• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Optical properties of several ternary nanostructures*

    2021-01-21 02:08:34XiaoLongTang唐小龍XinLuCheng程新路HuaLiangCao曹華亮andHuaDongZeng曾華東
    Chinese Physics B 2021年1期
    關(guān)鍵詞:新路華東小龍

    Xiao-Long Tang(唐小龍), Xin-Lu Cheng(程新路), Hua-Liang Cao(曹華亮), and Hua-Dong Zeng(曾華東)

    Institute of Atomic and Molecular Physics,Sichuan University,Chengdu 610065,China

    Keywords: optical properties of nanostructures, plasmons on surfaces and interfaces, model and numerical simulation

    1. Introduction

    The optical properties in visible range of nanoparticles have been widely studied,[1–4]especially for TiO2and Au.[5–7]As a crucial material in photocatalysis, TiO2has received extensive attention since Fujishima and Honda demonstrated that TiO2can be used for photocatalysis in 1972.[8]However,the photocatalytic efficiency of TiO2is insufficient for photocatalytic applications. To improve the photocatalytic efficiency,TiO2was coupled with noble metal nanoparticles,[9,10]such as Au,[11]Ag,[12]Cu,[13]Pt,[14]etc. Meanwhile, noble metals have strong ability to transfer electrons, making the separation efficiency of electrons and holes higher,thus increasing the catalytic ability of materials.[15,16]Noble metals were also coupled to many materials to obtain different properties,[17,18]such as Fe3O4–Au (Ag),[19]ZnO–Au(Ag),[20]SiO2–Au(Ag),[21]ZrO2–Au,[22]TiO2–Au(Ag),[23]etc. As an efficiency combination, Janus TiO2–Au nanostructure has attracted more and more interest in photocatalysis. Seh et al. first demonstrated that TiO2–Au asymmetric Janus nanoparticleis possess higher efficiency to generate hydrogen than bare Au and core–shell structure in visible-light photocatalysis.[24]Wang et al. investigated the photocatalyst properties of Au/TiO2/Au nanostructure which exhibits a significant improvement in photocurrent density compared with the bare TiO2nanostructure in visible range.[25]Li and Li reported that an Au/Au3+TiO2photocatalyst can not only extend the light absorption of TiO2-based photocatalyst into visible range but also eliminate the rapid recombination of excited electrons/holes during photoreaction.[26]However, for Au–TiO2nanostructure, TiO2with a wide band gap width of 3.2 eV can provide energetic electrons for photocatalysis but lacks extinction in visible range. Au can excite the extinction of TiO2in visible range, but cannot extend the extinction range. Thus this combination of Au and TiO2possesses an improvement in the light absorption but a narrow extinction range in visible light. This restricts the utilization of visible light which contains the majority of the energy of sun light. Therefore, extending the light extinction range in visible light is vital for photocatalysis of Au and TiO2. Some investigations indicated that narrow band gap materials can sensitize wide band gap materials in visible light.[1–3]Therefore,finding a suitable and applicable material combined with TiO2and Au is a feasible way to improve photocatalysis in visible light.[27,28]Ma et al.[29]and Tada et al.[30]found that the CdS–Au–TiO2three-component nanojunction system exhibits much more photocatalytic activity than single-and twocomponent system. However, most of structures consisting of multiple components are of core–shell or multiple sphere.The core–shell structure can provide a huge interface between different materials, but the incident light cannot radiate inner materials directly,thereby limiting the interaction between materials under the incident irradiation.[31]Multiple-sphere structure can be illuminated directly by the incident light,but the interface between the spheres is very small, which also limits the interaction between materials. With the development of micro-nanometer manufacturing technology, Janus nanodisk has been fabricated,[32]and it is possible to generate the ternary nanodisk. In this structure,three materials are illuminated by the incident light directly,and there is a considerable interface between each two materials.

    In this paper, several ternary nanostructures , each with three equal volume parts, are designed. We calculate the optical properties of several types of ternary nanostructures by the the discrete dipole approximation(DDA)method,and the mechanism of the interaction among three materials is discussed.

    2. Method

    Since Mie calculated the nanospheres of Au by solving Maxwell’s equations,[33]more and more complex and different nanoparticles have been calculated. Benefiting from the fantastic work of Draine[34]and Draine and Flatau,[35]DDSCAT7.3[36]was used to simulate different kinds of nanostructures. DDSCAT is an efficient,open-source and free software package which is based on the theory of DDA. In the DDA method,the object is regarded as N-dipoles and the polarizations of these dipoles are calculated to simulate different materials with arbitrary morphologies and sizes.It can be used to calculate the extinction coefficients and near-field intensities of these nanoparticles.

