• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effects of long non-coding RNA myocardial infarctionassociated transcript on retinal neovascularization in a newborn mouse model of oxygen-induced retinopathy

    2021-01-24 11:40:06YuDiYueWangXueWangQingZhuNie

    Yu Di, Yue Wang, Xue Wang, Qing-Zhu Nie

    Abstract Whether long non-coding RNA myocardial infarction-associated transcript is involved in oxygen-induced retinopathy remains poorly understood. To validate this hypothesis, we established a newborn mouse model of oxygen-induced retinopathy by feeding in an oxygen concentration of 75 ± 2% from postnatal day 8 to postnatal day 12, followed by in normal air. On postnatal day 11, the mice were injected with the myocardial infarction-associated transcript siRNA plasmid via the vitreous cavity to knockdown long non-coding RNA myocardial infarction-associated transcript. Myocardial infarction-associated transcript siRNA transcription significantly inhibited myocardial infarctionassociated transcript mRNA expression, reduced the phosphatidylinosital-3-kinase, phosphorylated Akt and vascular endothelial growth factor immunopositivities, protein and mRNA expression, and alleviated the pathological damage to the retina of oxygen-induced retinopathy mouse models. These findings suggest that myocardial infarction-associated transcript is likely involved in the retinal neovascularization in retinopathy of prematurity and that inhibition of myocardial infarction-associated transcript can downregulate phosphatidylinosital-3-kinase,phosphorylated Akt and vascular endothelial growth factor expression levels and inhibit neovascularization. This study was approved by the Animal Ethics Committee of Shengjing Hospital of China Medical University, China (approval No. 2016PS074K) on February 25, 2016.

    Key Words: long non-coding RNA; myocardial infarction-associated transcript; neovascularization; neurovascular; prematurity; retinopathy;vascular development; vascular endothelial growth factor

    Introduction

    The mammalian genome contains numerous long noncoding RNA (lncRNA) genes. lncRNAs play biological functions through gene imprinting, cell cycle regulation and splicing regulation. They are also associated with the development of several human diseases (Kumar et al., 2016; Arslan et al.,2017; Raut and Khullar, 2018; Ding et al., 2020). Increasing evidence indicates that lncRNAs are related with the development of nervous and neovascular diseases (Xu et al.,2014; Chen et al., 2017; Wang et al., 2020c). The physiological function of the nervous system is closely related to that of the vascular system, and both systems may share pathological mechanisms. Quaegebeur et al. (2011) previously reported the interaction between these two systems.

    Vascular endothelial cells promote the proliferation of neural precursor cells, microglia, and monocytes. Furthermore,they are involved in retinal vascular diseases, and microglia activation has been shown to prevent retinal degeneration(Alves et al., 2020; Cao et al., 2020; Chumsakul et al., 2020;Yu et al., 2020a). Myocardial infarction-associated transcript(MIAT), also known as retina noncoding RNA 2, is expressed in mitotic progenitor cells and post-mitotic retinal precursor cells, including human and mouse retinal pigment cells, in the outer and inner nuclear layers and the retinal nerve cell layer (Almnaseer and Mourtada-Maarabouni, 2018; Yu et al., 2020b). MIAT is of great significance in the treatment of neurovascular diseases, and it can effectively reduce the development of neovascularization (Eichmann and Thomas,2013; Jiang et al., 2016; Yu et al., 2020b). These findings suggest that MIAT may play an important role in angiogenesis and pathogenesis of the nervous and retinal system. However,its role and mechanism in retinopathy of prematurity(ROP) remain unclear. The present study investigated the effect of MIAT small interfering RNA (siRNA) on retinal neovascularization (RNV) in oxygen-induced retinopathy (OIR).

    Materials and Methods

    Animals

    Twenty C57BL/6J timed-pregnant mice were purchased from Shenyang Changsheng Biological Technology Co., Ltd.[Shenyang, China; license No. SCXK (Liao) 2015-0001]. The study was approved by the Animal Ethics Committee of Shengjing Hospital of China Medical University, China (approval No. 2016PS074K) on February 25, 2016.

    OIR induction and intravitreal injection in mice

    The 7-day-old mice were fed in the oxygen concentration of 75 ± 2% until P12, then returned to normal air (21 ± 2%oxygen), as previously described (Smith et al., 1994). The mice were randomly assigned into the hyperoxia control siRNA and hyperoxia MIAT siRNA groups (n= 90/group). On P11, the mice were injected with the empty vector plasmid (1 μL, 20 μM) or malat1 siRNA plasmid (1 μL, 20 μM) designed by GenePharma(Shanghai, China) with lipofectamine (ThermoFisher, Waltham,MA, USA) or the polarization beam splitter into the vitreous cavity (1 μL). On P17, the eyes were removed after anesthesia by isoflurane.

    Preparation of MIAT siRNA

    MIAT siRNA and scrambled MIAT siRNA sequences were designed by GenePharma (Shanghai, China). The sequences were as follows: MIAT siRNA forward, 5′-GGU GUU AAG ACU UGG UUU CUU-3′ and reverse, 5′-ACA UAC UCA UAA AGG CCA CUU-3′; and scrambled MIAT siRNA forward, 5′-UUC UCC GAA CGU GUG UCA CGU UU-3′ and reverse, 5′-ACG UGA CAC GUU CGG AGA AUU-3′.

