• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Analysis of secondary electron emission using the fractal method*

    2021-01-21 02:15:12ChunJiangBai白春江TianCunHu胡天存YunHe何鋆GuangHuiMiao苗光輝RuiWang王瑞NaZhang張娜andWanZhaoCui崔萬照
    Chinese Physics B 2021年1期
    關(guān)鍵詞:王瑞胡天張娜

    Chun-Jiang Bai(白春江), Tian-Cun Hu(胡天存), Yun He(何鋆), Guang-Hui Miao(苗光輝),Rui Wang(王瑞), Na Zhang(張娜), and Wan-Zhao Cui(崔萬照),?

    National Key Laboratory of Science and Technology on Space Science,China Academy of Space Technology(Xi’an),Xi’an 710100,China

    Keywords: secondary electron emission yield,the fractal method,multipactor

    1. Introduction

    Secondary electron emission(SEE)is a phenomenon that when an energetic electron is incident on a solid surface,a considerable number of secondary electrons may be produced. It is found and investigated in various fields such as multipactor[1–5]effect in microwave devices, dielectric window breakdown in high-power microwave sources, and the electron cloud effect in accelerators. Secondary electron yield(SEY),[6–10]which refers to the average emitted secondary electrons per incident primary electron, is frequently used to characterize SEE properties of materials.

    As is known,almost all of the material surfaces are found to be rough in nature. It is generally accepted that SEY is heavily influenced by surface topography of materials. So far, there have been many studies on surface characteristics and SEY.Vaughan[11]developed an analytic model considering only the surface roughness for the relationship between the SEY and surface topography with a smoothness factor.The empirical formula considers only the surface roughness for the relationship between the SEY and surface topography.Nishimura et al.[12,13]investigated the effects of a rippled surface structure on SEY properties by Monte–Carlo simulation.Pivi et al.[14]reported a method that reduces SEY by enhancing surface roughness via constructing rectangular grooves on surface of metals. Chang et al.[15–18]proposed to suppress multipactor on high-power-microwave windows by applying regular periodic triangular structures,sawtooth structures,and grooved structures on material surface. Ye et al.[19,20]studied the method to suppress SEY of surface for metal materials by designing regular micro-porous array structures. Cao and Zhang et al.[21]developed a multigeneration model to examine SEY properties of rough surfaces. Zhang et al.[22]also examined the effects of rough surface topography on SEY from a metal surface by considering both the surface roughness and the fluctuation correlation length.

    Unlike the case of material surface with regular structures,SEY properties of the material surface with complicated rough surface topography are not enough to be revealed using only roughness because SEY of a rough surface exceeds that of a smooth one in our research of theoretical analysis and experiment. This is in contradiction with the suppression effect of a rough surface, because it is generally thought that a large surface roughness can lead to a low SEY. Therefore, it is inaccurate to reveal SEY properties by only using roughness. In addition, roughness of surface topography depends strongly on resolution of roughness-measurement instrument,and hence the value of roughness will be not unique for a surface when different measure instruments are used. As a result,the predictions of SEY based on this parameter may not be unique to a surface. Fortunately, the fractal method[23–26]is scale-independent and the fractal characterization of surface is independent of resolution of the roughness-measurement instrument. Consequently, if the multipactor threshold of a microwave device is predicted with the SEY which is based on fractal parameters,the value of prediction will be unique once the fractal parameters of the rough surface are fixed.

    In this paper, the relationship between surface topography and SEY is analyzed with the fractal method. The paper is organized as follows. In Section 2, the surface model based on the fractal method is described. In Section 3, effects of the fractal parameters on SEY are analyzed using the Monte–Carlo simulation method.[27]In Section 4, based on the relationship between the SEY and the fractal parameters,the multipactor thresholds of microwave devices are predicted.The bridge between the multipactor threshold and the fractal parameters is built. Finally,some conclusions are summarized in Section 5.

    2. Surface model based on the fractal method

    Surface topography of a material is of high importance in the response of SEY properties. In order to find out the relationship between surface topography and SEY properties,it is necessary to characterize the surface topography accurately.Generally, experimental techniques are used to quantify the surface parameters for surface topography. Roughness is usually used to describe surface topography. However,roughness parameter depends strongly on resolution of measurement instrument and hence the value of roughness parameter will be not unique for a surface. Fortunately, the fractal method has the advantage that the surface modeling is size-independent and there is no dependence on the experimental data acquisition process.

    Fig.1. Surface topography of the aluminum sample at different length scales measured by AFM: (a) 10 μm ×10 μm measured by AFM, (b)1 μm×1 μm measured by AFM.

    In practical engineering, there are many man-made surfaces such as machined surfaces and wearing surfaces. These surface topographies usually appear to be random,multiscale,and disorderd.Figures 1(a)and 1(b)show the surface topography of a practical microwave device measured with an atomic force microscope (AFM) at different length scales. These man-made surfaces can be represented over at least part of their structural range as self-affine fractal, and have the characteristic of fractal. Therefore, the fractal method has been used as a useful tool in characterization of machined surface topography.