    The real V is divided into N dipoles,and each dipole possesses volume d3in this soft package,specifically,

    In the simulation, the more the dipoles used, the more accurate the calculation is. Previous work shows a relative accuracy when N 1000.[37,38]In our calculations 157200 dipoles are used to simulate the nanostructure in order to obtain relatively high accurate results.The wavelengths we discussed are all between 300 nm and 750 nm. More computational details can be found in the reference.

    Fig.1. Morphology of(a)ternary core–shell,(b)nanodisk,and(c)three-sphere structure.

    The morphology of the ternary core–shell, nanodisk and three-sphere structures are presented in Fig.1. The core–shell structure is a three-layer sphere structure,with outer layer radius being R3,the core radius R1,and the meddle layer radius R2, the three parts possess equal volume(Fig. 1(a)). In addition, the morphology of the core–shell structure in Fig. 1 is the cross-section diagram of this structure, and the real morphology in calculation of the structure is a complete core–shell structure. The radius of the nanodisk is R, and the thickness is d (Fig. 1(b)). The nanodisk is divided into three parts,M1=M2=M3=1/3 nanodisk. The three-sphere structure is composed of three spheres of equal radius R1. M1,M2,M3are three different materials (Fig. 1(c)). The incident light is linear radiation propagating along the ?xLFaxis. The polarization direction is parallel to ?zLF.[39]The ambient medium is set to be vacuum where the refractive index is 1.

    3. Results and discussion

    The surface plasmon resonance of nanoparticles is dependent on geometry,size,material composition and surrounding medium.[40–43]Among these factors,the geometry and material composition are the key points for studying the surface plasmon resonance of nanoparticles. A kind of ternary nanostructure composed of three different materials is designed and the optical properties are investigated in this work.

    For ternary nanostructures, the core–shell and threesphere structures are widely studied,[44,45]but the nanodisk structure is less concerned. To investigate the optical properties of ternary nanostructures,the extinction spectra of nanodisk, core–shell and three-sphere structures with equal volume of TiO2, Ag, and Au are calculated, in which the nanodisk structure is M1/M2/M3=TiO2/Ag/Au, the radius R of the nanodisk is 50 nm,and the thickness d is 20 nm. And the core–shell structure is of a three-layer sphere, which is composed of the core sphere, middle shell, and outer shell. The core sphere is of Ag with radius R1of 23.21 nm, the middle shell is of TiO2with a thickness of 6.04 nm,and the outer shell is of Au with a thickness of 4.23 nm. The three-sphere structure is composed of three spheres with a radius R1is 23.21 nm,which contact each other. They are composed of three spheres of TiO2, Au, and Ag. The extinction spectrum of nanodisk,core–shell and three-sphere structures are shown in Fig. 2.The extinction properties of nanodisk structure are much better than those of the core–shell structure and three-sphere structure in 300 nm–750 nm. This is due to the interaction among materials and the migration of electrons needing enough energy(incident light)and touching area(interface). The core–shell structure has a large interface among materials, but the incident light cannot directly irradiate the internal materials,which greatly reduces the interaction between the materials.In the three-sphere structure, although the incident light can directly irradiate the three materials, the interface among the three materials is less, also limiting the interaction between the materials. In the nanodisk structure,the incident light can directly irradiate three materials, and there is a considerable interface,so the interaction among materials is promoted.

    Several researches show that narrow band gap materials can sensitize the extinction characteristics of TiO2in the visible light range.[2,46]In order to study the sensitization effect of narrow band gap materials on TiO2under the local surface plasmon resonance excitation of Au,the extinction spectra of the nanodisk consiting of different band gap materials combined with Au and TiO2are calculated and discussed. We select a series of band gap materials to combine with TiO2[47]and Au.[48]The band gap width of these materials possess an approximately equal difference, PbSe (0.165 eV),[49]Ge(0.66 eV),[50]MoS2(1.17 eV),[51]CdSe(1.7 eV),[52]and CdS(2.4 eV).[53]

    Fig.2. Extinction spectrum of core–shell,nanodisk,and three-sphere structures for M1/M2/M3=TiO2/Ag/Au.

    Fig. 3. Extinction spectra of M1/M2/M3 structures, with M1 fixed to Au,M2=M3 being PbSe,Ge,MoS2,CdSe,CdS or TiO2 respectively.