    Quantitative reverse transcription polymerase chain reaction

    On P12, total RNA was extracted from mouse retina by Trizol(Takara, Tokyo, Japan) and subsequently transcribed into complementary DNA. The sequences were as follows: MIAT,forward: 5′-TGG AAC AAG TCA CGC TCG ATT-3′ and reverse:5′-GGT ATC CCA AGG AAT GAA GTC TGT-3′; phosphoinositide 3-kinase (PI3K), forward: 5′-GGC TTG GAC CGA ATG CT-3′ and reverse: 5′-TTG TTG AAG GCT GTG GC-3′; AKT, forward: 5′-AGC AAA CAG GCT CAC AGG TT-3′ and reverse: 5′-TAA GTC CTC CCC ATC TCC CT-3′; vascular endothelial growth factor (VEGF),forward: 5′-CCC GAC AGG GAA GAC AAT-3′ and reverse: 5′-TCT GGA AGT GAG CCA ACG-3′; and β-actin, forward: 5′-CCT CCT CCT GAG CGC AAG TA-3′ and reverse: 5′-GAT GGA GGG GCC GGA CT-3′. The thermocycling conditions were as follows: preheating at 95°C for 30 seconds, and the two-step method consisting of 95°C 5 seconds and 60°C 31 seconds, for 50 cycles. Electrophoresis was performed on a 1.5% agarose gel, and the results of electrophoresis were observed under ultraviolet light. The 2-ΔΔCTvalue was used for result analysis(Livak and Schmittgen, 2001).

    Fluorescein isothiocyanate staining

    On P17, 15 mice from each group were anesthetized and fluorescein isothiocyanate-dextran (2 × 106Da, 50 mg/mL,500 μL; Sigma, San Francisco, CA, USA) was circulated through the body for 3 minutes. The retinas were dissected after the eyeball was removed and each retina was divided into four equal sections. The clock hour scores of neovascularization and non-perfusion area were counted by Photoshop CS6(Adobe, San Francisco, CA, USA) as previously described(Chikaraishi et al., 2007).

    Hematoxylin-eosin staining

    On postnatal day 17 (P17), 15 mice from each group were anesthetized. The eyes were fixed and serial sections (6-μm in thickness) were prepared. Ten pieces of each eyeball were selected for hematoxylin-eosin staining (Mitchell et al.,2018). After conventional dewaxing, the slices were stained with hematoxylin for 3 minutes, then stained with eosin for 2 minutes, dehydrated by conventional machine, and sealed with neutral resin. The vascular cell nuclei getting into the vitreous humor were counted under a light microscope (Eclipse, NI,Nikon, Tokyo, Japan) (Park et al., 2009; Arachchi et al., 2018).

    Immunohistochemistry

    Immunohistochemistry was performed using a Streptavidin Biotin Complex immunohistochemistry kit (Boster Bioengineering Co., Wuhan, China). The paraffin sections were dewaxed and antigen was repaired and sealed with goat serum. Then the sections were incubated overnight at 4°C with primary antibodies [phospho-PI3K (p-PI3K; 1:2000;mouse; Cat# sc-12929; Santa Cruz Biotechnology Inc., Santa Cruz, CA, USA), phospho-Akt 1/2/3 (1:2000; mouse; Cat#sc-101629; Santa Cruz Biotechnology Inc.), and vascular endothelial growth factor (1:2000; mouse; Cat# sc-365578;Santa Cruz Biotechnology Inc.)], followed by incubation at 37°C for 30 minutes with horseradish peroxidase-labeled goat anti-mouse IgG(H+L) (1:2000; Cat# ZB-5305; Zhongshan Jinqiao Biotechnology Co. Ltd., Beijing, China) on the next day.After 3,3’-diaminobenzidine staining and hematoxylin staining,photographs were taken under the light microscope.

    Western blot analysis

    Total protein from each sample from retinas was extracted using radioimmunoprecipitation assay (RIPA) buffer (Solarbio Science, Beijing, China). The bicinchoninic acid (BCA)method was used to determine the protein concentrations(ThermoFisher). A total of 50 μg of each sample was electrophoresed (80 V) and subsequently transferred (at 4°C, 350 mA) to polyvinylidene difluoride membranes. The membranes were incubated with primary antibodies [p-PI3K(1:2000; mouse; Cat# sc-12929; Santa Cruz Biotechnology Inc.), phospho-Akt 1/2/3 (1:2000; mouse; Cat# sc-101629;Santa Cruz Biotechnology Inc.), and vascular endothelial growth factor (1:2000; mouse; Cat# sc-365578; Santa Cruz Biotechnology Inc.)] for 16 hours at 4°C after blocking with 5% non-fat milk. The membranes were then incubated with horseradish peroxidase-labeled goat anti-mouse IgG(H+L)(1:2000; Cat# ZB-5305; Zhongshan Jinqiao Biotechnology Co.Ltd.) for 1 hour at room temperature. Chemiluminescence reagents (Millipore, Waltham, MA, USA) and an imaging system (GE AI680, Boston, MA, USA) were used to visualize the bands. ImageJ (National Institutes of Health, Bethesda,MD, USA) was used to calculate gray value.

    Statistical analysis

    Data are expressed as the mean ± standard deviation (SD), and were analyzed by Mann-WhitneyUtest using SPSS 17.0 (SPSS Inc., Chicago, IL, USA).P< 0.05 was considered to indicate a statistically significant difference.

    Results

    MIAT expression is decreased in hyperoxia MIAT siRNA mouse retinas

    Quantitative reverse transcription polymerase chain reaction results showed that the expression level of MIAT in the retinas of the hyperoxia MIAT siRNA group was reduced to 67.52% of that in hyperoxia control siRNA group at 1 day after transfection (P< 0.05;Figure 1).

