在线播放| 国产在视频线在精品| 精品人妻偷拍中文字幕| 欧美xxxx黑人xx丫x性爽| 天堂av国产一区二区熟女人妻| 日韩成人在线观看一区二区三区| 男女视频在线观看网站免费| 国产精品不卡视频一区二区 | 十八禁人妻一区二区| 国产免费男女视频| 日本精品一区二区三区蜜桃| 国产又黄又爽又无遮挡在线| 精品久久久久久久久av| 久久久久久久久中文| 我要看日韩黄色一级片| 国产伦一二天堂av在线观看| 国产精品久久久久久人妻精品电影| 国内精品一区二区在线观看| 日韩欧美精品免费久久 | 熟女人妻精品中文字幕| 欧美日本亚洲视频在线播放| 老司机福利观看| 搡女人真爽免费视频火全软件 | 欧美xxxx黑人xx丫x性爽| 亚洲成人免费电影在线观看| 成人av在线播放网站| 大型黄色视频在线免费观看| 搡老熟女国产l中国老女人| 日本a在线网址| 精品福利观看| 国产精品嫩草影院av在线观看 | 日本与韩国留学比较| 欧美黄色淫秽网站| 男人舔女人下体高潮全视频| 亚洲天堂国产精品一区在线| 久久人人爽人人爽人人片va | 九九久久精品国产亚洲av麻豆| 精品久久久久久久久久免费视频| 有码 亚洲区| 亚洲欧美精品综合久久99| 亚洲人成网站在线播放欧美日韩| 亚洲中文字幕一区二区三区有码在线看| 久久6这里有精品| 内射极品少妇av片p| 88av欧美| 真实男女啪啪啪动态图| 国产伦精品一区二区三区视频9| 别揉我奶头~嗯~啊~动态视频| 熟妇人妻久久中文字幕3abv| 男女床上黄色一级片免费看| 亚洲精品乱码久久久v下载方式| 又粗又爽又猛毛片免费看| 国产亚洲精品久久久com| 免费av不卡在线播放| av视频在线观看入口| 久久久久久久久久成人| 亚洲狠狠婷婷综合久久图片| 啦啦啦韩国在线观看视频| 黄片小视频在线播放| 别揉我奶头 嗯啊视频| 男人舔女人下体高潮全视频| 午夜激情福利司机影院| 国产高清视频在线播放一区| 久久九九热精品免费| 久久香蕉精品热| 69av精品久久久久久| 成人永久免费在线观看视频| 长腿黑丝高跟| 真人做人爱边吃奶动态| 岛国在线免费视频观看| 国产一区二区三区视频了| 老司机午夜十八禁免费视频| 男人舔女人下体高潮全视频| 亚洲三级黄色毛片| 欧美一区二区亚洲| .国产精品久久| 99精品久久久久人妻精品| av中文乱码字幕在线| 欧美高清性xxxxhd video| 国产高清视频在线观看网站| 国产伦在线观看视频一区| 久久亚洲真实| 国产爱豆传媒在线观看| 亚洲av不卡在线观看| 欧美黄色片欧美黄色片| 好看av亚洲va欧美ⅴa在| 99久久无色码亚洲精品果冻| 国产高清视频在线播放一区| 91麻豆av在线| 亚洲熟妇中文字幕五十中出| 国产午夜精品论理片| 欧美成人一区二区免费高清观看| 国产一区二区三区视频了| 欧美色欧美亚洲另类二区| 国产高清激情床上av| 精品人妻一区二区三区麻豆 | 我要看日韩黄色一级片| 窝窝影院91人妻| 国产成年人精品一区二区| 欧美一级a爱片免费观看看| 日本 av在线| 欧美成人免费av一区二区三区| 国产精品久久久久久亚洲av鲁大| 亚洲人成伊人成综合网2020| 久久精品久久久久久噜噜老黄 | 中文亚洲av片在线观看爽| 能在线免费观看的黄片| 国产一区二区在线观看日韩| 精品国内亚洲2022精品成人| 男女之事视频高清在线观看| 亚洲精品在线美女| 国产精品亚洲av一区麻豆| 宅男免费午夜| 91在线观看av| 国产成人影院久久av| 又粗又爽又猛毛片免费看| 精品久久久久久成人av| 色哟哟·www| 激情在线观看视频在线高清| 精品欧美国产一区二区三| 神马国产精品三级电影在线观看| 午夜激情福利司机影院| 最好的美女福利视频网| 欧美另类亚洲清纯唯美| 国产黄a三级三级三级人| 欧美+日韩+精品| 日本一二三区视频观看| 亚洲精品亚洲一区二区| 高清在线国产一区| 五月玫瑰六月丁香| 99久久精品一区二区三区| a级毛片a级免费在线| 黄色一级大片看看| 亚洲成av人片免费观看| 国内少妇人妻偷人精品xxx网站| 欧美乱妇无乱码| 国产野战对白在线观看| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 久久久国产成人精品二区| 欧美黄色片欧美黄色片| 老司机深夜福利视频在线观看| 欧美黑人巨大hd| 又粗又爽又猛毛片免费看| 蜜桃久久精品国产亚洲av| 国产一区二区亚洲精品在线观看| 少妇熟女aⅴ在线视频| 青草久久国产| av国产免费在线观看| 观看免费一级毛片| 一个人免费在线观看电影| 亚洲一区二区三区色噜噜| 91麻豆av在线| 精品久久久久久久久av| 一个人看的www免费观看视频| 99在线视频只有这里精品首页| 欧美+亚洲+日韩+国产| 久久伊人香网站| 久久精品综合一区二区三区| 国产黄片美女视频| 久久久久性生活片| 久久久久久久久久黄片| 欧美精品啪啪一区二区三区| 日韩有码中文字幕| 国产伦精品一区二区三区视频9| 国产欧美日韩精品一区二区| 天美传媒精品一区二区| 国产精品一区二区三区四区免费观看 | 九九在线视频观看精品| 欧美成人性av电影在线观看| 搞女人的毛片| 亚洲国产精品成人综合色| 麻豆成人av在线观看| 日本一二三区视频观看| 国产精品综合久久久久久久免费| www.www免费av| 成人精品一区二区免费| 欧美一区二区国产精品久久精品| 色综合婷婷激情| 欧美日韩中文字幕国产精品一区二区三区| 亚洲欧美日韩高清在线视频| 琪琪午夜伦伦电影理论片6080| 国产探花在线观看一区二区| 亚洲熟妇熟女久久| 小蜜桃在线观看免费完整版高清| 成人毛片a级毛片在线播放| 好男人在线观看高清免费视频| 久久精品人妻少妇| 久久精品国产99精品国产亚洲性色| 一级a爱片免费观看的视频| 亚洲第一电影网av| 波多野结衣高清作品| 麻豆一二三区av精品| 午夜久久久久精精品| 深夜精品福利| 色综合婷婷激情| 91在线精品国自产拍蜜月| 又紧又爽又黄一区二区| 久久久色成人| av在线观看视频网站免费| 国产成人啪精品午夜网站| 男女床上黄色一级片免费看| 午夜视频国产福利| 日韩欧美免费精品| 亚洲成人免费电影在线观看| 亚洲av不卡在线观看| 国产精品爽爽va在线观看网站| 在线a可以看的网站| 男人狂女人下面高潮的视频| 精品久久久久久久久av| 国产精品亚洲一级av第二区| 一级av片app| 亚洲av日韩精品久久久久久密| av天堂中文字幕网| 亚洲一区高清亚洲精品|