• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    High temperature strain glass in Ti–Au and Ti–Pt based shape memory alloys*

    2021-01-21 02:15:22ShuaiRen任帥ChangLiu劉暢andWeiHuaWang汪衛(wèi)華
    Chinese Physics B 2021年1期
    關(guān)鍵詞:劉暢

    Shuai Ren(任帥), Chang Liu(劉暢), and Wei-Hua Wang(汪衛(wèi)華)

    1

    Institute of Physics,Chinese Academy of Sciences,Beijing 100190,China

    2Frontier Institute of Science and Technology,State Key Laboratory for Mechanical Behavior of Materials,Xi’an Jiaotong University,Xi’an 710049,China

    Keywords: shape memory alloys,martensitic transformation,strain glass,glass transition temperature

    1. Introduction

    Shape memory alloys (SMAs) are one of the most important smart materials that exhibit unique properties of the shape memory effect and superelasticity, due to a ferroelastic/martensitic transformation.[1]The two main SMA systems for current commercial applications are Ti–Ni-based and Cu-based alloys.[1]However,their martensitic transformation temperatures(Ms)are generally lower than 373 K,which limits the applications of SMAs in high temperature conditions.As a result, Ti–Au and Ti–Pt high temperature SMAs (HTSMAs)have received wide attention due to their high Ms.[2–4]

    Doping is an essential way to modify the martensitic transformation as well as the associated properties in SMAs.[5]However, doping usually introduces point defects into the SMAs, and thus further reduces the Ms. In recent years, it has been reported that when the martensitic transformation in SMAs is suppressed by excess doping, the system does not directly become nontransforming, but exhibits a novel glass transition.[6]As a result, the long-range strain ordered phase(i.e.,martensitic phase)is replaced by a short-range strain ordered glass state, which is termed as the “strain glass” given that the lattice strain is the order parameter of the martensitic transformation.[6]

    Strain glass is characterized by several typical features,such as no enthalpy change during the glass transition observed by differential scanning calorimetry(DSC),the disappearance of thermal hysteresis in electrical resistivity curves,and no breaking of the parent phase symmetry during the glass transition in the x-ray diffraction spectrums.[7]It also exhibits some important glass transition features, including the dynamic freezing measured by dynamic mechanical analysis (DMA) experiments and the breaking down of ergodicity measured by zero-field-cooling and field-cooling(ZFC/FC)experiments.[7]Moreover, the strain glass is of potential interest for applications, because it exhibits many interesting properties, such as the superelasticity of slim hysteresis,[8]stress tuned intelligent damping properties,[9]and low-fieldtriggered large magnetostriction.[10]Unfortunately, the glass transition temperature(Tg)of current strain glass alloys is generally lower than 273 K, which not only limits the potential applications of the strain glass,but also interrupts the investigation of the nature of strain glass as well.

    For example, the low glass transition temperature makes the experimental investigation of dynamic relaxation of strain glass difficult. Dynamic relaxation is an intrinsic feature of glasses, and exploring the dynamic relaxation of glasses is significant for understanding the nature of glasses.[11]The dynamic relaxation is generally measured by the DMA experiments,and the lower temperature limit of the DMA is around 130 K, as illustrated in Fig. 1. In metallic glass, thanks to their high Tg, several unique dynamic relaxation modes are observed, including primary α-relaxation, β-relaxation, and nearly constant loss, as illustrated in the loss modulus curve of a La55Ni20Al25bulk metallic glass(BMG)in Fig.1(a). In comparison, only one relaxation mode has been reported in strain glass up to now.[6,7]As shown in Fig. 1(b), there is a peak in the loss modulus curve of a Ti48.5Ni51.5strain glass alloy,close to the lower temperature limit of the DMA,which corresponds to the primary α-relaxation of the BMG.No other relaxation mode can be found except this peak,due to the low Tgof the strain glass.

    Fig. 1. Comparison of the loss modulus curve of (a) a La55Ni20Al25 bulk metallic glass(BMG)and(b)a Ti48.5Ni51.5 strain glass(STG)alloy, measured by the DMA experiment. The lower temperature limit is around 130 K.Above this limit,the BMG exhibits several relaxation modes in(a),including primary α-relaxation mode,β-relaxation mode,and nearly constant loss(NCL),while the strain glass only exhibits one α-relaxation mode in(b).

    In metallic glass, the β-relaxation has been well known as one of the intrinsic dynamic relaxation modes besides the α-relaxation,which corresponds to localized cooperative motions of a small number of atoms confined in loosely packed regions.[11]If strain glass possesses the same glassy dynamics as metallic glass,the β-relaxation should exist in the strain glass in principle. Therefore, the investigation of possible βrelaxation in strain glass may provide insight into the common dynamic characteristics of these two glasses, and deepen the understanding of the nature of strain glass. However, the investigation is interrupted due to the low Tgof current strain glass systems. As a result,it is of importance to discover high temperature strain glass systems.