    Figure 1|Quantitative reverse transcription polymerase chain reaction determination of MIAT mRNA expression in the retinas of mice at 1 day after transfection.Data are expressed as the mean ± SD. *P < 0.05, vs. hyperoxia control siRNA group (Mann-Whitney U test). MIAT: Myocardial infarction-associated transcript; siRNA: small interfering RNA.

    Effect of lncRNA on the RNV of OIR mice

    Results of fluorescein isothiocyanate staining showed that in the hyperoxia control siRNA group, the retina showed obvious vascular leakage and a large area of no perfusion area (Figure2A). The pathological changes were alleviated in hyperoxia MIAT siRNA group compared with the hyperoxia control siRNA group (P< 0.05;Figure 2BandC).

    Hematoxylin-eosin staining showed that the number of neovascular nuclei breaking through the inner limiting membrane was calculated to quantify the RNV (Figure 3). The number of preretinal neovascular cells in the hyperoxia MIAT siRNA group was lower than that in hyperoxia control siRNA group (Z= -4.427,P< 0.05). This result suggested that MIAT siRNA exhibited anti-neovascularizative effects in the retina.

    Effect of lncRNA on the immunopositivities of p-PI3K, p-AKT,and VEGF in the OIR model mice

    Immunohistochemical staining of retinal sections revealed that p-PI3K, p-AKT, and VEGF were highly expressed in the ganglion cell layer, inner plexiform layer, inner nuclear layer, and outer plexiform layer (Figure 4). However, their immunopositivities were lower in the hyperoxia MIAT siRNA group than those in hyperoxia control siRNA group (P< 0.05).

    Effect of lncRNA on the PI3K/AKT/VEGF signaling pathway in the OIR model mice

    Western blot analysis and quantitative reverse transcription polymerase chain reaction were performed to detect the expression levels of PI3K, AKT, and VEGF. Western blot results showed that the p-PI3K, p-AKT, and VEGF protein levels in the hyperoxia MIAT siRNA group were decreased by 40.94 ± 3.94%,49.28 ± 4.16%, and 40.63 ± 4.03%, respectively (P< 0.05,vs.hyperoxia control siRNA group;Figure 5AandB). Quantitative reverse transcription polymerase chain reaction revealed that the p-PI3K, p-AKT, and VEGF mRNA levels in the hyperoxia MIAT siRNA group were decreased by 48.73 ± 3.98%, 46.79 ±3.87%, and 55.09 ± 4.26%, respectively (P< 0.05,vs. hyperoxia control siRNA group;Figure 5C). These results demonstrated that MIAT is involved in the process of RNV in ROP, and inhibition of MIAT may effectively inhibit RNV through the PI3K/AKT/VEGF signaling pathway.

    Discussion

    LncRNAs are transcription products, 200-100,000 nucleotides in length, which structurally resemble mRNA and have little to no protein-coding potential (Li et al., 2020; Liu et al., 2020;Wang et al., 2020b). A number of studies have reported that lncRNAs play important roles in several biological processes,including stem cell maintenance and cellular phenotype differentiation (Ding et al., 2018; Sarropoulos et al., 2019;Yang et al., 2019; Qi et al., 2020). Furthermore, lncRNA MIAT has been implicated in the development of many diseases,including neurodegenerative diseases (Fanale et al., 2016),tumors (Li et al., 2017; Bai et al., 2019; Lin et al., 2019), and common eye diseases such as corneal neovascularization and diabetic retinopathy (Hutchinson et al., 2007; Yan et al.,2015; Zhang et al., 2017; Li et al., 2018). RNV is a hallmark of ROP, retinal vascular occlusion, and diabetic retinopathy. Anti-VEGF drugs have been used to decrease this RNV; however,their repeated injection may be problematic and current research is focused on overcoming this challenge (Satari et al., 2019; Sun et al., 2019b; Nagaraj et al., 2020). Retinal nerve cells are involved in the regulation of inflammation during neovascularization (Wang et al., 2020a). Microglia and macrophages play an important role in this process and transforming growth factor-β signaling and the retinoic acid receptor-related orphan receptor γ/interleukin17A axis may inhibit RNV through retinal microglia (Talia et al., 2016; Ma et al., 2019).

    Several lncRNAs, including metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), maternally expressed 3 (MEG3), MIAT, MANTIS, and PUNISHER, are involved in the regulation of angiogenesis and vascular disease (Shen et al., 2017; Lu et al., 2018; Yu and Wang, 2018). Research has shown that high glucose concentrations may significantly upregulate the expression of the lncRNA MIAT (Hanrahan et al., 2010).In vivoexperiments have shown that the downregulation of MIAT may reduce RNV, vascular leakage,and the inflammatory response in diabetes (Meydan et al.,2020). In addition, downregulation of MIAT may reduce the proliferation, migration, and tube formation capacity of retinal vascular endothelial cellsin vitro(Deng et al., 2020).MIAT may serve as a competing endogenous RNA during VEGF regulation and thus participate in RNV associated with diabetic retinopathy (Toraih et al., 2019). Additionally, MIAT knockdown inhibits the upregulation of tumor necrosis factor α and intercellular cell adhesion molecule-1, thereby reducing inflammation and vascular leakage (Roy et al., 2011).