    For M1=Au, M2=M3=PbSe, Ge, MoS2, CdSe, CdS or TiO2respectively,the extinction spectra of nanodisk structures are shown in Fig.3. By analyzing the band gap width of M2and M3(PbSe=0.165 eV,Ge=0.66 eV,MoS2=1.17 eV,CdSe=1.7 eV, CdS=2.4 eV), the results show that the extinction coefficient is inversely proportional to the band gap for each of M2and M3in 300 nm–600 nm. The narrow band gap width leads to the low electronic transition energy and the high carrier concentration in equilibrium state. Therefore,under the excitation of the near-field energy generated by the local surface plasmon resonance of Au, the valence band electrons are more likely to be excited and transited to the conduction band in narrow band gap material, as a result, the absorption rate and extinction coefficient are both high. At the same time, when M2=M3=PbSe, Ge or MoS2, there is no extinction peak in 600 nm–700 nm, but there is an extinction peak at 676 nm, 652 nm or 658 nm respectively for M2=M3=CdSe,CdS or TiO2. This is due to the strong coupling between the plasmonic near-field produced by Au and the electronic transition energy in semiconductor. The electrons transit from valence band to conduction band under the excitation of plasmonic near-field,and the electron–hole pairs are formed. Since the Fermi energy level of semiconductor is higher than that of metal, when the two materials contact each other,the excited electrons will flow from semiconductor with high Fermi energy level to noble metal with low Fermi energy level,until their Fermi energy levels become the same and reach a static equilibrium. Due to the narrow band gap width of PbSe,Ge and MoS2,the energy values of the transition electrons from the bands are too low to pass through the Schottky barrier between Au and the material.[54–56]It cannot form a path to transfer the electrons from material to Au.[57]The band gap width of CdS, CdSe, and TiO2are wide. The transition electrons generated in CdS, CdSe, and TiO2have enough energy to pass through the Schottky barrier between the material and Au, and flow into Au until their Fermi energy levels reach a balance state, which effectively promotes the charge separation in semiconductor. In this process, the electron–hole pairs produced by electron transition and transfer can produce redox reaction with surrounding oxidants and reducers,thereby completing photocatalysis.

    From the above structures, the M1/M2/M3=Au/PbSe/PbSe structure has the maximum extinction coefficient in 300 nm–600 nm,and the M1/M/M3=Au/TiO2/TiO2structure has a maximum extinction coefficient in 600 nm–750 nm. Based on above results,to investigate how the different materials combined with Au and TiO2structure influence the extinction coefficient,the extinction spectra of the ternary nanodisk structures are calculated.

    Fig.4. Extinction spectra of M1/M2/M3 nanodisk structures with M1 =Au and M3=TiO2,and M2=PbSe,Ge,MoS2,CdSe or CdS respectively.

    The extinction spectra of the ternary nanodisks composed of Au, a semiconductor (PbSe, Ge, MoS2, CdSe or CdS)and TiO2are shown in Fig. 4. The extinction coefficient of M1/M2/M3= Au/PbSe/TiO2structure is always highest in 300 nm–600 nm. In 600 nm–750 nm, the extinction coefficient peak of M1/M2/M3= Au/CdS/TiO2structure is the highest, but the difference in extinction peak between different structures is small. The results show that the structure of M1/M2/M3=Au/PbSe/TiO2has the best extinction performance in the whole range of 300 nm–750 nm. Similarly, the extinction coefficient of the structure is also inversely proportional to the band gap width of M2material in 300 nm–600 nm.Because M1and M3are the same in each structure,the difference is mainly caused by M2material. The band gap width of M2material directly affects the extinction coefficient of this type of structure.

    Figures 5(a)–5(e) show the electric near-field distributions of the two different semiconductors and Au ternary nanodisks at 530 nm.The electric near-field distribution is consistent with the results of above extinction spectra.The near-field intensity outside the M2material is also inversely proportional to the band gap width of the M2material.This is because under the plasmonic near-field excitation,the smaller band gap leads the greater carrier concentration and the smaller transition energy,which makes the occurrence probability of the transition greater,so the absorption is greater. The boundaries of PbSe,Ge, and MoS2are very clear in Fig. 6, and the electric nearfield distributions in the three materials are all small. Due to the fact that at the interface between Au and these materials there exists a Schottky barrier while the transition electrons of these materials are not energetic enough to pass through the Schottky barrier, the electron–hole pairs formed in the material recombine rapidly,which prevents the electron–hole pairs from being continuously produced, leading the internal electric near-field distribution to become small.However,there are some near-field distributions near the interface of CdSe,CdS,TiO2, and Au, indicating that the transition electrons generated in these materials are energetic to cross the Schottky barrier between them and Au, thus further promoting the electrons’ transition and light absorption. The above-mentioned electric near-field distribution verifies the previous Schottky barrier theory discussed in extinction spectra.