    The fractal surface model is proposed by Majumdar and Bhushan based on the Weierstrass–Mandelbort (WM)function.[24]Based on the two-variable WM function,Yan and Komvopoulos developed a three-dimensional function to represent rough surface. The expression is given by

    where the parameter D(2 <D <3)is the fractal dimension implying space-filling capacity of the surface,and the parameter G means the characteristic length scale of the surface; x and y are the planar Cartesian coordinates, z is the surface point of height,M denotes the number of superposed ridges used to construct the surface,φm,nmeans the random phase in the interval[0, 2π]; and n denotes the frequency index. The upper limit of n is given by

    where int[···]denotes the maximum integer value of the number in the brackets. L is the sample length and Lsis the cut-off length. In most cases, γ =1.5 is found to be a suitable value for high spectral density and for phase randomization.

    In order to elucidate the significance of the fractal parameters on surface topography,the three-dimensional fractal surfaces which are obtained from formulas (1) are shown in Fig. 2. The simulated results of fractal surfaces with different fractal parameters are shown in Figs. 2(a)–2(d), and the simulated areas are all 10 μm×10 μm. Comparison of these topographies indicates that,for the fixed simulated parameter D, the smaller the parameter G is, the smoother the surface is. When the parameter G is fixed at a large value such as 1×10-5,the smaller the parameter D is,the smoother the surface is,whereas the larger the parameter D is,the smoother the surface is when the parameter G is fixed at a small value such as 1×10-11.

    Fig.2. Simulated three-dimensional fractal surfaces: (a)D=2.2,G=1×10-5;(b)D=2.7,G=1×10-5;(c)D=2.2,G=1×10-11;(d)D=2.7,G=1×10-11.

    According to Ref. [23], it is important to note that there is a bridge to build the roughness parameter and the fractal parameters. The relationship between the roughness σ and the fractal parameters D and G can be written as

    where ωlis the lowest frequency which is related to the length of the sample,and ωhis the highest frequency which depends on the resolution of the measurement instrument.

    Fig.3. The relationship between roughness and the fractal parameters:(a)the roughness versus D for fixed G,(b)roughness versus G for fixed D.

    Figure 3 depicts the relationship between roughness and the fractal parameters by the numerical method with Eq. (3).From Fig.3(a),it can be seen that the roughness of surface topography increases with the parameter D when the parameter G is larger than 1×10-7, while the roughness of surface topography decreases with the parameter D when the parameter G is less than 1×10-7. The results of these curves show that only one single roughness parameter is not enough to describe the surface characterization accurately for a roughness surface topography. The fractal parameters D and G can be used to describe the surface characterization more accurate due to the fractal method. Figure 3(b) shows that the roughness of surface topography decreases with the parameter G decreasing,due to the fact that the smaller the parameter G is,the smoother the surface is. The performance is in agreement with Fig.2.

    As is known,the perfect smooth surface does not exist.In actual engineering,all the surfaces have roughness. It is worth noticing that the surface roughness is almost always greater than 0.1 μm in practical microwave devices. From Figs.3(a)and 3(b), it can be seen that when the surface roughness is larger than 0.1 μm, the parameter G is greater than 1×10-7and the parameter D is larger than 2.1. That is to say, when the surfaces topography of the practical microwave devices are characterized by the fractal method, the parameters G and D should be larger than 1×10-7and 2.1,respectively.

    3. Simulation of SEY based on fractal surface

    According to Section 2, the metal surfaces with random rough topography are constructed using formulas(1)with different fractal parameters D and G. Then the effects of the fractal parameters on SEE properties from a metal surface can be obtained using the Monte–Carlo simulation method. The schematic of SEE on random rough surface is shown in Fig.4.In the simulation,these random rough surfaces are divided into many small rectangular grids with the same size in the plane.These grids have different height values due to the random characters of these surfaces. Figure 5 displays the schematic diagram of a single rectangular grid. According to the data of these grid points,the information of any point in the grid can be obtained using the two-dimensional interpolation method.The height of the point in the grid can be expressed as

    where a and b are the sizes of the rectangular grid,zi,j,zi,j+1,zi+1,jand zi+1,j+1mean the heights of vertices of the rectangular grid. Calculating the trajectory information of each electron tracked in all grids, we can judge whether the electron meets the emission conditions when the Monte–Carlo simulation method is implemented.

    Fig.4. The schematic of SEE on random rough surface.

    Fig.5. The schematic of rectangular grid and local coordinate which be used to describe random rough surface.