    The OIR mice in the hyperoxia MIAT siRNA group were administered MIAT siRNA via intravitreal injection on P11.One day after transfection, quantitative reverse transcription polymerase chain reaction confirmed that the relative expression of MIAT mRNA in mice in the hyperoxia MIAT siRNA group was significantly decreased, which confirmed the effectiveness of the transfection method used in this study. PI3K, AKT, and VEGF levels were markedly decreased in the hyperoxia MIAT siRNA mice compared with those in the hyperoxia control siRNA group. We have previously demonstrated that cellular communication network factor 1 and LY294002 can regulate RNV through the PI3K/Akt/VEGF signaling pathway (Di et al., 2015; Di and Chen, 2018). MIAT siRNA reduced the expression of VEGF at the protein and mRNA levels, which decreased the aberrant neovascularization in the OIR mouse model. These results indicated that MIAT plays an essential role in RNV, and that MIAT siRNA decreases RNV by inhibiting the PI3K/AKT/VEGF signaling pathway. Consistent with our results, previous studies have demonstrated that MIAT participates in angiogenesis through the PI3K/AKT pathway (Liu et al., 2018; Chen et al., 2019; Sun et al., 2019a).

    The results of this study showed that although MIAT siRNA decreased the expression levels of PI3K, AKT, and VEGF at the peak of RNV on P17, their expression was not completely inhibited. Furthermore, MIAT siRNA could not completely inhibit the development of RNV from morphological and pathological aspects. We conclude that RNV is regulated by many factors. Additionally, the transfection efficiency of MIAT siRNA in the retina, and the dose and number of injections,may have important effects that require further observation and research.

    Figure 2|Effect of long non-coding RNA on the retina morphology of oxygen-induced retinopathy mice detected by fluorescein isothiocyanate staining.(A) Retina morphology on postnatal day 17. The blue arrows indicate neovascularization, the number of the neovascularization was lower in the hyperoxia MIAT siRNA group than hyperoxia control siRNA group. Scale bars: 100 μm. (B, C) Quantitative results of neovascularization clock hour scores (B) and percentage area of non-perfusion area (C). Data are expressed as the mean ± SD. *P < 0.05, vs. hyperoxia control siRNA group (Mann-Whitney U test). MIAT: Myocardial infarction-associated transcript; siRNA: small interfering RNA.

    Figure 3|Effect of long non-coding RNA on the preretinal neovascular cells of oxygen-induced retinopathy mice detected by hematoxylin-eosin staining.(A) The retina morphology of P17 mice (original magnification 400×, scale bars: 50 μm). The red arrows indicate preretinal neovascular cells. The nucleus of neovascularization broke through the inner limiting membrane in hyperoxia group was more than the hyperoxia MIAT siRNA group. (B) Quantitative results of number of preretinal neovascular cells. Data are expressed as the mean ± SD. *P < 0.05, vs. hyperoxia control siRNA group (Mann-Whitney U test). MIAT:Myocardial infarction-associated transcript; P17: postnatal day 17; siRNA: small interfering RNA.

    Figure 4|Effect of long non-coding RNA on the immunopositivities of p-PI3K, p-AKT, and VEGF in the oxygen-induced retinopathy model mice as determined by immunohistochemistry.(A) The images of immunohistochemical staining (magnification, 400×, scale bars: 50 μm). The arrows indicate the positive cells. (B) Quantitative results of p-PI3K,p-AKT, and VEGF immunopositivities. Data are expressed as the mean ± SD (n = 15). *P < 0.05, vs. hyperoxia control siRNA group (Mann-Whitney U test). MIAT:Myocardial infarction-associated transcript; p-AKT: phospho-Akt 1/2/3; p-PI3K: phospho-phosphatidylinositol 3-kinase; siRNA: small interfering RNA; VEGF:vascular endothelial growth factor.

    Figure 5|Effect of long non-coding RNA on the protein and mRNA expression in the PI3K/AKT/VEGF signaling pathway in the oxygen-induced retinopathy mouse model.(A) Bands of p-PI3K, p-AKT, and VEGF detected by western blot assay. (B) Quantification of p-PI3K, p-AKT, and VEGF protein levels. (C) Quantification of p-PI3K,p-AKT, and VEGF mRNA levels detected by quantitative reverse transcription polymerase chain reaction. Data are expressed as the mean ± SD (n = 15). *P <0.05, vs. hyperoxia control siRNA group (Mann-Whitney U test). MIAT: Myocardial infarction-associated transcript; PI3K: phosphatidylinositol 3-kinase; p-AKT:phospho-Akt 1/2/3; p-PI3K: phosphatidylinositol 3-kinase; siRNA: small interfering RNA; VEGF: vascular endothelial growth factor.

    In summary, we hypothesize that the relatively hypoxic environment to which OIR mice were exposed stimulated endothelial cells to upregulate MIAT, which regulates the PI3K/AKT/VEGF signaling pathway, thereby promoting RNV.Silencing MIAT may effectively inhibit RNV in ROP.

    Author contributions:Study design: QZN; exрeriment imрlementation: YD,YW; data collection and analysis: XW; manuscriрt drafting: YD. All authors aррroved the final version of the manuscriрt.

    Conflicts of interest:The authors declare that they have no comрeting interests.

    Financial support:This study was suррorted by the National Natural Science Foundation of China, No. 81600747 (to YD) and the Start-Uр Foundation for Doctors of Liaoning Province, China, No. 201501020 (to YD). The funding sources had no role in study conceрtion and design, data analysis or interрretation, рaрer writing or deciding to submit this рaрer for рublication.