    In Ti50Ni50xFexSMAs, the Tgof strain glass at x=6 is around 180 K,while the Msof the host alloy(i.e.,Ti50Ni50)is around 350 K.[12]On the other hand,in Ti50Pd50-xFexSMAs,the Tgof strain glass at x=14 is about 280 K,while the Msof the host alloy(i.e.,Ti50Pd50)is around 800 K.[13]The comparison between these two systems gives us a clue that the strain glass with high Tgcomes from high MsSMA systems. Therefore,we chose the two HTSMAs,Ti50Au50(Ms=893 K)and Ti50Pt50(Ms=1340 K),[2]as the host alloys and tried to find the strain glass in them. In this paper, we reported the strain glass with relatively high Tgfound in these two HTSMAs. In Ti50Au50-xCrxSMAs,strain glass appears at x=25,while in Ti50Pt50-yFeySMAs, strain glass takes place at y=30. Owing to the very high Msof the host alloys, these two systems both exhibit a relatively large ideal glass transition temperature(T0), which is comparable with the highest T0value reported until now.

    2. Experimental methods

    Samples of Ti50Au50-xCrx(x =15, 25, abbreviated by Crx hereafter) and Ti50Pt50-yFey(y=25, 30, abbreviated by Fey hereafter) alloys were prepared from highly pure metals(>99.95 at.%) by arc-melting under an argon atmosphere.The ingots were solution-treated at 1373 K for 12 h in evacuated quartz tubes,followed by water quenching. Then the ingots were cut into suitable shapes for different measurements.Latent heat of transformation was measured with a differential scanning calorimeter (DSC-Q200 from TA Company) with a cooling/heating rate of 10 K/min. Electrical resistivity (ER)of specimens was measured through a four-probe method with a constant current of 100 mA and a cooling/heating rate of 2 K/min. The anelasticity was detected by dynamic mechanical analysis(DMA-Q800 from TA Instruments)using a cooling rate of 2 K/min with a single cantilever mode in the frequency range from 0.2 Hz to 20 Hz.

    3. Results and discussion

    Figures 2(a1) and 2(a2) exhibit the DSC curves of Ti50Au50-xCrxSMAs. Sharp heat flow peaks are observed during cooling and heating for Cr15 of which the Msis around 385 K,while the heat flow peaks disappear for Cr25. It means that 25 at.% of chromium is enough to suppress the martensitic transformation in Ti–Au SMAs. On the other hand,in Ti50Pt50-yFeySMAs, the doping of 25 at.% iron is still not high enough to lead to the suppression of the martensitic phase. As shown in Fig.2(b1), weak heat flow peaks are detected for Fe25(Ms=403 K),while figure 2(b2)shows that it requires 30 at.%of iron to completely suppress the formation of the martensitic phase.

    Figure 3 exhibits the ER curves with different doping levels for these two systems respectively. Because the martensitic transformation is the first order phase transformation in thermodynamics, it always exhibits a thermal hysteresis loop in the ER curve during cooling and heating. As shown in Fig. 3(a1), a clear thermal hysteresis loop takes place in the ER curve of Cr15, while no hysteresis loop is observed for Cr25 in Fig. 3(a2). It means that the martensitic transformation still exists in Cr15,whereas there is no martensitic transformation in Cr25. A similar case is found in Ti50Pt50-yFeySMAs.The absence of hysteresis loop in the ER curve of Fe30 in Fig.3(b2)indicates that there is no martensitic transformation in Fe30 either.Thus,the ER curves are consistent with the DSC results. Both of them indicate that the martensitic transformations in the two HTSMAs can be completely suppressed by doping excess point defects.

    Fig. 2. DSC curves of Ti50Au50-xCrx and Ti50Pt50-yFey alloys. Heat flow peaks can be observed in(a1)Cr15 and(b1)Fe25, while there is no peak in(a2)Cr25 and(b2)Fe30.

    Fig.3. ER curves of Ti50Au50-xCrx and Ti50Pt50-yFey alloys. Thermal hysteresis loops can be observed in(a1)Cr15 and(b1)Fe25,while the hysteresis loop disappears in(a2)Cr25 and(b2)Fe30.

    It is noted that the strain glass in Ti–Au–Cr alloys exhibits a negative temperature dependence of electrical resistivity in Fig. 3(a2), while the strain glass in Ti–Pt–Fe alloys shows a positive temperature dependence in Fig.3(b2). The electrical resistivity has been well known to be sensitive to the phase structure of the nanodomains in strain glass.[12,14–16]Thus,the difference in the temperature dependence of electrical resistivity suggests that the phase structure of the nanodomains in these two strain glasses is remarkably different,which is worthy to be investigated in the future.