    When a primary electron enters the metal material, its passage and electron trajectory can be simulated using individual electron scattering processes. These scatterings are either elastic scattering or inelastic scattering. For elastic scattering,only the electron direction is changed and the energy is conserved. The elastic scattering is calculated by

    where θ′is the scattering angle, σeis the Mott scattering cross section calculated by the combination of tabulation and interpolation based on the differential cross section data in Ref. [28]. For inelastic scattering, the electron direction and energy are all changed. The differential cross section for inelastic scattering is determined by the formulas

    where θ is the ejection angle of electron from surface normal,E′is the electron energy and U0is the inner potential of the material which means the material/vacuum barrier.

    Combining the expressions mentioned above and the meshing method for random rough surface,the SEY of a rough surface topography is treated with the multigeneration model proposed in Ref.[21]. When the secondary electrons are emitted from the metal surface,the electron states considering interactions with surface barriers in entrance and emission processes are refreshed.It is noted that the scattering of re-entered electrons is examined similarly to that of the primary electrons. All the electrons are tracked until they escape or their energy is exhausted in the metal. Then the final states of emitted electrons are recorded to achieve effective SEE properties.

    Based on the rough surface topography and the Monte–Carlo simulation method for SEE properties,the SEY of metal with rough surface topography are analyzed. The simulation results are shown in Figs.6 and 7.

    From Figs. 6(a)–6(d), it can be seen that SEY decreases as the dimension D increases for fixed G. The reason is that the surface is rougher and rougher with the D increasing. This phenomenon agrees with Fig. 3(a). From Fig. 3(a) we know that when the parameter G is larger than 1×10-7,the surface roughness increases with the parameter D increasing. When a surface becomes rougher,it is difficult for the entered electrons to escape surface.As a result,more electrons are collected and then SEY decreases.Another case is shown in Figs.6(e)–6(h).We can see that SEY almost has no change as the dimension D increases when G is less than 1×10-7. This means that the surface is quite smooth when G reaches a value,and the effect of the surface topography can be ignored. Figure 3(a)gives an explanation for this phenomenon that the roughness of surface topography decreases with the parameter D increasing when the parameter G is larger than 1×10-7.

    Figure 7 displays that the SEY properties change with different parameter D. From Figs. 7(a)–7(i), it can be seen that when the parameter D is fixed, the value of SEY decreases with the growing parameter G. As the fractal dimension, the smaller the parameter G is, the smoother the surface is. This means that the smoother the surface is, the larger the value of SEY is. This phenomenon agrees with Fig.3(b). It is concluded that the roughness of surface topography increases with the parameter G increasing for a fixed D.

    4. The multipactor threashold of microwave devices with different SEY’s based on the fractal method

    In order to find out the relationship between the fractal parameters and the multipactor threshold,two different kinds of microwave devices are chosen to analyze the multipactor threshold. During the analysis, SEY based on fractal parameters D and G is used and the multipactor thresholds are obtained with the simulation tools which can provide accurate prediction of multipactors.[30–32]

    Fig.6. The SEY properties with different D for fixed G: (a)SEY for G=1×10-4,(b)SEY for G=1×10-5,(c)SEY for G=1×10-6,(d)SEY for G=1×10-7,(e)SEY for G=1×10-8,(f)SEY for G=1×10-9,(g)SEY for G=1×10-10,(h)SEY for G=1×10-11.

    Fig.7. SEY with different G for fixed D: (a)SEY with different G for D=2.1,(b)SEY with different G for D=2.2,(c)SEY with different G for D=2.3,(d)SEY with different G for D=2.4,(e)SEY with different G for D=2.5,(f)SEY with different G for D=2.6,(g)SEY with different G for D=2.7,(h)SEY with different G for D=2.8,(i)SEY with different G for D=2.9.

    The two microwave devices take the rectangular impedance transfer working at C-band and the coaxial impedance transfer working at ultrahigh-frequency (UHF)band.The models of the two microwave devices with different structures are shown in Fig.8.

    Figures 9(a) and 9(b) display the multipactor thresholds of the rectangular impedance transfers with different SEY’s which are characterized by fractal parameters D and G. From Fig.9(a),it can be seen that the multipactor threshold increases with the dimension G increasing. This is because with the parameter G increasing,the roughness of surface becomes larger and larger. Then the value of SEY decreases with the surface roughness increasing. As a result, the multipactor threshold increases with low values of SEY. The conclusion is in good agreement with Fig. 3(b). In addition, it is also noticed that for a fixed parameter D, when the parameter G is larger than 1×10-7, the SEY increases fast, while the SEY increases is slowly when the parameter G is smaller than 1×10-7. The reason is that when the parameter G decreases to some degree,although the surface roughness always decreases with the parameter G decreasing,the SEY of metal material surface will be changed a little.

    The curves describing the relationship between the fractal parameter D and the multipactor thresholds of rectangular impedance transfer are shown in Fig.9(b). It can be seen that the multipactor thresholds increase with the parameter D increasing. When the parameter G is less than 1×10-7, the multipactor thresholds have little change with the parameter D increasing. This means that when the parameter G reaches a fixed value,the surface topography has become quite smooth.In this case, SEY of the metal material surfaces will have no change although the surface roughness still decreases with the parameter D increasing.

