• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effects of long non-coding RNA myocardial infarctionassociated transcript on retinal neovascularization in a newborn mouse model of oxygen-induced retinopathy

    2021-01-24 11:40:06YuDiYueWangXueWangQingZhuNie

    Yu Di, Yue Wang, Xue Wang, Qing-Zhu Nie

    Abstract Whether long non-coding RNA myocardial infarction-associated transcript is involved in oxygen-induced retinopathy remains poorly understood. To validate this hypothesis, we established a newborn mouse model of oxygen-induced retinopathy by feeding in an oxygen concentration of 75 ± 2% from postnatal day 8 to postnatal day 12, followed by in normal air. On postnatal day 11, the mice were injected with the myocardial infarction-associated transcript siRNA plasmid via the vitreous cavity to knockdown long non-coding RNA myocardial infarction-associated transcript. Myocardial infarction-associated transcript siRNA transcription significantly inhibited myocardial infarctionassociated transcript mRNA expression, reduced the phosphatidylinosital-3-kinase, phosphorylated Akt and vascular endothelial growth factor immunopositivities, protein and mRNA expression, and alleviated the pathological damage to the retina of oxygen-induced retinopathy mouse models. These findings suggest that myocardial infarction-associated transcript is likely involved in the retinal neovascularization in retinopathy of prematurity and that inhibition of myocardial infarction-associated transcript can downregulate phosphatidylinosital-3-kinase,phosphorylated Akt and vascular endothelial growth factor expression levels and inhibit neovascularization. This study was approved by the Animal Ethics Committee of Shengjing Hospital of China Medical University, China (approval No. 2016PS074K) on February 25, 2016.

    Key Words: long non-coding RNA; myocardial infarction-associated transcript; neovascularization; neurovascular; prematurity; retinopathy;vascular development; vascular endothelial growth factor

    Introduction

    The mammalian genome contains numerous long noncoding RNA (lncRNA) genes. lncRNAs play biological functions through gene imprinting, cell cycle regulation and splicing regulation. They are also associated with the development of several human diseases (Kumar et al., 2016; Arslan et al.,2017; Raut and Khullar, 2018; Ding et al., 2020). Increasing evidence indicates that lncRNAs are related with the development of nervous and neovascular diseases (Xu et al.,2014; Chen et al., 2017; Wang et al., 2020c). The physiological function of the nervous system is closely related to that of the vascular system, and both systems may share pathological mechanisms. Quaegebeur et al. (2011) previously reported the interaction between these two systems.

    Vascular endothelial cells promote the proliferation of neural precursor cells, microglia, and monocytes. Furthermore,they are involved in retinal vascular diseases, and microglia activation has been shown to prevent retinal degeneration(Alves et al., 2020; Cao et al., 2020; Chumsakul et al., 2020;Yu et al., 2020a). Myocardial infarction-associated transcript(MIAT), also known as retina noncoding RNA 2, is expressed in mitotic progenitor cells and post-mitotic retinal precursor cells, including human and mouse retinal pigment cells, in the outer and inner nuclear layers and the retinal nerve cell layer (Almnaseer and Mourtada-Maarabouni, 2018; Yu et al., 2020b). MIAT is of great significance in the treatment of neurovascular diseases, and it can effectively reduce the development of neovascularization (Eichmann and Thomas,2013; Jiang et al., 2016; Yu et al., 2020b). These findings suggest that MIAT may play an important role in angiogenesis and pathogenesis of the nervous and retinal system. However,its role and mechanism in retinopathy of prematurity(ROP) remain unclear. The present study investigated the effect of MIAT small interfering RNA (siRNA) on retinal neovascularization (RNV) in oxygen-induced retinopathy (OIR).

    Materials and Methods

    Animals

    Twenty C57BL/6J timed-pregnant mice were purchased from Shenyang Changsheng Biological Technology Co., Ltd.[Shenyang, China; license No. SCXK (Liao) 2015-0001]. The study was approved by the Animal Ethics Committee of Shengjing Hospital of China Medical University, China (approval No. 2016PS074K) on February 25, 2016.

    OIR induction and intravitreal injection in mice

    The 7-day-old mice were fed in the oxygen concentration of 75 ± 2% until P12, then returned to normal air (21 ± 2%oxygen), as previously described (Smith et al., 1994). The mice were randomly assigned into the hyperoxia control siRNA and hyperoxia MIAT siRNA groups (n= 90/group). On P11, the mice were injected with the empty vector plasmid (1 μL, 20 μM) or malat1 siRNA plasmid (1 μL, 20 μM) designed by GenePharma(Shanghai, China) with lipofectamine (ThermoFisher, Waltham,MA, USA) or the polarization beam splitter into the vitreous cavity (1 μL). On P17, the eyes were removed after anesthesia by isoflurane.

    Preparation of MIAT siRNA

    MIAT siRNA and scrambled MIAT siRNA sequences were designed by GenePharma (Shanghai, China). The sequences were as follows: MIAT siRNA forward, 5′-GGU GUU AAG ACU UGG UUU CUU-3′ and reverse, 5′-ACA UAC UCA UAA AGG CCA CUU-3′; and scrambled MIAT siRNA forward, 5′-UUC UCC GAA CGU GUG UCA CGU UU-3′ and reverse, 5′-ACG UGA CAC GUU CGG AGA AUU-3′.