    Institutional review board statement:This study was aррroved by the Animal Ethics Committee of Shengjing Hosрital of China Medical University, China(aррroval No. 2016PS074K) on February 25, 2016.

    Copyright license agreement:The Coрyright License Agreement has been signed by all authors before рublication.

    Data sharing statement:Datasets analyzed during the current study are available from the corresрonding author on reasonable request.

    Plagiarism check:Checked twice by iThenticate.

    Peer review:Externally рeer reviewed.

    Open access statement:This is an oрen access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak,and build uрon the work non-commercially, as long as aррroрriate credit is given and the new creations are licensed under the identical terms.

    Open peer reviewer:Michel Desjarlais, Hoрital Maisonneuve-Rosemont,Canada.

    Additional file:Oрen рeer review reрort 1.

    精品一区二区三区视频在线观看免费| 男人舔女人下体高潮全视频| 香蕉av资源在线| 亚洲性夜色夜夜综合| 99riav亚洲国产免费| 亚洲欧美精品综合久久99| 成人一区二区视频在线观看| 国产精品亚洲美女久久久| 亚洲人与动物交配视频| 一进一出好大好爽视频| 动漫黄色视频在线观看| 两性午夜刺激爽爽歪歪视频在线观看| 在线国产一区二区在线| 亚洲午夜理论影院| 亚洲午夜理论影院| 国产熟女xx| 岛国在线观看网站| 亚洲 欧美 日韩 在线 免费| 黄色成人免费大全| 久久久久久人人人人人| 国产一区在线观看成人免费| 欧美日韩中文字幕国产精品一区二区三区| 一区二区三区免费毛片| 非洲黑人性xxxx精品又粗又长| e午夜精品久久久久久久| 非洲黑人性xxxx精品又粗又长| 女警被强在线播放| 国产97色在线日韩免费| 久久久久精品国产欧美久久久| 99久久精品一区二区三区| 白带黄色成豆腐渣| 欧美日本亚洲视频在线播放| 国产91精品成人一区二区三区| 听说在线观看完整版免费高清| 色精品久久人妻99蜜桃| 桃色一区二区三区在线观看| xxx96com| 久久久久精品国产欧美久久久| 国产色婷婷99| 国产毛片a区久久久久| 中文字幕av成人在线电影| 久久久久久久久大av| a级毛片a级免费在线| 日本 欧美在线| 美女 人体艺术 gogo| 欧美日韩亚洲国产一区二区在线观看| 亚洲av电影不卡..在线观看| 国产成人啪精品午夜网站| 一本精品99久久精品77| 夜夜躁狠狠躁天天躁| 亚洲va日本ⅴa欧美va伊人久久| h日本视频在线播放| 国产伦在线观看视频一区| av视频在线观看入口| 久久6这里有精品| 国产伦人伦偷精品视频| 欧美成人a在线观看| 俺也久久电影网| 久99久视频精品免费| 日本一本二区三区精品| netflix在线观看网站| 欧美+亚洲+日韩+国产| 亚洲av日韩精品久久久久久密| 一进一出抽搐动态| 亚洲va日本ⅴa欧美va伊人久久| 成人三级黄色视频| 中国美女看黄片| 在线播放国产精品三级| 亚洲成人久久性| 18+在线观看网站| 国产精品99久久99久久久不卡| av欧美777| 日韩av在线大香蕉| 两个人看的免费小视频| 欧美日韩黄片免| 国产欧美日韩精品亚洲av| 麻豆成人午夜福利视频| 欧美乱码精品一区二区三区| 久久精品国产自在天天线| 欧美激情在线99| 欧美日韩亚洲国产一区二区在线观看| 国产午夜福利久久久久久| 美女高潮喷水抽搐中文字幕| 久99久视频精品免费| 一级毛片高清免费大全| 国产三级在线视频| 天天躁日日操中文字幕| 日韩大尺度精品在线看网址| 成人av一区二区三区在线看| 亚洲美女视频黄频| 欧美日韩国产亚洲二区| 人妻久久中文字幕网| 国产av一区在线观看免费| 淫妇啪啪啪对白视频| 在线国产一区二区在线| 