    Figures 6(a)–6(e) show the electric near-field distributions of the ternary nanodisks, each of which is composed of two semiconductors and Au for the second peak in 650 nm–690 nm. There are a large number of near-field distributions around the interface between Au and TiO2at the maximum extinction peak,which is due to the strong coupling between the electronic transition in TiO2and the plasmonic near-field of Au.Because of the difference in Fermi energy level,the Fermi energy level of TiO2is higher than that of Au. A large number of electrons from the valence band in TiO2are injected into Au,which slows down the electron–hole pairs recombining in TiO2. It further enhances the efficiency of charge separation in TiO2, until the Fermi energy level of TiO2and Au reach a static balance. Therefore,a strong electric near-field distribution is produced near the interface between TiO2and Au. like the electric near-field distribution near 530 nm,the boundaries of PbSe,Ge,MoS2materials are also very clear for the same reason.

    Fig. 5. Electric near-field distribution maps of the peaks at 530 nm for (a) M1/M2/M3 =Au/PbSe/TiO2, (b) Au/Ge/TiO2, (c) Au/MoS2/TiO2, (d)Au/CdSe/TiO2,(e)Au/CdS/TiO2,and(f)Au/TiO2/TiO2 structures in x plane.

    Fig.6. Electric near-field distribute maps of the second peak between 650 nm and 690 nm for(a)M1/M2/M3 =Au/PbSe/TiO2, (b)Au/Ge/TiO2, (c)Au/MoS2/TiO2,(d)Au/CdSe/TiO2 (e)Au/CdS/TiO2,and(f)Au/TiO2/TiO2 in x plane.

    The extinction spectrum of the ternary nanodisk consisting of two different noble metals and TiO2is calculated. Figure 7 shows the extinction coefficient spectrum of M1/M2/M3=TiO2/Ag/Au,TiO2/Ag/Pt and TiO2/Au/Pt structures. The results show that the M1/M2/M3= TiO2/Ag/Pt structure has the best extinction performance in 300 nm–750 nm. The M1/M2/M3= TiO2/Ag/Au structure has two absorption peaks at 406 nm and 546 nm, respectively. The M1/M2/M3=TiO2/Ag/Pt structure has three extinction peaks at 410 nm, 670 nm, and 694 nm, respectively, and the M1/M2/M3=TiO2/Au/Pt has two extinction peaks at 532 nm and 732 nm, respectively. There is an extinction peak near 400 nm for structure containing Ag,540 nm for structure containing Au,and 700 nm for structure containing Pt.This is due to the fact that the coupling extinction peak of Ag and TiO2is near 400 nm, the coupling extinction peak of Au and TiO2is near 500 nm,and the coupling extinction peak of Pt and TiO2is near 700 nm.[58,59]The difference among the material combinations might be the reason for causing some differences in the location and value of extinction peaks. Based on above results,there is a complementation of extinction efficiency between the TiO2/Ag/Au and TiO2/Ag/Pt structures in visible range.

    Fig. 7. Extinction coefficient spectrum of M1/M2/M3 = TiO2/Ag/Au,TiO2/Ag/Pt,and TiO2/Au/Pt structures.

    The electric near-field distributions of M1/M2/M3=TiO2/Ag/Pt structure at extinction peaks of 410 nm, 670 nm,694 nm are calculated. The electric near-field distribution at 410 nm, 670 nm, and 694 nm in the x plane are shown in Figs. 8(a1), 8(b1), and 8(c1), respectively. And the electric near-field distribution in the y plane at 410 nm, 670 nm, and 694 nm are shown in Figs. 8(a2), 8(b2), and 8(c2), respectively. The electric near-field distribution at 410 nm is mainly concentrated in the part of M2=Ag. The electric near-field distribution at 670 nm is similar to that at 694 nm, which are mainly distributed around M2and M3, and the distribution is larger in M2. It is due to the fact that both Ag and Pt have a coupling effect with TiO2, resulting in two extinction peaks,and that the distance between the two coupling extinction peaks is very close,so the structure has two adjacent extinction peaks at 670 nm and 694 nm.