    Quantitative reverse transcription polymerase chain reaction

    On P12, total RNA was extracted from mouse retina by Trizol(Takara, Tokyo, Japan) and subsequently transcribed into complementary DNA. The sequences were as follows: MIAT,forward: 5′-TGG AAC AAG TCA CGC TCG ATT-3′ and reverse:5′-GGT ATC CCA AGG AAT GAA GTC TGT-3′; phosphoinositide 3-kinase (PI3K), forward: 5′-GGC TTG GAC CGA ATG CT-3′ and reverse: 5′-TTG TTG AAG GCT GTG GC-3′; AKT, forward: 5′-AGC AAA CAG GCT CAC AGG TT-3′ and reverse: 5′-TAA GTC CTC CCC ATC TCC CT-3′; vascular endothelial growth factor (VEGF),forward: 5′-CCC GAC AGG GAA GAC AAT-3′ and reverse: 5′-TCT GGA AGT GAG CCA ACG-3′; and β-actin, forward: 5′-CCT CCT CCT GAG CGC AAG TA-3′ and reverse: 5′-GAT GGA GGG GCC GGA CT-3′. The thermocycling conditions were as follows: preheating at 95°C for 30 seconds, and the two-step method consisting of 95°C 5 seconds and 60°C 31 seconds, for 50 cycles. Electrophoresis was performed on a 1.5% agarose gel, and the results of electrophoresis were observed under ultraviolet light. The 2-ΔΔCTvalue was used for result analysis(Livak and Schmittgen, 2001).

    Fluorescein isothiocyanate staining

    On P17, 15 mice from each group were anesthetized and fluorescein isothiocyanate-dextran (2 × 106Da, 50 mg/mL,500 μL; Sigma, San Francisco, CA, USA) was circulated through the body for 3 minutes. The retinas were dissected after the eyeball was removed and each retina was divided into four equal sections. The clock hour scores of neovascularization and non-perfusion area were counted by Photoshop CS6(Adobe, San Francisco, CA, USA) as previously described(Chikaraishi et al., 2007).

    Hematoxylin-eosin staining

    On postnatal day 17 (P17), 15 mice from each group were anesthetized. The eyes were fixed and serial sections (6-μm in thickness) were prepared. Ten pieces of each eyeball were selected for hematoxylin-eosin staining (Mitchell et al.,2018). After conventional dewaxing, the slices were stained with hematoxylin for 3 minutes, then stained with eosin for 2 minutes, dehydrated by conventional machine, and sealed with neutral resin. The vascular cell nuclei getting into the vitreous humor were counted under a light microscope (Eclipse, NI,Nikon, Tokyo, Japan) (Park et al., 2009; Arachchi et al., 2018).

    Immunohistochemistry

    Immunohistochemistry was performed using a Streptavidin Biotin Complex immunohistochemistry kit (Boster Bioengineering Co., Wuhan, China). The paraffin sections were dewaxed and antigen was repaired and sealed with goat serum. Then the sections were incubated overnight at 4°C with primary antibodies [phospho-PI3K (p-PI3K; 1:2000;mouse; Cat# sc-12929; Santa Cruz Biotechnology Inc., Santa Cruz, CA, USA), phospho-Akt 1/2/3 (1:2000; mouse; Cat#sc-101629; Santa Cruz Biotechnology Inc.), and vascular endothelial growth factor (1:2000; mouse; Cat# sc-365578;Santa Cruz Biotechnology Inc.)], followed by incubation at 37°C for 30 minutes with horseradish peroxidase-labeled goat anti-mouse IgG(H+L) (1:2000; Cat# ZB-5305; Zhongshan Jinqiao Biotechnology Co. Ltd., Beijing, China) on the next day.After 3,3’-diaminobenzidine staining and hematoxylin staining,photographs were taken under the light microscope.

    Western blot analysis

    Total protein from each sample from retinas was extracted using radioimmunoprecipitation assay (RIPA) buffer (Solarbio Science, Beijing, China). The bicinchoninic acid (BCA)method was used to determine the protein concentrations(ThermoFisher). A total of 50 μg of each sample was electrophoresed (80 V) and subsequently transferred (at 4°C, 350 mA) to polyvinylidene difluoride membranes. The membranes were incubated with primary antibodies [p-PI3K(1:2000; mouse; Cat# sc-12929; Santa Cruz Biotechnology Inc.), phospho-Akt 1/2/3 (1:2000; mouse; Cat# sc-101629;Santa Cruz Biotechnology Inc.), and vascular endothelial growth factor (1:2000; mouse; Cat# sc-365578; Santa Cruz Biotechnology Inc.)] for 16 hours at 4°C after blocking with 5% non-fat milk. The membranes were then incubated with horseradish peroxidase-labeled goat anti-mouse IgG(H+L)(1:2000; Cat# ZB-5305; Zhongshan Jinqiao Biotechnology Co.Ltd.) for 1 hour at room temperature. Chemiluminescence reagents (Millipore, Waltham, MA, USA) and an imaging system (GE AI680, Boston, MA, USA) were used to visualize the bands. ImageJ (National Institutes of Health, Bethesda,MD, USA) was used to calculate gray value.

    Statistical analysis

    Data are expressed as the mean ± standard deviation (SD), and were analyzed by Mann-WhitneyUtest using SPSS 17.0 (SPSS Inc., Chicago, IL, USA).P< 0.05 was considered to indicate a statistically significant difference.

    Results

    MIAT expression is decreased in hyperoxia MIAT siRNA mouse retinas

    Quantitative reverse transcription polymerase chain reaction results showed that the expression level of MIAT in the retinas of the hyperoxia MIAT siRNA group was reduced to 67.52% of that in hyperoxia control siRNA group at 1 day after transfection (P< 0.05;Figure 1).