    The storage modulus and tanδ curves of Cr25 and Fe30 are shown in Fig. 4 respectively. In Fig. 4(a), there are two anomalies in the storage modulus curves of Cr25 upon cooling. The first anomaly appears around 300 K, and exhibits a frequency dependent behavior, namely, the dip temperatures in storage modulus decrease with frequency lowering. Corresponding to the dip in storage modulus, the tanδ exhibits a peak,and the peak temperatures show the same frequency dependent behavior. This frequency dependent behavior is a typical glass feature for strain glass as previously reported,which indicates the slowing-down of dynamics during the strain glass transition.[6,7]It thus corresponds to the primary α-relaxation in metallic glass, as shown in Fig. 1(a). The frequency dependence of the dip can be fitted by the Vogel–Fulcher(V–F)relation ω =ω0exp[-Ea/kB(Tg-T0)],[6,7]where ω is the oscillating frequency,ω0the frequency at infinitely high temperature,Eathe activation energy,kBthe Boltzmann constant,Tgthe strain glass transition temperature, and T0the ideal freezing temperature. For convenience, we use the T0to compare the glass transition temperatures of different systems below.According to the V–F relation, the ideal freezing temperature T0is about 251 K.

    Fig. 4. (a) Storage modulus and tanδ curves of Ti50Au25Cr25 (Cr25).Two anomalies are detected in the curves. The anomaly around 290 K exhibits a frequency dependent behavior,corresponds to the strain glass transition. By fitting the V–F relation in the inset of(a),the ideal freezing temperature T0 is around 251 K.The other anomaly around 160 K in the storage modulus curve corresponds to a spontaneous transition from strain glass to martensite. (b) Storage modulus and tanδ curves of Ti50Pt20Fe30 (Fe30). The anomaly around 320 K corresponds to the strain glass transition. According to the V–F relation in the inset of(b),the T0 is around 272 K.Upon cooling,a modulus softening is observed at low temperatures.

    With further cooling, another dip in the storage modulus curves of Cr25 appears around 150 K in Fig.4(a). Meanwhile,the intensity of tanδ increases correspondingly,but the peak cannot be detected. This second anomaly indicates that a spontaneous transition from the strain glass(the frozen local strain ordered state)to martensite(the ferroelastic phase with long-range strain ordering) takes place. Such a spontaneous transition has been widely found in strain glass alloys,[17–19]which suggests that the strain glass is not the ground state of the system at low temperatures.

    The storage modulus and tanδ curves of Fe30 are shown in Fig.4(b). Only one anomaly is clearly found around 320 K,which exhibits the frequency dependent behavior of the dip temperatures in storage modulus and the corresponding peak temperatures in tanδ, the same as the first anomaly of Cr25.By fitting the V–F relation,T0is about 272 K.When the temperature further decreases,no second anomaly can be detected.Despite the absence of the second anomaly,the modulus softening is observed upon cooling below 230 K,which is known as a signal of the onset of the martensitic transition.[18]It suggests that the second anomaly actually exists, but locates at a low temperature below the lower limit of the DMA experiment. As a result, only the strain glass transition is clearly observed for Fe30 by the DMA experiment.

    Fig. 5. Summary of the T0 of current main strain glass alloy systems.The data of Ti–Ni-based strain glasses come from Refs. [6,12,19,20],the data of Ti–Pd-based strain glasses are from Ref.[13], and the data of ferromagnetic strain glass alloys come from Refs.[10,20,21].

    These two new strain glass systems exhibit a relatively high ideal freezing temperature T0, as compared with other systems. Figure 5 summarizes the T0of current main strain glass systems. In Ti–Ni-based strain glass alloys, T0is generally lower than 200 K.[6,12,19,20]Ti–Pd-based strain glass alloys exhibit a relatively high T0, which is around 250 K.[13]As for the ferromagnetic strain glass(FSTG)alloys,the highest T0is also around 250 K.[10,21,22]Thus, the highest T0of current strain glass systems is around 250 K. In comparison,the T0of the Ti50Au25Cr25strain glass alloy is about 251 K,which is comparable with the highest T0value,and that of the Ti50Pt20Fe30strain glass alloy is about 272 K, which is even higher than the T0maximum of the current main strain glass alloys.

    Although the strain glass in the Ti50Pt20Fe30alloy exhibits the highest T0so far,it is not high enough as expected,given that the host alloy Ti50Pt50exhibits a quite high Ms(~1340 K).[2]Figure 6 compares the phase diagrams of several Ti-based alloys.[12,13]The composition dependence of the transformation behavior is similar for these four systems:there is a critical defect concentration separating the martensitic phase and strain glass. It is noted that as the Msof the host alloy increases, the critical defect concentration strongly increases,whereas the increase of the T0is limited. As a result,although the Ti–Pt-based alloys start from the pure Ti50Pt50host alloy with high Ms(~1340 K),much higher than the Msof the pure Ti50Pd50host alloy(~800 K)in Ti–Pd-based alloys,the T0of the strain glass in Ti–Pt-based alloys(~272 K)is only slightly higher than that of the strain glass in Ti–Pdbased alloys(~250 K).