亚洲国产高清在线一区二区三| 男人舔奶头视频| 久久久久久国产a免费观看| 俺也久久电影网| 亚洲精品久久国产高清桃花| 婷婷精品国产亚洲av| 一区二区三区激情视频| www日本黄色视频网| 成年女人永久免费观看视频| 在线观看午夜福利视频| 国产精品亚洲av一区麻豆| 免费观看精品视频网站| 日本成人三级电影网站| av国产免费在线观看| 色综合亚洲欧美另类图片| 美女黄网站色视频| 午夜免费观看网址| 久久久久久久午夜电影| 一夜夜www| 日本一二三区视频观看| 丰满人妻熟妇乱又伦精品不卡| 国产黄片美女视频| 日韩欧美三级三区| 一进一出抽搐动态| 亚洲一区二区三区不卡视频| 一级a爱片免费观看的视频| 国产伦人伦偷精品视频| 色综合欧美亚洲国产小说| 日本熟妇午夜| 午夜免费观看网址| 99国产精品一区二区蜜桃av| 欧美在线一区亚洲| 国产视频一区二区在线看| 又紧又爽又黄一区二区| 欧美三级亚洲精品| 亚洲真实伦在线观看| 男女下面进入的视频免费午夜| 久久国产乱子伦精品免费另类| 久久精品夜夜夜夜夜久久蜜豆| 国产精品一及| 国产一区二区三区在线臀色熟女| 亚洲精品久久国产高清桃花| 中文在线观看免费www的网站| 99国产精品一区二区三区| 亚洲国产精品合色在线| 免费人成视频x8x8入口观看| 18禁在线播放成人免费| 嫩草影院入口| 国产精华一区二区三区| 欧美乱妇无乱码| 色视频www国产| 国产精品永久免费网站| 亚洲午夜理论影院| 欧美三级亚洲精品| 国产av不卡久久| 日韩av在线大香蕉| 青草久久国产| 高清毛片免费观看视频网站| 一本久久中文字幕| 中文字幕精品亚洲无线码一区| 久久伊人香网站| 成人欧美大片| 99久久久亚洲精品蜜臀av| 淫秽高清视频在线观看| 日本在线视频免费播放| 国产乱人视频| 亚洲内射少妇av| 老鸭窝网址在线观看| 制服丝袜大香蕉在线| 高清毛片免费观看视频网站| 中文字幕精品亚洲无线码一区| 真实男女啪啪啪动态图| 好看av亚洲va欧美ⅴa在| 欧美+亚洲+日韩+国产| 五月伊人婷婷丁香| 久久久精品大字幕| 免费人成在线观看视频色| 亚洲最大成人中文| 12—13女人毛片做爰片一| 无遮挡黄片免费观看| 99精品欧美一区二区三区四区| 男女之事视频高清在线观看| 久99久视频精品免费| 中文字幕久久专区| 女同久久另类99精品国产91| 中文字幕熟女人妻在线| 亚洲人成网站在线播| 夜夜看夜夜爽夜夜摸| 欧美午夜高清在线| 国产伦精品一区二区三区视频9 | 欧美性感艳星| 色播亚洲综合网| 亚洲欧美精品综合久久99| 久久久成人免费电影| 亚洲av熟女| 国产亚洲欧美98| 手机成人av网站| 长腿黑丝高跟| 特大巨黑吊av在线直播| 不卡一级毛片| 老鸭窝网址在线观看| 丁香六月欧美| 最新中文字幕久久久久| bbb黄色大片| 午夜日韩欧美国产| 手机成人av网站| 欧美大码av| 在线十欧美十亚洲十日本专区| 悠悠久久av| 亚洲,欧美精品.| 亚洲精品久久国产高清桃花| 欧美日韩亚洲国产一区二区在线观看| 国产精品亚洲美女久久久| 国产精品久久久久久亚洲av鲁大| 久久久久国内视频| 老司机深夜福利视频在线观看| 黄片小视频在线播放| 老司机午夜十八禁免费视频| 黄色成人免费大全| 亚洲欧美一区二区三区黑人| 一本精品99久久精品77| 欧美bdsm另类| 国产日本99.免费观看| 手机成人av网站| 国产一区二区亚洲精品在线观看| 天堂影院成人在线观看| 亚洲美女黄片视频| 日韩有码中文字幕| 夜夜看夜夜爽夜夜摸| 免费看美女性在线毛片视频| 午夜精品一区二区三区免费看| 18禁黄网站禁片免费观看直播| 午夜福利视频1000在线观看| 日韩精品中文字幕看吧| 中文字幕熟女人妻在线| 国产激情欧美一区二区| 日本 av在线| 18禁黄网站禁片午夜丰满| 波野结衣二区三区在线 | 老司机午夜十八禁免费视频| 两个人的视频大全免费| 两个人视频免费观看高清| 国产色婷婷99| 久久中文看片网| 桃色一区二区三区在线观看| 日韩人妻高清精品专区| 真人一进一出gif抽搐免费| 国产探花极品一区二区| 露出奶头的视频| 国产av一区在线观看免费| 人人妻人人澡欧美一区二区| 欧美成狂野欧美在线观看| 国产精品国产高清国产av| 国产av不卡久久| 国产成人啪精品午夜网站| 午夜免费成人在线视频| 男人和女人高潮做爰伦理| 国产精品国产高清国产av| 亚洲内射少妇av| 国产av一区在线观看免费| 久久人人精品亚洲av| 99在线视频只有这里精品首页| 一个人看的www免费观看视频| 国产三级黄色录像| 高潮久久久久久久久久久不卡| 久久精品夜夜夜夜夜久久蜜豆| 老司机午夜十八禁免费视频| 在线天堂最新版资源| 日本精品一区二区三区蜜桃| 久久久国产成人免费| 久久人妻av系列| 大型黄色视频在线免费观看| 国产黄a三级三级三级人| 国产成人av教育| 天天一区二区日本电影三级| 午夜a级毛片| 日本一二三区视频观看| 