    Fig.8. The models of microwave devices for multipactor thresholds(a)for the rectangular impedance transfer and(b)for the coaxial impedance transfer.

    Fig.9. The multipactor threshold of rectangular impedance transfer(a)versus parameter G with different parameter D and(b)versus parameter D with different parameter G.

    Figures 10(a) and 10(b) display the multipactor thresholds for coaxial impedance transfers with different fractal parameters.The cases are the same as Figs.9(a)and 9(b),respectively. In summary, the multipactor thresholds increase with the surface roughness increasing and the multipactor thresholds decrease with the surface roughness decreasing. When the roughness is reduced to a certain extent, the surface will be quite smooth, and SEY of the surface will reach a fixed value,and then the multipactor thresholds will hold steady. In addition, it is also noticed that the surface roughness usually is about 10-6m for practical microwave devices. By combining practical microwave devices and making a comprehensive analysis of Figs. 3(a) and 3(b), we know that the larger the parameter G is, the rougher the surface is, and the larger the value of D is, the rougher the surface is. That is to say, the larger the parameter G is,the higher the multipactor threshold is,and the larger the value of D is,the greater the multipactor threshold is.

    Fig. 10. The multipactor threshold of coaxial impedance transfer (a)versus parameter G with different parameter D and(b)versus parameter D with different parameter G.

    5. Conclusion and perspectives

    In summary, we have employed the fractal method to characterize the surface topography in analyses of SEY. The relationship of the SEY of metal material surface to the fractal parameters D and G is built. The multipactor thresholds of a C-band rectangular impedance transformer and a UHFband coaxial impedance transformer are predicted.The results show the influence of the fractal parameters D and G on SEY and the multipactor threshold of microwave devices. The results further reveal the effect of surface topography on SEY,which gives a comprehensive insight into the control of SEY properties using the fractal parameters.

    Furthermore,it is also noticed that the values of SEY for the surface topography are quite low, even approximately to zero for some fractal parameters. According to the research of predecessors, we can also know that the present results are beneficial for enhancing the multipactor thresholds of microwave devices, when SEY of surface topography is as little as possible. Multipaction will not occur when the SEY of surface topography is less 1. However, the surface resistance will become larger with the SEY decreasing due to roughness.Consequently,this will result in the increase of RF power loss and then have an influence on performance of microwave devices. Therefore,the surface topography for which the SEY is approximately zero is not suitable for enhancing multipactor threshold of microwave devices in practical engineering. In the future,we will focus on constructing the surface topography with low SEY and low surface resistance.