    Figure 1|Quantitative reverse transcription polymerase chain reaction determination of MIAT mRNA expression in the retinas of mice at 1 day after transfection.Data are expressed as the mean ± SD. *P < 0.05, vs. hyperoxia control siRNA group (Mann-Whitney U test). MIAT: Myocardial infarction-associated transcript; siRNA: small interfering RNA.

    Effect of lncRNA on the RNV of OIR mice

    Results of fluorescein isothiocyanate staining showed that in the hyperoxia control siRNA group, the retina showed obvious vascular leakage and a large area of no perfusion area (Figure2A). The pathological changes were alleviated in hyperoxia MIAT siRNA group compared with the hyperoxia control siRNA group (P< 0.05;Figure 2BandC).

    Hematoxylin-eosin staining showed that the number of neovascular nuclei breaking through the inner limiting membrane was calculated to quantify the RNV (Figure 3). The number of preretinal neovascular cells in the hyperoxia MIAT siRNA group was lower than that in hyperoxia control siRNA group (Z= -4.427,P< 0.05). This result suggested that MIAT siRNA exhibited anti-neovascularizative effects in the retina.

    Effect of lncRNA on the immunopositivities of p-PI3K, p-AKT,and VEGF in the OIR model mice

    Immunohistochemical staining of retinal sections revealed that p-PI3K, p-AKT, and VEGF were highly expressed in the ganglion cell layer, inner plexiform layer, inner nuclear layer, and outer plexiform layer (Figure 4). However, their immunopositivities were lower in the hyperoxia MIAT siRNA group than those in hyperoxia control siRNA group (P< 0.05).

    Effect of lncRNA on the PI3K/AKT/VEGF signaling pathway in the OIR model mice

    Western blot analysis and quantitative reverse transcription polymerase chain reaction were performed to detect the expression levels of PI3K, AKT, and VEGF. Western blot results showed that the p-PI3K, p-AKT, and VEGF protein levels in the hyperoxia MIAT siRNA group were decreased by 40.94 ± 3.94%,49.28 ± 4.16%, and 40.63 ± 4.03%, respectively (P< 0.05,vs.hyperoxia control siRNA group;Figure 5AandB). Quantitative reverse transcription polymerase chain reaction revealed that the p-PI3K, p-AKT, and VEGF mRNA levels in the hyperoxia MIAT siRNA group were decreased by 48.73 ± 3.98%, 46.79 ±3.87%, and 55.09 ± 4.26%, respectively (P< 0.05,vs. hyperoxia control siRNA group;Figure 5C). These results demonstrated that MIAT is involved in the process of RNV in ROP, and inhibition of MIAT may effectively inhibit RNV through the PI3K/AKT/VEGF signaling pathway.

    Discussion

    LncRNAs are transcription products, 200-100,000 nucleotides in length, which structurally resemble mRNA and have little to no protein-coding potential (Li et al., 2020; Liu et al., 2020;Wang et al., 2020b). A number of studies have reported that lncRNAs play important roles in several biological processes,including stem cell maintenance and cellular phenotype differentiation (Ding et al., 2018; Sarropoulos et al., 2019;Yang et al., 2019; Qi et al., 2020). Furthermore, lncRNA MIAT has been implicated in the development of many diseases,including neurodegenerative diseases (Fanale et al., 2016),tumors (Li et al., 2017; Bai et al., 2019; Lin et al., 2019), and common eye diseases such as corneal neovascularization and diabetic retinopathy (Hutchinson et al., 2007; Yan et al.,2015; Zhang et al., 2017; Li et al., 2018). RNV is a hallmark of ROP, retinal vascular occlusion, and diabetic retinopathy. Anti-VEGF drugs have been used to decrease this RNV; however,their repeated injection may be problematic and current research is focused on overcoming this challenge (Satari et al., 2019; Sun et al., 2019b; Nagaraj et al., 2020). Retinal nerve cells are involved in the regulation of inflammation during neovascularization (Wang et al., 2020a). Microglia and macrophages play an important role in this process and transforming growth factor-β signaling and the retinoic acid receptor-related orphan receptor γ/interleukin17A axis may inhibit RNV through retinal microglia (Talia et al., 2016; Ma et al., 2019).

    Several lncRNAs, including metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), maternally expressed 3 (MEG3), MIAT, MANTIS, and PUNISHER, are involved in the regulation of angiogenesis and vascular disease (Shen et al., 2017; Lu et al., 2018; Yu and Wang, 2018). Research has shown that high glucose concentrations may significantly upregulate the expression of the lncRNA MIAT (Hanrahan et al., 2010).In vivoexperiments have shown that the downregulation of MIAT may reduce RNV, vascular leakage,and the inflammatory response in diabetes (Meydan et al.,2020). In addition, downregulation of MIAT may reduce the proliferation, migration, and tube formation capacity of retinal vascular endothelial cellsin vitro(Deng et al., 2020).MIAT may serve as a competing endogenous RNA during VEGF regulation and thus participate in RNV associated with diabetic retinopathy (Toraih et al., 2019). Additionally, MIAT knockdown inhibits the upregulation of tumor necrosis factor α and intercellular cell adhesion molecule-1, thereby reducing inflammation and vascular leakage (Roy et al., 2011).