    Fig.6. Comparison of the phase diagrams of Ti-based SMAs. The critical defect concentration for each system is labeled by the red dot line.The data of Ti50Ni50-xFex and Ti50Pd50-xCrx come from Refs.[12,13],and the data of Ti50Pt50 and Ti50Au50 are from Ref.[2].

    Obviously, doping point defects is not an effective way to further increase the T0of strain glass above ambient temperature. According to the phenomenological model of strain glass,[23]point defects generally introduce two effects to the martensitic system: One is a global effect,which changes the global thermodynamic stability of martensite;the other is a local effect,which leads to a fluctuation in local thermodynamic stability of martensite. In most cases,the global effect of point defects is to decrease the Ms,which causes a strong transition temperature decrease before the system goes to the strain glass and thus results in a low T0.

    Besides the point defects,some other crystallographic defects such as dislocations[24]and nanoprecipitates[25,26]have also been reported to be able to suppress the martensitic transformation and generate a frozen strain glass state. Moreover,it is reported that the dislocations and nanoprecipitates can maintain the T0of strain glass better than the point defects.[24]The reason is that the global effect of dislocations is negligible,while nanoprecipitates sometimes may lead to an opposite global effect as compared with point defects(for example,the Msof the B2-R martensitic transition in Ti–Ni SMAs increases due to the Ti3Ni4precipitation[5]). Thus, a potential solution to design high T0strain glass alloys is to choose a host alloy with high Msand introduce other defects such as dislocations and nanoprecipitates in it,which requires a further study in the future.

    Moreover, in ferromagnetic shape memory alloys which are an important subgroup of SMAs,the global effect of point defects may vary due to the magnetoelastic coupling. For example, in Co-doped Ni–Mn–Ga ferromagnetic strain glass alloys, the Msfirst keeps constant rather than decreases with doping cobalt,and the T0in this system is actually comparable with that of strain glass in Ti–Pd-based SMAs.[21]Thus,ferromagnetic shape memory alloys are also a promising candidate to exhibit high T0,worthy to be further investigated.

    4. Conclusion

    We found high temperature strain glass in Ti–Au-based and Ti–Pt-based HTSMAs. The critical defect concentration for Ti50Au50-xCrxalloys is around x = 25, while that for Ti50Pt50-yFeyalloys is about y=30. The T0of strain glass in Ti–Au-based alloys is around 251 K,and that of strain glass in Ti–Pt-based alloys is around 272 K.Both of them are comparable with the highest T0value so far. This work suggests that doping point defects is not an effective way to increase the T0above the ambient temperature,some other methods are required to find the strain glass with higher T0.