    猜你喜歡
    王瑞胡天張娜
    Graph dynamical networks for forecasting collective behavior of active matter
    Magnetic properties of oxides and silicon single crystals
    動(dòng)作不可少(下)
    動(dòng)作不能少(上)
    胡天妮:種小麥應(yīng)用智能噴灌設(shè)施節(jié)水50%
    Order Allocation in Industrial Internet Platform for Textile and Clothing
    凝心固本 引智聚力 創(chuàng)新開拓
    松樹梢
    Designing the cooling system of a hybrid electric vehicle with multi-heat source
    Reliability Allocation of Large Mining Excavator Electrical System Based on the Entropy Method with Failure and Maintenance Data
    国产一区二区三区av在线| 日韩一卡2卡3卡4卡2021年| av.在线天堂| 大香蕉久久网| 欧美日本中文国产一区发布| 十八禁网站网址无遮挡| 亚洲,欧美精品.| 午夜免费男女啪啪视频观看| 免费少妇av软件| 秋霞伦理黄片| 国产一区有黄有色的免费视频| 女人久久www免费人成看片| 国产精品成人在线| 亚洲情色 制服丝袜| 日韩 亚洲 欧美在线| 女人高潮潮喷娇喘18禁视频| 女性生殖器流出的白浆| 日韩制服骚丝袜av| 午夜日韩欧美国产| 精品人妻一区二区三区麻豆| 90打野战视频偷拍视频| 亚洲av.av天堂| 毛片一级片免费看久久久久| 久久久久久久大尺度免费视频| 黄片小视频在线播放| 国产精品 国内视频| 777米奇影视久久| 国语对白做爰xxxⅹ性视频网站| 国产爽快片一区二区三区| 高清视频免费观看一区二区| 观看av在线不卡| av一本久久久久| a 毛片基地| 久久国产精品男人的天堂亚洲| 精品国产露脸久久av麻豆| 久久久久精品久久久久真实原创| 精品少妇内射三级| 极品少妇高潮喷水抽搐| 天堂中文最新版在线下载| 色婷婷av一区二区三区视频| 丰满少妇做爰视频| 一级爰片在线观看| 精品福利永久在线观看| 亚洲精品国产色婷婷电影| 国产 精品1| 日韩电影二区| 亚洲精品日韩在线中文字幕| 国产视频首页在线观看| 国产精品一二三区在线看| 1024香蕉在线观看| 波多野结衣一区麻豆| 亚洲情色 制服丝袜| 麻豆乱淫一区二区| 99re6热这里在线精品视频| 欧美日韩成人在线一区二区| 日韩成人av中文字幕在线观看| 精品国产超薄肉色丝袜足j| 国产精品不卡视频一区二区| 亚洲人成电影观看| 91在线精品国自产拍蜜月| 黄色 视频免费看| 国产毛片在线视频| 最新中文字幕久久久久| 夜夜骑夜夜射夜夜干| 丁香六月天网| 亚洲精品aⅴ在线观看| 国产成人精品婷婷| 亚洲五月色婷婷综合| 国产精品国产av在线观看| 日韩一本色道免费dvd| 色哟哟·www| 狂野欧美激情性bbbbbb| 成人午夜精彩视频在线观看| 街头女战士在线观看网站| 精品第一国产精品| 欧美日韩亚洲高清精品| 久久国产精品大桥未久av| 精品久久久久久电影网| 欧美日韩国产mv在线观看视频| 亚洲伊人色综图| 亚洲成人av在线免费| 最近最新中文字幕免费大全7| 大话2 男鬼变身卡| 日本wwww免费看| 亚洲成人手机| 精品一品国产午夜福利视频| 美女大奶头黄色视频| 一级毛片电影观看| 女人被躁到高潮嗷嗷叫费观| 夫妻性生交免费视频一级片| 777米奇影视久久| 美女国产高潮福利片在线看| 尾随美女入室| 亚洲国产av影院在线观看| videossex国产| 日本91视频免费播放| av.在线天堂| 又粗又硬又长又爽又黄的视频| 美女国产高潮福利片在线看| 在线观看一区二区三区激情| 视频在线观看一区二区三区| 日日爽夜夜爽网站| 午夜影院在线不卡| 国产成人精品无人区| 欧美少妇被猛烈插入视频| 免费黄色在线免费观看| 人妻一区二区av| 免费观看a级毛片全部| 国产成人av激情在线播放| 婷婷色av中文字幕| 在线天堂最新版资源| 亚洲av.av天堂| 亚洲一区中文字幕在线| 国产成人一区二区在线| av片东京热男人的天堂| 亚洲欧美精品综合一区二区三区 | 国产精品.