    The OIR mice in the hyperoxia MIAT siRNA group were administered MIAT siRNA via intravitreal injection on P11.One day after transfection, quantitative reverse transcription polymerase chain reaction confirmed that the relative expression of MIAT mRNA in mice in the hyperoxia MIAT siRNA group was significantly decreased, which confirmed the effectiveness of the transfection method used in this study. PI3K, AKT, and VEGF levels were markedly decreased in the hyperoxia MIAT siRNA mice compared with those in the hyperoxia control siRNA group. We have previously demonstrated that cellular communication network factor 1 and LY294002 can regulate RNV through the PI3K/Akt/VEGF signaling pathway (Di et al., 2015; Di and Chen, 2018). MIAT siRNA reduced the expression of VEGF at the protein and mRNA levels, which decreased the aberrant neovascularization in the OIR mouse model. These results indicated that MIAT plays an essential role in RNV, and that MIAT siRNA decreases RNV by inhibiting the PI3K/AKT/VEGF signaling pathway. Consistent with our results, previous studies have demonstrated that MIAT participates in angiogenesis through the PI3K/AKT pathway (Liu et al., 2018; Chen et al., 2019; Sun et al., 2019a).

    The results of this study showed that although MIAT siRNA decreased the expression levels of PI3K, AKT, and VEGF at the peak of RNV on P17, their expression was not completely inhibited. Furthermore, MIAT siRNA could not completely inhibit the development of RNV from morphological and pathological aspects. We conclude that RNV is regulated by many factors. Additionally, the transfection efficiency of MIAT siRNA in the retina, and the dose and number of injections,may have important effects that require further observation and research.

    Figure 2|Effect of long non-coding RNA on the retina morphology of oxygen-induced retinopathy mice detected by fluorescein isothiocyanate staining.(A) Retina morphology on postnatal day 17. The blue arrows indicate neovascularization, the number of the neovascularization was lower in the hyperoxia MIAT siRNA group than hyperoxia control siRNA group. Scale bars: 100 μm. (B, C) Quantitative results of neovascularization clock hour scores (B) and percentage area of non-perfusion area (C). Data are expressed as the mean ± SD. *P < 0.05, vs. hyperoxia control siRNA group (Mann-Whitney U test). MIAT: Myocardial infarction-associated transcript; siRNA: small interfering RNA.

    Figure 3|Effect of long non-coding RNA on the preretinal neovascular cells of oxygen-induced retinopathy mice detected by hematoxylin-eosin staining.(A) The retina morphology of P17 mice (original magnification 400×, scale bars: 50 μm). The red arrows indicate preretinal neovascular cells. The nucleus of neovascularization broke through the inner limiting membrane in hyperoxia group was more than the hyperoxia MIAT siRNA group. (B) Quantitative results of number of preretinal neovascular cells. Data are expressed as the mean ± SD. *P < 0.05, vs. hyperoxia control siRNA group (Mann-Whitney U test). MIAT:Myocardial infarction-associated transcript; P17: postnatal day 17; siRNA: small interfering RNA.

    Figure 4|Effect of long non-coding RNA on the immunopositivities of p-PI3K, p-AKT, and VEGF in the oxygen-induced retinopathy model mice as determined by immunohistochemistry.(A) The images of immunohistochemical staining (magnification, 400×, scale bars: 50 μm). The arrows indicate the positive cells. (B) Quantitative results of p-PI3K,p-AKT, and VEGF immunopositivities. Data are expressed as the mean ± SD (n = 15). *P < 0.05, vs. hyperoxia control siRNA group (Mann-Whitney U test). MIAT:Myocardial infarction-associated transcript; p-AKT: phospho-Akt 1/2/3; p-PI3K: phospho-phosphatidylinositol 3-kinase; siRNA: small interfering RNA; VEGF:vascular endothelial growth factor.

    Figure 5|Effect of long non-coding RNA on the protein and mRNA expression in the PI3K/AKT/VEGF signaling pathway in the oxygen-induced retinopathy mouse model.(A) Bands of p-PI3K, p-AKT, and VEGF detected by western blot assay. (B) Quantification of p-PI3K, p-AKT, and VEGF protein levels. (C) Quantification of p-PI3K,p-AKT, and VEGF mRNA levels detected by quantitative reverse transcription polymerase chain reaction. Data are expressed as the mean ± SD (n = 15). *P <0.05, vs. hyperoxia control siRNA group (Mann-Whitney U test). MIAT: Myocardial infarction-associated transcript; PI3K: phosphatidylinositol 3-kinase; p-AKT:phospho-Akt 1/2/3; p-PI3K: phosphatidylinositol 3-kinase; siRNA: small interfering RNA; VEGF: vascular endothelial growth factor.

    In summary, we hypothesize that the relatively hypoxic environment to which OIR mice were exposed stimulated endothelial cells to upregulate MIAT, which regulates the PI3K/AKT/VEGF signaling pathway, thereby promoting RNV.Silencing MIAT may effectively inhibit RNV in ROP.

    Author contributions:Study design: QZN; exрeriment imрlementation: YD,YW; data collection and analysis: XW; manuscriрt drafting: YD. All authors aррroved the final version of the manuscriрt.

    Conflicts of interest:The authors declare that they have no comрeting interests.

    Financial support:This study was suррorted by the National Natural Science Foundation of China, No. 81600747 (to YD) and the Start-Uр Foundation for Doctors of Liaoning Province, China, No. 201501020 (to YD). The funding sources had no role in study conceрtion and design, data analysis or interрretation, рaрer writing or deciding to submit this рaрer for рublication.

    Institutional review board statement:This study was aррroved by the Animal Ethics Committee of Shengjing Hosрital of China Medical University, China(aррroval No. 2016PS074K) on February 25, 2016.