    猜你喜歡
    劉暢
    Measurement of International Competitiveness of Clothing Industry under the Background of Value Chain Reconstruction
    水蒸氣變戲法
    春來(lái)啦
    They are just kids
    愛挑剔的番茄
    珍視自我
    劉暢作品
    海參
    夏天咋來(lái)的
    月亮洗澡
    中国三级夫妇交换| 国产成人午夜福利电影在线观看| 欧美成人a在线观看| 亚洲av男天堂| 综合色丁香网| 日韩中字成人| 天堂中文最新版在线下载| 久久亚洲国产成人精品v| 亚洲图色成人| 色视频www国产| 色视频在线一区二区三区| 国产男人的电影天堂91| 国产精品无大码| 成年美女黄网站色视频大全免费 | 在线看a的网站| 亚洲人成网站在线观看播放| 国产视频内射| 一区二区三区乱码不卡18| 高清av免费在线| 国内揄拍国产精品人妻在线| 精品熟女少妇av免费看| 色5月婷婷丁香| 亚洲国产毛片av蜜桃av| 99热这里只有是精品在线观看| 插阴视频在线观看视频| 18禁在线播放成人免费| 中文精品一卡2卡3卡4更新| 日韩不卡一区二区三区视频在线| 中文字幕av成人在线电影| 久久久久久久久久人人人人人人| 99re6热这里在线精品视频| 日韩在线高清观看一区二区三区| 国产免费又黄又爽又色| 99久久人妻综合| 国产中年淑女户外野战色| 欧美成人一区二区免费高清观看| 日本av手机在线免费观看| 亚洲一级一片aⅴ在线观看| 亚洲精品日韩av片在线观看| 日韩一本色道免费dvd| 成年美女黄网站色视频大全免费 | 啦啦啦在线观看免费高清www| 草草在线视频免费看| 欧美日韩精品成人综合77777| 2022亚洲国产成人精品| 国产有黄有色有爽视频| 免费大片黄手机在线观看| 91精品一卡2卡3卡4卡| 日韩视频在线欧美| 精品亚洲乱码少妇综合久久| 啦啦啦啦在线视频资源| 久热久热在线精品观看| 亚洲av综合色区一区| 熟女人妻精品中文字幕| 亚洲av免费高清在线观看| 啦啦啦视频在线资源免费观看| 色视频在线一区二区三区| 久久影院123| 自拍欧美九色日韩亚洲蝌蚪91 | av.在线天堂| 大香蕉久久网| 国产成人一区二区在线| 伦精品一区二区三区| 伊人久久精品亚洲午夜| 欧美高清成人免费视频www| 男女无遮挡免费网站观看| 伊人久久国产一区二区| 18禁动态无遮挡网站| 91精品国产九色| 亚洲精品第二区| 色婷婷久久久亚洲欧美| 春色校园在线视频观看| 一级毛片久久久久久久久女| 国产男女内射视频| 中国三级夫妇交换| 菩萨蛮人人尽说江南好唐韦庄| 看非洲黑人一级黄片| 日韩精品有码人妻一区| 国产极品天堂在线| 国产高清不卡午夜福利| 久久鲁丝午夜福利片| 国产成人freesex在线| 亚洲性久久影院| 欧美变态另类bdsm刘玥| 久久这里有精品视频免费| 久久婷婷青草| 久久精品熟女亚洲av麻豆精品| videos熟女内射| 亚洲美女搞黄在线观看| 国产精品久久久久久精品古装| 一个人免费看片子| 久久久久久久亚洲中文字幕| 欧美日韩亚洲高清精品| 久热久热在线精品观看| 夜夜爽夜夜爽视频| 高清在线视频一区二区三区| 免费黄网站久久成人精品| 午夜激情福利司机影院| 日本欧美国产在线视频| 亚洲成人手机| 国产精品久久久久久av不卡| 少妇猛男粗大的猛烈进出视频| 91精品国产国语对白视频| 久久精品久久精品一区二区三区| 日本爱情动作片www.在线观看| 深爱激情五月婷婷| 自拍偷自拍亚洲精品老妇| 国产精品一区二区在线观看99| 一级毛片aaaaaa免费看小| 亚洲三级黄色毛片| 少妇高潮的动态图| av在线蜜桃| 日韩制服骚丝袜av| 精品久久久久久电影网| 黑人猛操日本美女一级片| 国产视频首页在线观看| 成人无遮挡网站| 久久精品夜色国产| 亚洲国产毛片av蜜桃av| 免费大片黄手机在线观看| 亚洲真实伦在线观看| 97在线视频观看| 久久久久网色| 国产大屁股一区二区在线视频| 免费人成在线观看视频色| 久久久久久人妻| av在线app专区| 国产亚洲av片在线观看秒播厂| 老女人水多毛片| 免费黄频网站在线观看国产| 极品少妇高潮喷水抽搐| 欧美 日韩 精品 国产| 亚洲av不卡在线观看| 亚洲精品456在线播放app| 欧美3d第一页| a级毛色黄片| 免费在线观看成人毛片| 久久精品夜色国产| 精品人妻熟女av久视频| 国产片特级美女逼逼视频| 