久久久| 国产国语露脸激情在线看| 国语对白做爰xxxⅹ性视频网站| 午夜影院在线不卡| 亚洲精品日韩在线中文字幕| 精品少妇内射三级| 成人午夜精彩视频在线观看| 一级片免费观看大全| 日本av免费视频播放| 亚洲精品久久久久久婷婷小说| 国产亚洲av片在线观看秒播厂| 国产精品一二三区在线看| 亚洲一级一片aⅴ在线观看| 男人操女人黄网站| 99久久中文字幕三级久久日本| 免费av中文字幕在线| av在线播放精品| www日本在线高清视频| 午夜精品国产一区二区电影| 一个人免费看片子| 欧美+日韩+精品| 男女免费视频国产| 26uuu在线亚洲综合色| 欧美中文综合在线视频| 一级毛片我不卡| 精品国产超薄肉色丝袜足j| 日本欧美视频一区| 成年人免费黄色播放视频| 免费观看a级毛片全部| 精品国产国语对白av| 国产成人精品一,二区| av网站免费在线观看视频| 国产人伦9x9x在线观看 | 高清黄色对白视频在线免费看| 国产亚洲午夜精品一区二区久久| 美女视频免费永久观看网站| 国产高清不卡午夜福利| 成人影院久久| 纯流量卡能插随身wifi吗| 久久精品人人爽人人爽视色| 国产精品欧美亚洲77777| 蜜桃国产av成人99| 人体艺术视频欧美日本| 激情五月婷婷亚洲| 涩涩av久久男人的天堂| 交换朋友夫妻互换小说| 天堂8中文在线网| 亚洲av在线观看美女高潮| 国产免费福利视频在线观看| 啦啦啦视频在线资源免费观看| 男女午夜视频在线观看| 男的添女的下面高潮视频| 久久综合国产亚洲精品| tube8黄色片| 麻豆av在线久日| 久久97久久精品| av在线老鸭窝| 五月伊人婷婷丁香| 成年人午夜在线观看视频| 黄片小视频在线播放| 观看av在线不卡| 成人18禁高潮啪啪吃奶动态图| 晚上一个人看的免费电影| 国产av码专区亚洲av| 欧美国产精品一级二级三级| 国产野战对白在线观看| 欧美日韩成人在线一区二区| 欧美日韩国产mv在线观看视频| 考比视频在线观看| 亚洲一级一片aⅴ在线观看| 麻豆乱淫一区二区| 满18在线观看网站| 亚洲,一卡二卡三卡| 天天躁狠狠躁夜夜躁狠狠躁| 中文欧美无线码| 99久久综合免费| 成年女人在线观看亚洲视频| 成人国产麻豆网| 国产片特级美女逼逼视频| 日本黄色日本黄色录像| 一边亲一边摸免费视频| 亚洲精品一区蜜桃| 国产 一区精品| 在现免费观看毛片| 亚洲中文av在线| 一级片'在线观看视频| 超碰97精品在线观看| 一级毛片黄色毛片免费观看视频| 久久精品久久精品一区二区三区| 国产又色又爽无遮挡免| 亚洲一级一片aⅴ在线观看| 建设人人有责人人尽责人人享有的| 亚洲成人av在线免费| 久久午夜综合久久蜜桃| 亚洲三级黄色毛片| 亚洲国产av新网站| 少妇人妻精品综合一区二区| 在线看a的网站| 久久99热这里只频精品6学生| 亚洲欧美色中文字幕在线| 91国产中文字幕| 久久国内精品自在自线图片| 精品酒店卫生间| 熟女少妇亚洲综合色aaa.| 久热久热在线精品观看| 亚洲激情五月婷婷啪啪| 亚洲av免费高清在线观看| 男人舔女人的私密视频| 亚洲人成电影观看| 97人妻天天添夜夜摸| 国产精品一区二区在线观看99| 丰满乱子伦码专区| 男人添女人高潮全过程视频| 色婷婷av一区二区三区视频| 狠狠精品人妻久久久久久综合| 日韩一本色道免费dvd| 9191精品国产免费久久| 亚洲精品美女久久av网站| 亚洲av男天堂| 亚洲精品国产av蜜桃| av网站免费在线观看视频| 亚洲婷婷狠狠爱综合网| 久久久久精品人妻al黑| 91久久精品国产一区二区三区| 精品亚洲乱码少妇综合久久| 天天躁夜夜躁狠狠久久av| av卡一久久| 国产成人午夜福利电影在线观看| 啦啦啦在线观看免费高清www| 999久久久国产精品视频| 亚洲精品视频女| 9色porny在线观看| 性色av一级| 欧美黄色片欧美黄色片| 亚洲av成人精品一二三区| 啦啦啦视频在线资源免费观看| 狠狠精品人妻久久久久久综合| 国产精品.久久久| 日本wwww免费看| 久久午夜福利片| 国产乱人偷精品视频| 黑丝袜美女国产一区| 精品一区二区三区四区五区乱码 | 亚洲视频免费观看视频| av免费观看日本| 久久97久久精品| 成年av动漫网址| av有码第一页| 可以免费在线观看a视频的电影网站 | 久久久国产欧美日韩av| 午夜激情av网站| 日韩不卡一区二区三区视频在线| 欧美日韩一级在线毛片| 久久久a久久爽久久v久久| 麻豆乱淫一区二区| 在线观看www视频免费| 久久久久国产精品人妻一区二区| 超碰97精品在线观看| 久久久久精品人妻al黑| 少妇被粗大猛烈的视频| 久久 成人 亚洲| 国产深夜福利视频在线观看| 伦理电影大哥的女人| 国产极品粉嫩免费观看在线| 人人澡人人妻人| 妹子高潮喷水视频| 国产探花极品一区二区| 成人黄色视频免费在线看| 看免费av毛片| 天天躁夜夜躁狠狠躁躁| 国产白丝娇喘喷水9色精品| 