    Fig.8. Near-field distribution of M1/M2/M3 =TiO2/Ag/Pt structure at(a1)410 nm, (b1)670 nm, (c1)694 nm in x plane and(a2)410 nm,(b2)670 nm,(c2)694 nm y plane.

    4. Conclusions

    We conclude that the ternary nanodisk has better extinction properties than core–shell and three-sphere structures.For the nanodisk structures of M1/M2/M3=Au/(PbSe, Ge,MoS2, CdSe, or CdS)/TiO2, the best extinction performance is obtained for Au/PbSe/TiO2ternary nanodisk in 300 nm–750 nm. And the extinction coefficient is inversely proportional to the band gap of M2in 300 nm–600 nm. When M1/M2/M3=TiO2/Ag/Au,TiO2/Ag/Pt or TiO2/Au/Pt of nanodisk structures,the TiO2/Ag/Pt nanodisk has the best extinction performance. The extinction efficiency and electric nearfield intensity of TiO2/Ag/Pt structure are much higher than those of Au/PbSe/TiO2. The TiO2/Ag/Pt nanodisk structure has two extinction peaks and strong electric near-field in visible range,so it is hopeful to achieve a better efficiency in the field of photocatalysis. The spectrum of TiO2/Ag/Pt structure and the spectrum of TiO2/Ag/Au structure can form a threepeak extinction spectrum in visible range, it provides a reference for extending the extinction range.