热99国产精品久久久久久7| 日韩亚洲欧美综合| 2021少妇久久久久久久久久久| 一区二区三区乱码不卡18| 一区二区三区乱码不卡18| 亚洲综合精品二区| 高清欧美精品videossex| 春色校园在线视频观看| 2021少妇久久久久久久久久久| 热99国产精品久久久久久7| 麻豆成人午夜福利视频| 国产精品久久久久久精品电影小说 | 国产亚洲91精品色在线| 国产精品免费大片| 国产亚洲最大av| 亚洲精品国产色婷婷电影| 一级二级三级毛片免费看| 青青草视频在线视频观看| 最近中文字幕高清免费大全6| 人人妻人人添人人爽欧美一区卜 | 中文乱码字字幕精品一区二区三区| 麻豆成人午夜福利视频| 精品人妻熟女av久视频| 久久人人爽人人片av| 国产69精品久久久久777片| 国产乱来视频区| 嘟嘟电影网在线观看| 午夜精品国产一区二区电影| 国产无遮挡羞羞视频在线观看| 一级av片app| 蜜桃久久精品国产亚洲av| 精品亚洲乱码少妇综合久久| 丝袜喷水一区| 久热这里只有精品99| 日韩在线高清观看一区二区三区| 人人妻人人爽人人添夜夜欢视频 | 国产成人a∨麻豆精品| 亚洲欧美日韩卡通动漫| 欧美成人a在线观看| 美女cb高潮喷水在线观看| 老司机影院成人| 乱系列少妇在线播放| 日韩一区二区三区影片| 欧美成人精品欧美一级黄| 精品亚洲成a人片在线观看 | 欧美日韩精品成人综合77777| 亚洲美女视频黄频| 亚洲av男天堂| 麻豆国产97在线/欧美| 亚洲美女视频黄频| 少妇人妻久久综合中文| 亚洲自偷自拍三级| 日本猛色少妇xxxxx猛交久久| 啦啦啦在线观看免费高清www| 国产亚洲最大av| 啦啦啦中文免费视频观看日本| av在线播放精品| 能在线免费看毛片的网站| 我要看黄色一级片免费的| 欧美xxxx性猛交bbbb| 少妇 在线观看| 精品99又大又爽又粗少妇毛片| 新久久久久国产一级毛片| 亚洲人成网站高清观看| 日日摸夜夜添夜夜添av毛片| 伊人久久精品亚洲午夜| 久久女婷五月综合色啪小说| 日本黄大片高清| 亚洲真实伦在线观看| 日韩不卡一区二区三区视频在线| 日韩中文字幕视频在线看片 | 久久久久久人妻| 免费少妇av软件| 人人妻人人看人人澡| 伦精品一区二区三区| 成人亚洲精品一区在线观看 | 亚洲av国产av综合av卡| 深夜a级毛片| 亚洲av男天堂| 亚洲精品国产色婷婷电影| 欧美zozozo另类| 一区二区三区乱码不卡18| 最近2019中文字幕mv第一页| 久久人人爽人人片av| 亚洲av不卡在线观看| 国产日韩欧美在线精品| 午夜视频国产福利| 国产精品不卡视频一区二区| .国产精品久久| 成人毛片a级毛片在线播放| 久久99蜜桃精品久久| 久久久成人免费电影| 多毛熟女@视频| 国精品久久久久久国模美| 国产精品熟女久久久久浪| 最近的中文字幕免费完整| 久久精品夜色国产| 内地一区二区视频在线| 精品一区二区三卡| 国产探花极品一区二区| 欧美三级亚洲精品| 深夜a级毛片| 国产欧美另类精品又又久久亚洲欧美| 欧美一区二区亚洲| 亚洲精品国产av成人精品| 99热6这里只有精品| 国产在线一区二区三区精| 午夜视频国产福利| .国产精品久久| 亚洲激情五月婷婷啪啪| 搡女人真爽免费视频火全软件| 国产精品人妻久久久影院| 久久综合国产亚洲精品| 日本一二三区视频观看| 91精品国产九色| 联通29元200g的流量卡| 黄色配什么色好看| 久久精品人妻少妇| 菩萨蛮人人尽说江南好唐韦庄| 国产精品爽爽va在线观看网站| 丰满少妇做爰视频| 人妻系列 视频| 精品亚洲成a人片在线观看 | xxx大片免费视频| 日本av手机在线免费观看| 老司机影院成人| 欧美 日韩 精品 国产| 国产淫语在线视频| 亚洲色图av天堂| 国产乱人视频| 搡女人真爽免费视频火全软件| 男女国产视频网站| 国产在视频线精品| 欧美日韩亚洲高清精品| 联通29元200g的流量卡| 黄色一级大片看看| 身体一侧抽搐| 日本午夜av视频| 色哟哟·www| 嫩草影院入口| 成年免费大片在线观看| 一个人免费看片子| www.av在线官网国产| 国产爱豆传媒在线观看| 高清日韩中文字幕在线| 人人妻人人添人人爽欧美一区卜 | 成年av动漫网址| 免费看不卡的av| .国产精品久久| 亚洲欧美精品专区久久| 午夜激情久久久久久久| av卡一久久| 99热全是精品| 国产免费又黄又爽又色| 欧美最新免费一区二区三区| 亚洲精品久久久久久婷婷小说| 免费不卡的大黄色大毛片视频在线观看| 亚洲国产色片| 国产高清三级在线| 少妇的逼水好多| 欧美日韩一区二区视频在线观看视频在线| 亚洲熟女精品中文字幕| 国产深夜福利视频在线观看| 蜜桃在线观看..