国产欧美日韩精品一区二区| 午夜福利在线观看免费完整高清在 | 99在线视频只有这里精品首页| 欧美最黄视频在线播放免费| 亚洲乱码一区二区免费版| 给我免费播放毛片高清在线观看| 日本成人三级电影网站| 亚洲精华国产精华精| 看黄色毛片网站| 国产一区在线观看成人免费| 久久精品国产清高在天天线| 亚洲精品在线美女| 香蕉av资源在线| 91久久精品国产一区二区成人 | 婷婷丁香在线五月| 中文字幕人妻熟人妻熟丝袜美 | 中国美女看黄片| 日本黄色片子视频| 两性午夜刺激爽爽歪歪视频在线观看| 岛国视频午夜一区免费看| 三级毛片av免费| 亚洲欧美日韩东京热| 97人妻精品一区二区三区麻豆| 久久久久国内视频| 91麻豆av在线| 少妇的逼水好多| 国产午夜精品久久久久久一区二区三区 | 成人国产综合亚洲| 色综合亚洲欧美另类图片| 久久九九热精品免费| 男女那种视频在线观看| 一区二区三区激情视频| 天堂动漫精品| av女优亚洲男人天堂| 亚洲午夜理论影院| 香蕉av资源在线| 欧美极品一区二区三区四区| 男女午夜视频在线观看| 国内精品久久久久久久电影| 好男人电影高清在线观看| 久久午夜亚洲精品久久| 精品一区二区三区视频在线观看免费| 性色avwww在线观看| 老熟妇乱子伦视频在线观看| 亚洲国产精品成人综合色| 无限看片的www在线观看| 丰满乱子伦码专区| 久久久精品大字幕| 老汉色av国产亚洲站长工具| 亚洲激情在线av| 成人亚洲精品av一区二区| 欧美+亚洲+日韩+国产| av女优亚洲男人天堂| 精品国产亚洲在线| 男人和女人高潮做爰伦理| 九九在线视频观看精品| 日韩高清综合在线| 国产精品国产高清国产av| 一夜夜www| 国产伦在线观看视频一区| or卡值多少钱| 欧美日韩国产亚洲二区| 日本免费a在线| netflix在线观看网站| 久久久久久久午夜电影| 欧美高清成人免费视频www| 国产一区二区亚洲精品在线观看| 波多野结衣巨乳人妻| 亚洲内射少妇av| 成人一区二区视频在线观看| 国产精品日韩av在线免费观看| 夜夜爽夜夜爽视频| 2018国产大陆天天弄谢| 国产欧美日韩精品一区二区| 激情五月婷婷亚洲| 欧美高清成人免费视频www| 丰满乱子伦码专区| 97超碰精品成人国产| 激情五月婷婷亚洲| 中国美白少妇内射xxxbb| 国产高清国产精品国产三级 | av黄色大香蕉| 免费高清在线观看视频在线观看| 男人舔女人下体高潮全视频| 少妇丰满av| 日本一二三区视频观看| 国产亚洲精品av在线| 精品久久久久久电影网| 成人性生交大片免费视频hd| 九草在线视频观看| 亚洲av福利一区| 午夜精品国产一区二区电影 | 十八禁网站网址无遮挡 | 日本-黄色视频高清免费观看| 97热精品久久久久久| 国产男女超爽视频在线观看| 最近手机中文字幕大全| 日本-黄色视频高清免费观看| 国产亚洲av嫩草精品影院| 亚洲第一区二区三区不卡| 久久国内精品自在自线图片| 纵有疾风起免费观看全集完整版 | 国产白丝娇喘喷水9色精品| 色播亚洲综合网| 三级经典国产精品| 国模一区二区三区四区视频| 肉色欧美久久久久久久蜜桃 | 亚洲av成人精品一区久久| 99久久中文字幕三级久久日本| 在线观看人妻少妇| 欧美精品国产亚洲| 中文在线观看免费www的网站| 亚洲伊人久久精品综合| 免费黄频网站在线观看国产| 国产国拍精品亚洲av在线观看| 可以在线观看毛片的网站| 国产精品三级大全| 日日摸夜夜添夜夜添av毛片| 亚洲av一区综合| 国产成人freesex在线| 女人十人毛片免费观看3o分钟| 伦理电影大哥的女人| 美女内射精品一级片tv| 欧美日韩一区二区视频在线观看视频在线 | 综合色av麻豆| 亚洲性久久影院| 一夜夜www| 少妇高潮的动态图| 欧美成人a在线观看| 久久久久久久久久久免费av| 能在线免费看毛片的网站| 欧美日韩一区二区视频在线观看视频在线 | 嫩草影院新地址| 久久鲁丝午夜福利片| 午夜福利视频精品| 成年女人看的毛片在线观看| 精品人妻熟女av久视频| 黄片无遮挡物在线观看| 欧美成人午夜免费资源| 99久久精品一区二区三区| 亚洲乱码一区二区免费版| 成年人午夜在线观看视频 | 国产黄片视频在线免费观看| 亚洲精品中文字幕在线视频 | 欧美xxxx性猛交bbbb| 国内精品一区二区在线观看| 久久久国产一区二区| 精品亚洲乱码少妇综合久久| 国产真实伦视频高清在线观看| 午夜精品在线福利| av天堂中文字幕网| 久久精品久久精品一区二区三区| 亚洲av二区三区四区| 亚洲va在线va天堂va国产| 身体一侧抽搐| 99热6这里只有精品| 亚洲熟女精品中文字幕| 国产乱人偷精品视频| av又黄又爽大尺度在线免费看| 可以在线观看毛片的网站| 搡老乐熟女国产| 少妇熟女aⅴ在线视频| 欧美成人a在线观看| 亚洲第一区二区三区不卡| 精品人妻熟女av久视频| 少妇人妻一区二区三区视频| 成年av动漫网址| 99久久中文字幕三级久久日本| 国产探花在线观看一区二区| 偷拍熟女少妇极品色| 黄色配什么色好看| 最近手机中文字幕大全| 亚洲精品自拍成人| 午夜福利成人在线免费观看| 久久久久久久久久黄片| 欧美高清成人免费视频www| 嫩草影院新地址| 欧美日韩综合久久久久久| 成年人午夜在线观看视频 | 男人爽女人下面视频在线观看| 亚洲av中文av极速乱| 最近手机中文字幕大全| av.