性少妇av在线| 不卡av一区二区三区| 亚洲精华国产精华液的使用体验| 免费在线观看黄色视频的| av不卡在线播放| 少妇被粗大的猛进出69影院| 亚洲精品aⅴ在线观看| 成人18禁高潮啪啪吃奶动态图| 2022亚洲国产成人精品| 国产精品秋霞免费鲁丝片| av卡一久久| 在线亚洲精品国产二区图片欧美| 精品国产乱码久久久久久男人| 国产精品 欧美亚洲| 久热久热在线精品观看| 成人毛片60女人毛片免费| 国产综合精华液| 亚洲国产成人一精品久久久| 岛国毛片在线播放| 99热网站在线观看| 看免费av毛片| 日本91视频免费播放| 日本-黄色视频高清免费观看| 久久ye,这里只有精品| 国产爽快片一区二区三区| 亚洲一码二码三码区别大吗| 色视频在线一区二区三区| 精品人妻一区二区三区麻豆| 久久女婷五月综合色啪小说| 中国三级夫妇交换| 777久久人妻少妇嫩草av网站| 欧美日本中文国产一区发布| 欧美日韩亚洲国产一区二区在线观看 | 秋霞伦理黄片| 少妇精品久久久久久久| 90打野战视频偷拍视频| 国产成人免费观看mmmm| 麻豆乱淫一区二区| 美女脱内裤让男人舔精品视频| 高清av免费在线| 妹子高潮喷水视频| 亚洲av日韩在线播放| 熟女少妇亚洲综合色aaa.| 午夜福利影视在线免费观看| 亚洲欧美色中文字幕在线| 男的添女的下面高潮视频| 两个人看的免费小视频| www.自偷自拍.com| 免费女性裸体啪啪无遮挡网站| 欧美另类一区| 免费看av在线观看网站| 国产av精品麻豆| 日本猛色少妇xxxxx猛交久久| 韩国高清视频一区二区三区| 国产一区二区激情短视频 | 亚洲成人手机| 国产又爽黄色视频| 汤姆久久久久久久影院中文字幕| 秋霞在线观看毛片| 欧美日韩成人在线一区二区| 建设人人有责人人尽责人人享有的| 日韩av不卡免费在线播放| 国产老妇伦熟女老妇高清| 在线天堂最新版资源| 熟女少妇亚洲综合色aaa.| tube8黄色片| 国产97色在线日韩免费| 国产精品麻豆人妻色哟哟久久| 搡女人真爽免费视频火全软件| 免费看av在线观看网站| 哪个播放器可以免费观看大片| 少妇熟女欧美另类| 亚洲精品久久久久久婷婷小说| 少妇 在线观看| 天天躁夜夜躁狠狠久久av| 丝袜脚勾引网站| 在线看a的网站| 老司机亚洲免费影院| 欧美xxⅹ黑人| 久久久久精品性色| 男女啪啪激烈高潮av片| 亚洲精品成人av观看孕妇| 人成视频在线观看免费观看| 美女国产高潮福利片在线看| 日韩一本色道免费dvd| 日韩 亚洲 欧美在线| 久久久久久久久久久久大奶| 最近2019中文字幕mv第一页| 亚洲av日韩在线播放| 毛片一级片免费看久久久久| 亚洲国产看品久久| 亚洲美女黄色视频免费看| 国精品久久久久久国模美| 伊人久久国产一区二区| freevideosex欧美| 午夜福利影视在线免费观看| 99re6热这里在线精品视频| 成人国语在线视频| 最近的中文字幕免费完整| 国产高清不卡午夜福利| xxxhd国产人妻xxx| 日韩一区二区视频免费看| 久久精品久久久久久噜噜老黄| 侵犯人妻中文字幕一二三四区| 亚洲成色77777| 中文精品一卡2卡3卡4更新| 999久久久国产精品视频| 香蕉丝袜av| 国产1区2区3区精品| 久久久精品免费免费高清| 亚洲欧洲国产日韩| 亚洲欧美清纯卡通| 蜜桃在线观看..| 精品一区二区免费观看| 一级黄片播放器| 久久亚洲国产成人精品v| 亚洲少妇的诱惑av| 中文字幕人妻丝袜制服| 黑人猛操日本美女一级片| 999久久久国产精品视频| 国产精品久久久久久精品古装| 90打野战视频偷拍视频| 日本av手机在线免费观看| 日韩一区二区视频免费看| 亚洲av福利一区| 亚洲av在线观看美女高潮| 亚洲精品久久久久久婷婷小说| 热99国产精品久久久久久7| 久久久国产精品麻豆| 国产精品女同一区二区软件| 久热这里只有精品99| 性少妇av在线| 免费看av在线观看网站| 伊人亚洲综合成人网| 精品少妇内射三级| 成年女人在线观看亚洲视频| 美女主播在线视频| 国产老妇伦熟女老妇高清| 国产在线免费精品| 国产精品欧美亚洲77777| 国产在线一区二区三区精| 久久99精品国语久久久| 丰满少妇做爰视频| 91精品三级在线观看| 色哟哟·www| 日本91视频免费播放| 美女主播在线视频| 侵犯人妻中文字幕一二三四区| av.