    Copyright license agreement:The Coрyright License Agreement has been signed by all authors before рublication.

    Data sharing statement:Datasets analyzed during the current study are available from the corresрonding author on reasonable request.

    Plagiarism check:Checked twice by iThenticate.

    Peer review:Externally рeer reviewed.

    Open access statement:This is an oрen access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak,and build uрon the work non-commercially, as long as aррroрriate credit is given and the new creations are licensed under the identical terms.

    Open peer reviewer:Michel Desjarlais, Hoрital Maisonneuve-Rosemont,Canada.

    Additional file:Oрen рeer review reрort 1.

    人妻制服诱惑在线中文字幕| 韩国av在线不卡| 国产国拍精品亚洲av在线观看| 他把我摸到了高潮在线观看| 国产高清视频在线观看网站| 亚洲成人精品中文字幕电影| 久久精品久久久久久噜噜老黄 | 日本五十路高清| 最好的美女福利视频网| 免费看a级黄色片| 亚洲精品成人久久久久久| av国产免费在线观看| 久久久久久久久久黄片| 九九热线精品视视频播放| 黄色日韩在线| 亚洲中文日韩欧美视频| 国产激情偷乱视频一区二区| 日韩欧美在线乱码| 人妻制服诱惑在线中文字幕| 亚洲av二区三区四区| 免费观看在线日韩| 三级男女做爰猛烈吃奶摸视频| 成年版毛片免费区| 国内精品美女久久久久久| 97碰自拍视频| 亚洲经典国产精华液单| 日本黄色视频三级网站网址| 变态另类成人亚洲欧美熟女| 国产一区二区三区av在线 | 亚洲熟妇中文字幕五十中出| 噜噜噜噜噜久久久久久91| 欧美性猛交╳xxx乱大交人| 国产av不卡久久| 91久久精品国产一区二区三区| 欧美性猛交黑人性爽| 国产精品国产三级国产av玫瑰| 伦精品一区二区三区| 精品人妻一区二区三区麻豆 | 日本免费a在线| 精品久久久久久久久亚洲 | 特大巨黑吊av在线直播| 18禁黄网站禁片午夜丰满| www.www免费av| 99riav亚洲国产免费| 欧美成人一区二区免费高清观看| 美女xxoo啪啪120秒动态图| 亚洲精品国产成人久久av| a级毛片a级免费在线| 最近视频中文字幕2019在线8| 狂野欧美激情性xxxx在线观看| 亚洲熟妇中文字幕五十中出| 久久人人爽人人爽人人片va| 十八禁网站免费在线| 色综合站精品国产| 成人国产麻豆网| 亚洲男人的天堂狠狠| 久久精品国产亚洲网站| 女人被狂操c到高潮| 久久久久九九精品影院| 欧美日韩国产亚洲二区| 国产av麻豆久久久久久久| 亚洲三级黄色毛片| 天堂av国产一区二区熟女人妻| 国产精品野战在线观看| 久久久久久久久中文| 少妇熟女aⅴ在线视频| 国产色爽女视频免费观看| 日本在线视频免费播放| 亚洲中文日韩欧美视频| 天天一区二区日本电影三级| av天堂中文字幕网| 又紧又爽又黄一区二区| 12—13女人毛片做爰片一| 亚洲成人久久性| 国产女主播在线喷水免费视频网站 | 欧洲精品卡2卡3卡4卡5卡区| 精品久久久噜噜| 亚洲人成网站高清观看| 在线播放国产精品三级| 中文在线观看免费www的网站| 久久精品国产鲁丝片午夜精品 | 12—13女人毛片做爰片一| 成人av一区二区三区在线看| 欧美+日韩+精品| 免费不卡的大黄色大毛片视频在线观看 | 好男人在线观看高清免费视频| 天堂√8在线中文| 国产私拍福利视频在线观看| 在线播放无遮挡| 综合色av麻豆| 欧美性猛交╳xxx乱大交人| 最后的刺客免费高清国语| 精品人妻熟女av久视频| 中文字幕人妻熟人妻熟丝袜美| 免费无遮挡裸体视频| 亚洲成人中文字幕在线播放| 99九九线精品视频在线观看视频| 亚洲最大成人手机在线| 最新在线观看一区二区三区| 中文在线观看免费www的网站| 午夜精品一区二区三区免费看| 九九热线精品视视频播放| 久久久久久国产a免费观看| 精品久久久久久久久av| 国产激情偷乱视频一区二区| 久久久精品欧美日韩精品| 