在线天堂| 亚洲人与动物交配视频| 美女主播在线视频| 日本一本二区三区精品| 亚洲av电影在线观看一区二区三区 | 夫妻性生交免费视频一级片| 久久久久精品性色| av免费观看日本| 天堂影院成人在线观看| 亚洲国产欧美人成| 人妻制服诱惑在线中文字幕| 婷婷色综合www| av网站免费在线观看视频 | 午夜日本视频在线| 女的被弄到高潮叫床怎么办| 国产成年人精品一区二区| 99久久精品一区二区三区| 日本免费a在线| 成人亚洲欧美一区二区av| 成人性生交大片免费视频hd| 亚洲成人中文字幕在线播放| 日本一本二区三区精品| 舔av片在线| 黄色一级大片看看| 街头女战士在线观看网站| 人妻系列 视频| 亚洲精品亚洲一区二区| 69人妻影院| 最后的刺客免费高清国语| 看十八女毛片水多多多| 日日摸夜夜添夜夜爱| 久久精品国产亚洲av涩爱| 男女国产视频网站| 日韩欧美一区视频在线观看 | 欧美性感艳星| 亚洲欧美成人精品一区二区| 91久久精品国产一区二区三区| 成人欧美大片| 九色成人免费人妻av| 精品国内亚洲2022精品成人| 亚洲国产欧美在线一区| 国产精品人妻久久久久久| 一二三四中文在线观看免费高清| 国产女主播在线喷水免费视频网站 | 免费观看精品视频网站| 成人毛片60女人毛片免费| 免费电影在线观看免费观看| 成年av动漫网址| 又大又黄又爽视频免费| 欧美成人精品欧美一级黄| 亚洲国产精品sss在线观看| 韩国高清视频一区二区三区| 国产黄色免费在线视频| 免费黄色在线免费观看| 男女啪啪激烈高潮av片| 国产麻豆成人av免费视频| 亚洲精品日韩在线中文字幕| 51国产日韩欧美| 婷婷色综合大香蕉| 精品人妻一区二区三区麻豆| 久久久精品欧美日韩精品| 夫妻性生交免费视频一级片| 99热6这里只有精品| 亚洲怡红院男人天堂| 午夜视频国产福利| 亚洲婷婷狠狠爱综合网| 亚洲精品乱码久久久久久按摩| 亚洲不卡免费看| 色综合站精品国产| 白带黄色成豆腐渣| 水蜜桃什么品种好| 日本wwww免费看| 少妇的逼水好多| 精品久久久久久久末码| 久久久午夜欧美精品| 伊人久久国产一区二区| 久久久精品欧美日韩精品| 三级男女做爰猛烈吃奶摸视频| 精品人妻熟女av久视频| 国内揄拍国产精品人妻在线| 国产在线男女| 午夜福利在线观看吧| freevideosex欧美| 中文在线观看免费www的网站| 中国国产av一级| 国产有黄有色有爽视频| 欧美丝袜亚洲另类| 精品久久久久久电影网| 国产精品不卡视频一区二区| av卡一久久| 日韩av不卡免费在线播放| 亚洲av在线观看美女高潮| 国产高清国产精品国产三级 | av专区在线播放| 久久韩国三级中文字幕| 亚洲精品日韩在线中文字幕| 中文字幕人妻熟人妻熟丝袜美| 欧美性猛交╳xxx乱大交人| 在线天堂最新版资源| 又爽又黄无遮挡网站| 亚洲熟妇中文字幕五十中出| 九草在线视频观看| 日韩 亚洲 欧美在线| 久久久成人免费电影| 久久亚洲国产成人精品v| 美女cb高潮喷水在线观看| 国产黄频视频在线观看| 午夜精品一区二区三区免费看| 欧美激情在线99| 男女啪啪激烈高潮av片| 亚洲天堂国产精品一区在线| 午夜亚洲福利在线播放| 亚洲av日韩在线播放| 精品99又大又爽又粗少妇毛片| 一级毛片电影观看| 美女脱内裤让男人舔精品视频| 色视频www国产| 亚洲av福利一区| 欧美不卡视频在线免费观看| 欧美xxxx性猛交bbbb| 一级毛片 在线播放| 十八禁网站网址无遮挡 | 少妇丰满av| 看黄色毛片网站| 日本一二三区视频观看| 精品久久久久久久久亚洲| 精品久久久久久久人妻蜜臀av| 成人无遮挡网站| 亚洲成人精品中文字幕电影| 久久精品熟女亚洲av麻豆精品 | 人妻制服诱惑在线中文字幕| 亚洲人与动物交配视频| 我的女老师完整版在线观看| 熟妇人妻久久中文字幕3abv| 午夜爱爱视频在线播放| 99久久精品热视频| 久久久久久久久久成人| 久99久视频精品免费| 亚洲av.av天堂| 不卡视频在线观看欧美| 亚洲人与动物交配视频| 亚洲一级一片aⅴ在线观看| 久久久久国产网址| 51国产日韩欧美| 亚洲精品乱久久久久久| 少妇高潮的动态图| 麻豆精品久久久久久蜜桃| xxx大片免费视频| 成人亚洲精品一区在线观看 | 久久6这里有精品| 亚洲激情五月婷婷啪啪| 国产 一区 欧美 日韩| 免费观看无遮挡的男女| 国产av在哪里看| 免费少妇av软件| 亚洲婷婷狠狠爱综合网| 少妇人妻一区二区三区视频| 精品久久久久久久人妻蜜臀av| 免费观看的影片在线观看| 3wmmmm亚洲av在线观看| 人人妻人人看人人澡|