| 日韩欧美 国产精品| 亚洲av男天堂| 一二三四中文在线观看免费高清| 狂野欧美激情性bbbbbb| 最近最新中文字幕大全电影3| 国产黄片美女视频| 欧美精品一区二区免费开放| 欧美少妇被猛烈插入视频| 啦啦啦视频在线资源免费观看| 国产精品国产三级国产专区5o| 久久精品熟女亚洲av麻豆精品| 全区人妻精品视频| 国内揄拍国产精品人妻在线| 一级毛片久久久久久久久女| 最近2019中文字幕mv第一页| 久久久精品免费免费高清| 欧美亚洲 丝袜 人妻 在线| av一本久久久久| 少妇熟女欧美另类| 国产精品不卡视频一区二区| 亚洲欧洲国产日韩| av国产久精品久网站免费入址| av专区在线播放| 日本wwww免费看| 一本一本综合久久| 亚洲国产精品999| 搡女人真爽免费视频火全软件| 777米奇影视久久| 免费大片18禁| 免费在线观看成人毛片| 少妇的逼水好多| 亚洲av国产av综合av卡| 欧美少妇被猛烈插入视频| 少妇裸体淫交视频免费看高清| 七月丁香在线播放| 亚洲国产最新在线播放| 99热全是精品| 国产久久久一区二区三区| 欧美人与善性xxx| 久久精品国产亚洲av涩爱| 国产午夜精品久久久久久一区二区三区| 18禁在线播放成人免费| 色视频www国产| 日日摸夜夜添夜夜添av毛片| 亚洲精品久久久久久婷婷小说| 一边亲一边摸免费视频| av不卡在线播放| 国产成人a区在线观看| 国产有黄有色有爽视频| 日韩大片免费观看网站| 性色avwww在线观看| 免费黄频网站在线观看国产| 插逼视频在线观看| 日本vs欧美在线观看视频 | a级毛片免费高清观看在线播放| 水蜜桃什么品种好| 国产伦精品一区二区三区四那| 久久久久久九九精品二区国产| 亚洲精品色激情综合| 夜夜骑夜夜射夜夜干| 女的被弄到高潮叫床怎么办| 国产白丝娇喘喷水9色精品| 九九久久精品国产亚洲av麻豆| 毛片一级片免费看久久久久| 蜜桃久久精品国产亚洲av| 欧美最新免费一区二区三区| 国内揄拍国产精品人妻在线| 国产精品久久久久久av不卡| 九九爱精品视频在线观看| 国产白丝娇喘喷水9色精品| 精品久久久久久电影网| 97热精品久久久久久| 新久久久久国产一级毛片| 久久久久久久久久人人人人人人| www.色视频.com| 99久久精品国产国产毛片| 99热这里只有是精品50| 男女免费视频国产| 免费av中文字幕在线| 亚洲人与动物交配视频| 久久毛片免费看一区二区三区| 亚洲精品日韩在线中文字幕| 夫妻午夜视频| 天堂俺去俺来也www色官网| 欧美老熟妇乱子伦牲交| av免费观看日本| 99久久综合免费| 久久久久久人妻| 黑丝袜美女国产一区| 亚洲国产精品专区欧美| 春色校园在线视频观看| 亚洲av成人精品一区久久| 永久网站在线| 色哟哟·www| 麻豆乱淫一区二区| 久久久欧美国产精品| 免费高清在线观看视频在线观看| 国产视频首页在线观看| 国产一级毛片在线| 九九在线视频观看精品| 国产一区亚洲一区在线观看| 日韩 亚洲 欧美在线| 亚洲精品一二三| 日本av免费视频播放| 卡戴珊不雅视频在线播放| 国产欧美日韩一区二区三区在线 | 一级片'在线观看视频| 中文字幕精品免费在线观看视频 | 久久久久久久国产电影| 国产黄片美女视频| 精品久久久久久电影网| 午夜福利影视在线免费观看| 夜夜爽夜夜爽视频| 国产精品福利在线免费观看| av在线播放精品| 国产免费又黄又爽又色| 街头女战士在线观看网站| 欧美成人a在线观看| 精品一区二区三卡| 久久精品国产自在天天线| 女性被躁到高潮视频| 99国产精品免费福利视频| 18禁裸乳无遮挡动漫免费视频| 大香蕉97超碰在线| 久久毛片免费看一区二区三区| 最近最新中文字幕免费大全7| 自拍欧美九色日韩亚洲蝌蚪91 | 欧美xxxx黑人xx丫x性爽| 亚洲人成网站高清观看| 午夜福利在线在线| 久久国产亚洲av麻豆专区| 国产日韩欧美在线精品| 亚洲精品久久久久久婷婷小说| 六月丁香七月| 少妇精品久久久久久久| 亚洲精品乱码久久久久久按摩| 色视频在线一区二区三区| 99久久人妻综合| av在线蜜桃| 国产亚洲欧美精品永久| 热re99久久精品国产66热6| 人人妻人人澡人人爽人人夜夜| av免费在线看不卡| 乱系列少妇在线播放| 国产成人精品福利久久| 亚洲av男天堂| 久久 成人 亚洲| 极品少妇高潮喷水抽搐| 国内少妇人妻偷人精品xxx网站| 超碰av人人做人人爽久久| 免费黄频网站在线观看国产| 亚洲av中文av极速乱| 