亚洲av日韩精品久久久久久密| 国产黄色小视频在线观看| 久久国内精品自在自线图片| 狂野欧美白嫩少妇大欣赏| 欧美中文日本在线观看视频| 亚洲久久久久久中文字幕| 欧美国产日韩亚洲一区| 国产精品一区二区免费欧美| 人妻丰满熟妇av一区二区三区| 久久久久国产精品人妻aⅴ院| 欧美+亚洲+日韩+国产| 在线观看一区二区三区| 久久精品影院6| 国产精品自产拍在线观看55亚洲| 欧美黑人巨大hd| 99久久精品国产国产毛片| 熟女人妻精品中文字幕| 小说图片视频综合网站| 99热网站在线观看| 亚洲av.av天堂| 国产不卡一卡二| 搡女人真爽免费视频火全软件 | 亚洲欧美精品综合久久99| 老司机午夜福利在线观看视频| 黄色丝袜av网址大全| 干丝袜人妻中文字幕| 久久草成人影院| 亚洲人成伊人成综合网2020| 禁无遮挡网站| 亚洲va在线va天堂va国产| 麻豆av噜噜一区二区三区| 女人被狂操c到高潮| 国产精品伦人一区二区| 国产 一区 欧美 日韩| 老司机午夜福利在线观看视频| 欧美国产日韩亚洲一区| 麻豆一二三区av精品| a级一级毛片免费在线观看| 天堂网av新在线| 看十八女毛片水多多多| av国产免费在线观看| 男女之事视频高清在线观看| 99热这里只有是精品在线观看| 国产在线精品亚洲第一网站| 欧美激情久久久久久爽电影| 波多野结衣高清无吗| 久久精品国产清高在天天线| 亚洲av日韩精品久久久久久密| 岛国在线免费视频观看| 桃红色精品国产亚洲av| 国产精品日韩av在线免费观看| 69人妻影院| 成年女人毛片免费观看观看9| 黄色一级大片看看| 国产主播在线观看一区二区| 嫩草影院精品99| 午夜激情欧美在线| netflix在线观看网站| 麻豆久久精品国产亚洲av| 97超视频在线观看视频| 午夜福利视频1000在线观看| 人妻丰满熟妇av一区二区三区| 成人av一区二区三区在线看| 免费电影在线观看免费观看| 啪啪无遮挡十八禁网站| 国产亚洲欧美98| 日韩在线高清观看一区二区三区 | 成人三级黄色视频| 久久中文看片网| 国产精品女同一区二区软件 | 自拍偷自拍亚洲精品老妇| 伊人久久精品亚洲午夜| 国内久久婷婷六月综合欲色啪| 高清在线国产一区| 亚洲欧美日韩高清在线视频| 亚洲精品色激情综合| 国产av在哪里看| 12—13女人毛片做爰片一| 男女下面进入的视频免费午夜| a级毛片a级免费在线| a在线观看视频网站| bbb黄色大片| 精品久久久久久成人av| 韩国av一区二区三区四区| 永久网站在线| 亚洲精品成人久久久久久| 国产精品久久久久久精品电影| 日本精品一区二区三区蜜桃| 超碰av人人做人人爽久久| 日韩欧美精品免费久久| 日本黄色片子视频| 亚洲在线自拍视频| 99久久九九国产精品国产免费| 日韩中字成人| 国内毛片毛片毛片毛片毛片| 在线免费十八禁| 在线播放国产精品三级| 国产乱人伦免费视频| 午夜影院日韩av| 久久人人爽人人爽人人片va| 精品免费久久久久久久清纯| 18禁黄网站禁片午夜丰满| 真实男女啪啪啪动态图| 赤兔流量卡办理| 嫩草影视91久久| 99热网站在线观看| 乱人视频在线观看| 亚洲国产色片| 亚洲男人的天堂狠狠| 亚洲天堂国产精品一区在线| 老熟妇乱子伦视频在线观看| 亚洲真实伦在线观看| 亚洲av日韩精品久久久久久密| 毛片女人毛片| 亚洲第一电影网av| 麻豆一二三区av精品| 99视频精品全部免费 在线| avwww免费| av在线天堂中文字幕| 能在线免费观看的黄片| 亚洲人成网站高清观看| 国产熟女欧美一区二区| 99久久中文字幕三级久久日本| 国内精品久久久久久久电影| 成人国产综合亚洲| 一级a爱片免费观看的视频| 精品人妻视频免费看| 国产av不卡久久| 男插女下体视频免费在线播放| 久久精品国产鲁丝片午夜精品 | 97碰自拍视频| 九色成人免费人妻av| 男人的好看免费观看在线视频| 欧美高清性xxxxhd video| 天堂av国产一区二区熟女人妻| 亚洲va日本ⅴa欧美va伊人久久| 日韩中字成人| 69av精品久久久久久| 欧美色视频一区免费| 欧美丝袜亚洲另类 | 日本 av在线| 97热精品久久久久久| 99久久成人亚洲精品观看| 国产精品亚洲一级av第二区| 久久精品国产亚洲av香蕉五月| 久久午夜福利片| 99热这里只有是精品50| 在线a可以看的网站| 亚洲自偷自拍三级| 禁无遮挡网站| 中文资源天堂在线| 日本五十路高清| 毛片一级片免费看久久久久 | 日本黄色片子视频| 国产精品一区二区三区四区免费观看 | 99热这里只有是精品在线观看| 赤兔流量卡办理| 久久香蕉精品热| 99在线人妻在线中文字幕| 91麻豆精品激情在线观看国产| 成人国产一区最新在线观看| 亚洲欧美日韩无卡精品| 波多野结衣高清作品| 一区二区三区四区激情视频 | 亚洲成人精品中文字幕电影| 亚洲美女视频黄频| 国产亚洲精品久久久com| 