在线天堂| 一二三四中文在线观看免费高清| 赤兔流量卡办理| 久久久久视频综合| 18禁观看日本| 这个男人来自地球电影免费观看 | 亚洲国产欧美在线一区| 精品人妻在线不人妻| 欧美日韩亚洲国产一区二区在线观看 | 久久久精品区二区三区| 欧美+日韩+精品| 成人黄色视频免费在线看| 亚洲国产欧美网| 成年动漫av网址| 国产女主播在线喷水免费视频网站| 有码 亚洲区| 黄色视频在线播放观看不卡| 午夜福利一区二区在线看| av免费观看日本| 咕卡用的链子| 久热这里只有精品99| 国产一区二区三区av在线| 色播在线永久视频| 久久精品国产鲁丝片午夜精品| 国产成人精品无人区| xxx大片免费视频| 美女xxoo啪啪120秒动态图| 国产亚洲一区二区精品| 精品国产乱码久久久久久男人| 少妇猛男粗大的猛烈进出视频| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 丝袜美足系列| 看免费成人av毛片| 黄片播放在线免费| 国产精品不卡视频一区二区| 一级毛片电影观看| 久久婷婷青草| xxx大片免费视频| 在线观看一区二区三区激情| 亚洲精品乱久久久久久| 精品亚洲成国产av| 日本vs欧美在线观看视频| 高清在线视频一区二区三区| 极品人妻少妇av视频| 亚洲精品一区蜜桃| 26uuu在线亚洲综合色| 久热久热在线精品观看| 这个男人来自地球电影免费观看 | 最近手机中文字幕大全| 女人久久www免费人成看片| 9色porny在线观看| 亚洲精华国产精华液的使用体验| 在线观看免费高清a一片| 人妻 亚洲 视频| av网站在线播放免费| 久久久久久久亚洲中文字幕| 日韩大片免费观看网站| 国产亚洲精品第一综合不卡| 一区二区av电影网| 丝瓜视频免费看黄片| 又大又黄又爽视频免费| 成年av动漫网址| 99香蕉大伊视频| 国产成人欧美| 最新的欧美精品一区二区| 最近的中文字幕免费完整| 成人黄色视频免费在线看| 丁香六月天网| 亚洲av电影在线观看一区二区三区| 亚洲经典国产精华液单| 亚洲欧美一区二区三区国产| 成人国产麻豆网| 欧美在线黄色| 人人妻人人添人人爽欧美一区卜| 中文字幕人妻丝袜制服| 在线观看www视频免费| 99热网站在线观看| 亚洲精华国产精华液的使用体验| 精品国产国语对白av| 伊人亚洲综合成人网| 成人二区视频| 久久久久久伊人网av| 亚洲少妇的诱惑av| 少妇的丰满在线观看| 搡女人真爽免费视频火全软件| 国产精品国产三级国产专区5o| 夫妻性生交免费视频一级片| 国产精品三级大全| 高清在线视频一区二区三区| kizo精华| 亚洲av.av天堂| 黄色 视频免费看| 天天躁夜夜躁狠狠久久av| 日本av手机在线免费观看| 亚洲美女搞黄在线观看| 午夜福利在线免费观看网站| 日韩大片免费观看网站| 丝袜在线中文字幕| 国产成人午夜福利电影在线观看| 久久精品久久久久久噜噜老黄| 久久国内精品自在自线图片| 国产午夜精品一二区理论片| 亚洲国产av新网站| a级毛片黄视频| 老汉色av国产亚洲站长工具| 日韩三级伦理在线观看| 999精品在线视频| 边亲边吃奶的免费视频| 毛片一级片免费看久久久久| 国产精品不卡视频一区二区| 国产精品人妻久久久影院| 久久久久久久大尺度免费视频| 亚洲一码二码三码区别大吗| 久久精品久久精品一区二区三区| 一区福利在线观看| 精品一区二区三区四区五区乱码 | 亚洲成人手机| 国产精品不卡视频一区二区| 日韩中文字幕视频在线看片| 香蕉精品网在线| 伊人亚洲综合成人网| 亚洲国产欧美网| 少妇精品久久久久久久| 亚洲美女搞黄在线观看| 制服诱惑二区| 亚洲国产欧美日韩在线播放| 香蕉国产在线看| 欧美亚洲日本最大视频资源| 一区在线观看完整版| 18禁动态无遮挡网站| 亚洲国产av影院在线观看| 久久久国产欧美日韩av| xxx大片免费视频| 赤兔流量卡办理| 黄片播放在线免费| 黄色一级大片看看| 王馨瑶露胸无遮挡在线观看| 亚洲欧美精品自产自拍| 黄色视频在线播放观看不卡| 国产精品国产三级专区第一集| 国产精品久久久久久精品古装| 欧美日韩一级在线毛片| 女人高潮潮喷娇喘18禁视频| 亚洲成国产人片在线观看| h视频一区二区三区| 久久热在线av| 大香蕉久久网| 一本久久精品| 精品人妻偷拍中文字幕| 在线观看www视频免费| 国产极品粉嫩免费观看在线| 在线观看人妻少妇| 欧美精品国产亚洲| 亚洲欧美成人精品一区二区| 国精品久久久久久国模美| 国产精品av久久久久免费| 一本大道久久a久久精品| 69精品国产乱码久久久| 80岁老熟妇乱子伦牲交| 美国免费a级毛片| 亚洲天堂av无毛| 久久久精品免费免费高清| 一区二区三区乱码不卡18| 哪个播放器可以免费观看大片| 日韩欧美一区视频在线观看| 性色avwww在线观看| 日本色播在线视频| 80岁老熟妇乱子伦牲交| 亚洲精品国产av成人精品| 欧美日韩精品成人综合77777| 80岁老熟妇乱子伦牲交| 婷婷色综合www| 26uuu在线亚洲综合色| kizo精华| 亚洲精品日本国产第一区| 日韩制服骚丝袜av| 国产伦理片在线播放av一区| www日本在线高清视频| 国产国语露脸激情在线看| 亚洲视频免费观看视频|