视频中文字幕在线观看| 免费黄频网站在线观看国产| 国产永久视频网站| 国产黄片视频在线免费观看| 国产成人精品一,二区| 亚洲精品日韩在线中文字幕| 久久6这里有精品| 少妇的逼水好多| 99热国产这里只有精品6| 男人和女人高潮做爰伦理| 高清视频免费观看一区二区| 国产精品女同一区二区软件| 亚洲va在线va天堂va国产| 小蜜桃在线观看免费完整版高清| 亚洲欧美成人综合另类久久久| 国产美女午夜福利| 亚洲最大成人中文| 久久久国产一区二区| 成年av动漫网址| 成人毛片60女人毛片免费| 视频中文字幕在线观看| 日韩视频在线欧美| 久久久久精品久久久久真实原创| 丝袜脚勾引网站| 色综合色国产| 啦啦啦在线观看免费高清www| 在线亚洲精品国产二区图片欧美 | 91精品国产国语对白视频| 精品一品国产午夜福利视频| 国内揄拍国产精品人妻在线| 人妻少妇偷人精品九色| 91久久精品电影网| av天堂中文字幕网| 免费av中文字幕在线| 亚洲精品一区蜜桃| 深夜a级毛片| 下体分泌物呈黄色| 精品国产一区二区三区久久久樱花 | 久久99精品国语久久久| 亚洲精品日本国产第一区| 国产黄片美女视频| 舔av片在线| 美女中出高潮动态图| www.色视频.com| 成人二区视频| 久久久久久九九精品二区国产| 欧美日韩国产mv在线观看视频 | 又粗又硬又长又爽又黄的视频| 高清毛片免费看| 精品人妻视频免费看| 久久人人爽人人片av| 男的添女的下面高潮视频| 能在线免费看毛片的网站| 成人免费观看视频高清| 青青草视频在线视频观看| 欧美日韩亚洲高清精品| 91aial.com中文字幕在线观看| 精品人妻熟女av久视频| 插逼视频在线观看| 午夜福利视频精品| 成人免费观看视频高清| 嫩草影院入口| 欧美区成人在线视频| 天天躁日日操中文字幕| 一个人看视频在线观看www免费| 亚洲精品国产色婷婷电影| 国产成人a区在线观看| 亚洲美女视频黄频| 欧美日韩亚洲高清精品| 亚洲天堂av无毛| 国产黄色视频一区二区在线观看| 成人免费观看视频高清| 免费观看性生交大片5| 亚洲精华国产精华液的使用体验| 亚洲av福利一区| 新久久久久国产一级毛片| 久久精品国产自在天天线| 韩国高清视频一区二区三区| 久久久久久九九精品二区国产| 婷婷色综合www| 看十八女毛片水多多多| 免费大片18禁| 久久这里有精品视频免费| 一级毛片 在线播放| 中文字幕制服av| 五月伊人婷婷丁香| 久久久久性生活片| 亚洲精品aⅴ在线观看| 亚洲欧美清纯卡通| 国产成人精品福利久久| 视频中文字幕在线观看| 国产成人午夜福利电影在线观看| 欧美精品国产亚洲| 观看免费一级毛片| 日韩精品有码人妻一区| 91精品国产九色| 黄片无遮挡物在线观看| 秋霞在线观看毛片| 成人毛片a级毛片在线播放| 日韩免费高清中文字幕av| 黑丝袜美女国产一区| 久久国产亚洲av麻豆专区| 亚洲最大成人中文| 在线观看美女被高潮喷水网站| 色5月婷婷丁香| 久久精品久久精品一区二区三区| www.av在线官网国产| 一二三四中文在线观看免费高清| 一个人看视频在线观看www免费| 成人18禁高潮啪啪吃奶动态图 | 99热这里只有精品一区| 日韩中字成人| 91精品国产九色| 91aial.com中文字幕在线观看| 日韩一区二区三区影片| 男人舔奶头视频| 狂野欧美激情性bbbbbb| 午夜福利网站1000一区二区三区| 高清欧美精品videossex| 久久久久久久久久人人人人人人| 91久久精品国产一区二区成人| 色5月婷婷丁香| a级毛片免费高清观看在线播放| 在线观看免费视频网站a站| 精品久久久久久久久av| 日韩电影二区| 2018国产大陆天天弄谢| 成人综合一区亚洲| 大码成人一级视频| 又黄又爽又刺激的免费视频.| 中国三级夫妇交换| 国产亚洲av片在线观看秒播厂| 高清日韩中文字幕在线| 亚洲av免费高清在线观看| 国产熟女欧美一区二区| 一本久久精品| av福利片在线观看| 18禁在线无遮挡免费观看视频| 大香蕉久久网| 午夜福利视频精品| 三级经典国产精品| av卡一久久| 波野结衣二区三区在线| 国产免费一区二区三区四区乱码| 国产精品一区二区在线观看99| 嫩草影院入口| 美女脱内裤让男人舔精品视频| 国产成人a∨麻豆精品| .国产精品久久| 亚洲综合精品二区| 九九在线视频观看精品| 国产在视频线精品| 欧美三级亚洲精品| 亚洲欧美清纯卡通| 亚洲欧美一区二区三区黑人 | 午夜福利在线观看免费完整高清在| 99久国产av精品国产电影| 欧美三级亚洲精品| 亚洲精品日本国产第一区|