啦啦啦韩国在线观看视频| eeuss影院久久| 亚洲欧美清纯卡通| 国内精品久久久久精免费| 色综合色国产| 国产精品久久久久久久电影| 日本色播在线视频| 成年女人看的毛片在线观看| 久久精品久久久久久噜噜老黄 | 国产主播在线观看一区二区| 欧美激情在线99| 性欧美人与动物交配| 人妻制服诱惑在线中文字幕| 日本免费一区二区三区高清不卡| 欧美日韩亚洲国产一区二区在线观看| 一个人看视频在线观看www免费| 国产伦精品一区二区三区视频9| 国模一区二区三区四区视频| 真实男女啪啪啪动态图| 麻豆成人午夜福利视频| 一级黄片播放器| a级一级毛片免费在线观看| 亚洲专区中文字幕在线| 国产亚洲91精品色在线| 国产淫片久久久久久久久| 色av中文字幕| 又粗又爽又猛毛片免费看| 性色avwww在线观看| 国产免费男女视频| 国国产精品蜜臀av免费| 国产色婷婷99| 国产高清激情床上av| 99热6这里只有精品| 一级黄色大片毛片| 狠狠狠狠99中文字幕| 国产亚洲精品综合一区在线观看| 亚洲av美国av| 观看免费一级毛片| 免费av毛片视频| 免费看av在线观看网站| 午夜免费成人在线视频| 亚洲人成伊人成综合网2020| 悠悠久久av| 日韩欧美免费精品| 在线观看舔阴道视频| 亚洲内射少妇av| 天堂影院成人在线观看| 午夜福利欧美成人| 老司机午夜福利在线观看视频| 91午夜精品亚洲一区二区三区 | 直男gayav资源| 精品一区二区三区人妻视频| 国产成人a区在线观看| 三级国产精品欧美在线观看| 99热只有精品国产| 人妻少妇偷人精品九色| 免费一级毛片在线播放高清视频| 久久精品人妻少妇| 麻豆成人午夜福利视频| 日韩欧美 国产精品| 观看美女的网站| 日韩在线高清观看一区二区三区 | 午夜福利视频1000在线观看| 国产乱人伦免费视频| 国国产精品蜜臀av免费| 在线免费观看不下载黄p国产 | 精品久久久久久成人av| 午夜日韩欧美国产| 亚洲成人免费电影在线观看| 长腿黑丝高跟| 美女 人体艺术 gogo| 精品久久久久久久人妻蜜臀av| 亚洲国产精品sss在线观看| 夜夜爽天天搞| 高清在线国产一区| 一区二区三区激情视频| 久久久久久大精品| 国产欧美日韩精品一区二区| 狂野欧美白嫩少妇大欣赏| 伦理电影大哥的女人| 少妇裸体淫交视频免费看高清| 免费观看精品视频网站| 有码 亚洲区| 精品久久久噜噜| 久久久久久久久久黄片| 国产在视频线在精品| 婷婷色综合大香蕉| 精品日产1卡2卡| 日本色播在线视频| 午夜福利成人在线免费观看| 久久精品夜夜夜夜夜久久蜜豆| 久久久国产成人精品二区| 亚洲精品一区av在线观看| 欧美xxxx性猛交bbbb| 亚洲成人久久性| 国产亚洲av嫩草精品影院| 国产精品1区2区在线观看.| 亚洲国产精品成人综合色| 免费av观看视频| 久久久久久久午夜电影| 国产精品人妻久久久久久| 亚洲国产欧美人成| 少妇的逼水好多| 波多野结衣高清作品| 午夜精品一区二区三区免费看| 成人国产麻豆网| 国产中年淑女户外野战色| 一个人看的www免费观看视频| 免费人成视频x8x8入口观看| 一个人看视频在线观看www免费| 在线观看美女被高潮喷水网站| 国产亚洲精品av在线| 国产精品自产拍在线观看55亚洲| 伦精品一区二区三区| 一级毛片久久久久久久久女| 欧美精品啪啪一区二区三区| 啪啪无遮挡十八禁网站| .国产精品久久| 亚洲五月天丁香| h日本视频在线播放| 免费人成视频x8x8入口观看| av天堂中文字幕网| 久久国内精品自在自线图片| 亚洲中文字幕一区二区三区有码在线看| 春色校园在线视频观看| 亚洲中文字幕一区二区三区有码在线看| 亚洲四区av| 不卡一级毛片| 午夜爱爱视频在线播放| 人人妻,人人澡人人爽秒播| 欧美色欧美亚洲另类二区| 久久久午夜欧美精品| 99热6这里只有精品| av中文乱码字幕在线| 韩国av在线不卡| 99国产极品粉嫩在线观看| 日本黄色片子视频| 色噜噜av男人的天堂激情| 亚洲美女搞黄在线观看 | 日本a在线网址| 亚洲欧美日韩东京热| 亚洲av第一区精品v没综合| 婷婷亚洲欧美| 午夜免费激情av| 夜夜看夜夜爽夜夜摸| 成年人黄色毛片网站| 在线观看66精品国产| 一区二区三区四区激情视频 | 精品人妻熟女av久视频| 少妇的逼水好多| 麻豆国产97在线/欧美| 天堂网av新在线| 在线免费观看的www视频| 国内久久婷婷六月综合欲色啪| 午夜a级毛片| 狂野欧美白嫩少妇大欣赏| 国产一区二区三区视频了| 欧美成人一区二区免费高清观看| 搞女人的毛片| 九色成人免费人妻av| 精品久久久久久久久久免费视频| 久久亚洲精品不卡| 午夜福利成人在线免费观看| 一级a爱片免费观看的视频| 色视频www国产| 自拍偷自拍亚洲精品老妇| 亚洲欧美激情综合另类| 97碰自拍视频| 亚洲av免费高清在线观看| 亚洲国产高清在线一区二区三| 国产黄片美女视频| 熟妇人妻久久中文字幕3abv| av在线蜜桃| 丰满人妻一区二区三区视频av| 一级a爱片免费观看的视频| 嫁个100分男人电影在线观看| 久久草成人影院| 伦理电影大哥的女人| 日韩人妻高清精品专区| 99久久无色码亚洲精品果冻| 精品人妻熟女av久视频| 国产高清不卡午夜福利| 色播亚洲综合网| 欧美激情久久久久久爽电影| 舔av片在线| 国产成人一区二区在线| 天美传媒精品一区二区| 亚洲av二区三区四区| a在线观看视频网站| 日本黄色视频三级网站网址| 亚洲国产色片| 97碰自拍视频| 91麻豆av在线| 成人三级黄色视频| 色尼玛亚洲综合影院| 草草在线视频免费看| av在线老鸭窝| 床上黄色一级片| 18+在线观看网站| 少妇裸体淫交视频免费看高清| 看免费成人av毛片| 最近最新免费中文字幕在线| 三级男女做爰猛烈吃奶摸视频| 俺也久久电影网| 悠悠久久av| 在线免费观看不下载黄p国产 | 我要看日韩黄色一级片| 亚洲国产精品合色在线| 99riav亚洲国产免费| 麻豆久久精品国产亚洲av| 日本欧美国产在线视频| 国产午夜精品论理片| 精品久久久久久,| 国产亚洲av嫩草精品影院| 日韩欧美在线乱码| 日韩精品青青久久久久久| 国产亚洲91精品色在线| 18禁黄网站禁片午夜丰满| 精品人妻一区二区三区麻豆 | 免费看美女性在线毛片视频| 黄片wwwwww| 久久午夜福利片| 亚洲av电影不卡..在线观看| 亚洲av二区三区四区| 深夜精品福利| xxxwww97欧美| 日本成人三级电影网站| 婷婷色综合大香蕉| 18禁裸乳无遮挡免费网站照片| 精品久久久久久久久久免费视频| 国产爱豆传媒在线观看| 国产一区二区三区在线臀色熟女| 别揉我奶头~嗯~啊~动态视频| av专区在线播放| 在线观看一区二区三区| 午夜福利视频1000在线观看| 看免费成人av毛片| 亚洲av日韩精品久久久久久密| 在线播放国产精品三级| 日韩中文字幕欧美一区二区| 中文字幕熟女人妻在线| 久久久国产成人精品二区| 免费看光身美女| 久久精品久久久久久噜噜老黄 | 老熟妇仑乱视频hdxx| 日本爱情动作片www.在线观看 | 少妇猛男粗大的猛烈进出视频 | 国产单亲对白刺激| 亚洲国产日韩欧美精品在线观看| 国产精品福利在线免费观看| 一个人观看的视频www高清免费观看| 级片在线观看| 国产三级中文精品| 免费人成视频x8x8入口观看| 精品久久久噜噜| 亚洲自拍偷在线| 久久6这里有精品| 国内精品久久久久精免费| 日本与韩国留学比较| 欧美成人a在线观看| 国产在线精品亚洲第一网站| 91av网一区二区| 可以在线观看的亚洲视频| 婷婷精品国产亚洲av| 狂野欧美激情性xxxx在线观看| 精品人妻一区二区三区麻豆 | 日本一二三区视频观看| 少妇的逼水好多| 午夜福利欧美成人| 免费在线观看成人毛片| 在线观看66精品国产| 亚洲av第一区精品v没综合| 午夜精品一区二区三区免费看| www日本黄色视频网| 好男人在线观看高清免费视频| 久久精品国产亚洲av涩爱 | 99在线视频只有这里精品首页| 在线播放无遮挡| 99久久中文字幕三级久久日本| 国产日本99.免费观看| 精品不卡国产一区二区三区| 免费看美女性在线毛片视频| 免费人成在线观看视频色| 国产私拍福利视频在线观看| 桃色一区二区三区在线观看| 1000部很黄的大片| 亚洲aⅴ乱码一区二区在线播放| 国产在线男女| 色综合亚洲欧美另类图片| 最近在线观看免费完整版| 一个人看视频在线观看www免费| 亚洲18禁久久av| 干丝袜人妻中文字幕| 日韩人妻高清精品专区| 男人的好看免费观看在线视频| 日韩精品中文字幕看吧| 舔av片在线| 国产精品人妻久久久久久| 五月玫瑰六月丁香| 亚洲国产精品久久男人天堂| av国产免费在线观看| 亚洲人成伊人成综合网2020| 夜夜看夜夜爽夜夜摸| 欧美zozozo另类| 尾随美女入室| 精品午夜福利在线看| 精品久久久久久成人av| 亚洲精品成人久久久久久| 可以在线观看的亚洲视频| 999久久久精品免费观看国产| 日本免费a在线| 亚洲无线观看免费| 国产精品三级大全| 精品久久久久久久久久免费视频| 久久久成人免费电影| 精品日产1卡2卡| 国产三级在线视频| 久久精品国产亚洲网站| 国产精品综合久久久久久久免费| 成年人黄色毛片网站| 女同久久另类99精品国产91| 狠狠狠狠99中文字幕| 在线观看舔阴道视频| 久久久久久久午夜电影| 中文字幕久久专区| 精品乱码久久久久久99久播| 日韩欧美在线二视频| 91av网一区二区| 男人狂女人下面高潮的视频| 国产精品久久久久久亚洲av鲁大| 国内精品宾馆在线| 亚洲成人免费电影在线观看| 国产成人影院久久av| 欧美三级亚洲精品| 嫩草影院入口| 国产白丝娇喘喷水9色精品| 亚洲av熟女| 亚洲欧美日韩东京热| 黄色视频,在线免费观看| 免费一级毛片在线播放高清视频| 美女黄网站色视频| 国产精品永久免费网站|