    猜你喜歡
    新路華東小龍
    El regreso del dragón
    華東銷售在一線
    水土保持探新路 三十九年寫春秋
    相華東:走在欣欣向榮的田野上
    華人時刊(2022年21期)2022-02-15 03:42:36
    小小小小龍
    蔬果種植走新路
    劉小龍
    中國篆刻(2016年5期)2016-09-26 07:40:04
    多絲量新品種華東×春晨的引進(jìn)推廣
    蠶桑通報(2015年2期)2015-12-15 00:41:56
    民國時期無“華東”稱渭
    城鄉(xiāng)一體化走出的新路
    免费观看精品视频网站| 在线观看免费高清a一片| 一区二区三区乱码不卡18| 欧美 日韩 精品 国产| 国产一区有黄有色的免费视频 | 亚洲欧美一区二区三区黑人 | 一级毛片aaaaaa免费看小| 少妇高潮的动态图| 亚洲欧美精品专区久久| 国产成人福利小说| 好男人视频免费观看在线| 一级毛片我不卡| 99热这里只有精品一区| 午夜视频国产福利| 日韩人妻高清精品专区| 丰满乱子伦码专区| 久久久久网色| 丝袜喷水一区| 国产成人精品久久久久久| 日日撸夜夜添| 美女cb高潮喷水在线观看| 如何舔出高潮| 精品少妇黑人巨大在线播放| 中文字幕av成人在线电影| 亚洲自偷自拍三级| 亚洲四区av| 国产乱人偷精品视频| 国产毛片a区久久久久| av在线观看视频网站免费| 日韩av免费高清视频| 亚洲精品国产av成人精品| 国产在视频线在精品| 伦理电影大哥的女人| 亚洲自拍偷在线| 国国产精品蜜臀av免费| 五月天丁香电影| 性色avwww在线观看| 亚洲欧美清纯卡通| 亚洲综合精品二区| 亚洲成人久久爱视频| 一级a做视频免费观看| 青青草视频在线视频观看| 亚洲va在线va天堂va国产| 51国产日韩欧美| 日韩av免费高清视频| 3wmmmm亚洲av在线观看| 欧美日韩在线观看h| 亚洲成人精品中文字幕电影| 国产一区二区在线观看日韩| 亚洲国产精品sss在线观看| 久久久久久久久久黄片| 在线观看av片永久免费下载| 亚洲av男天堂| 亚洲怡红院男人天堂| 国产永久视频网站| 国产三级在线视频| 欧美日韩在线观看h| 国产男人的电影天堂91| 色综合站精品国产| 色播亚洲综合网| 国产在视频线精品| 日本欧美国产在线视频| 成人无遮挡网站| 嫩草影院新地址| 卡戴珊不雅视频在线播放| 国内精品宾馆在线| 国产大屁股一区二区在线视频| 欧美极品一区二区三区四区| 特大巨黑吊av在线直播| 精品亚洲乱码少妇综合久久| 一级爰片在线观看| 免费黄网站久久成人精品| 国产一级毛片在线| 亚洲国产成人一精品久久久| 男人和女人高潮做爰伦理| 18禁在线无遮挡免费观看视频| 美女内射精品一级片tv| 最后的刺客免费高清国语| 午夜爱爱视频在线播放| 亚洲人成网站在线播| 亚洲精品乱码久久久v下载方式| 免费黄网站久久成人精品| 国产69精品久久久久777片| 最近2019中文字幕mv第一页| 久久精品久久精品一区二区三区| 一区二区三区四区激情视频| 国产精品av视频在线免费观看| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产大屁股一区二区在线视频| 国产男女超爽视频在线观看| 爱豆传媒免费全集在线观看| 亚洲国产色片| 久久精品熟女亚洲av麻豆精品 | 亚洲婷婷狠狠爱综合网| 日韩视频在线欧美| 久久99蜜桃精品久久| 听说在线观看完整版免费高清| a级毛色黄片| 欧美+日韩+精品| av免费观看日本| 久久6这里有精品| 中文字幕免费在线视频6| 99久久九九国产精品国产免费| 日韩伦理黄色片| 18禁在线无遮挡免费观看视频| 乱码一卡2卡4卡精品| 国产精品久久久久久久电影| 久久久久久久午夜电影| 18禁动态无遮挡网站| 麻豆成人av视频| 日本午夜av视频| 国产免费视频播放在线视频 | 国产欧美另类精品又又久久亚洲欧美| 精品人妻熟女av久视频| 黄色配什么色好看| 免费av毛片视频| 成人无遮挡网站| 午夜精品一区二区三区免费看| 午夜福利网站1000一区二区三区| 深爱激情五月婷婷| 别揉我奶头 嗯啊视频| 在线天堂最新版资源| 亚洲精品色激情综合| 好男人在线观看高清免费视频| 亚洲丝袜综合中文字幕| 精品人妻视频免费看| 久久精品久久精品一区二区三区| 久久久久久久亚洲中文字幕| 只有这里有精品99| 亚洲婷婷狠狠爱综合网| 成人午夜精彩视频在线观看| 免费播放大片免费观看视频在线观看| 亚洲欧美中文字幕日韩二区| 国内精品一区二区在线观看| 午夜激情久久久久久久| 男人狂女人下面高潮的视频| 国产有黄有色有爽视频| 一级片'在线观看视频| 欧美xxxx性猛交bbbb| 中文资源天堂在线| 日韩制服骚丝袜av| 最近2019中文字幕mv第一页| 黄色配什么色好看| 精品久久国产蜜桃| 国产91av在线免费观看| 国产乱人视频| 嫩草影院新地址| 精品人妻一区二区三区麻豆| 亚洲精品aⅴ在线观看| 国产av不卡久久| 久久久久精品性色| 免费大片黄手机在线观看| 久久久成人免费电影| 高清欧美精品videossex| 亚洲人成网站高清观看| 国产三级在线视频| 丰满少妇做爰视频| 国产成人午夜福利电影在线观看| 久久99热这里只有精品18| 美女cb高潮喷水在线观看| 亚洲人成网站在线观看播放| 热99在线观看视频| 能在线免费观看的黄片| 夫妻性生交免费视频一级片| 97精品久久久久久久久久精品| 国产综合懂色| 免费看a级黄色片| 国产精品久久久久久av不卡| 欧美高清成人免费视频www| 国产 一区精品| 嫩草影院入口| 欧美成人一区二区免费高清观看| 亚洲成人中文字幕在线播放| 亚洲精品视频女| 99久久精品热视频| 校园人妻丝袜中文字幕| 麻豆av噜噜一区二区三区| 国产成人a区在线观看| 精品酒店卫生间| 亚洲激情五月婷婷啪啪| 国产黄色免费在线视频| 男人舔女人下体高潮全视频| 黄片无遮挡物在线观看| 黄片wwwwww| 欧美另类一区| 久久午夜福利片| 一本久久精品| 少妇人妻精品综合一区二区| 亚洲美女搞黄在线观看| 国产午夜精品论理片| 欧美区成人在线视频| 国产黄频视频在线观看| 国模一区二区三区四区视频| 免费人成在线观看视频色| 亚洲成人中文字幕在线播放| 最近2019中文字幕mv第一页| 亚洲成色77777| 高清av免费在线| 麻豆精品久久久久久蜜桃| 精品不卡国产一区二区三区| 欧美性猛交╳xxx乱大交人| 99热这里只有精品一区| 22中文网久久字幕| 毛片一级片免费看久久久久| 久久久久久久久中文| 看非洲黑人一级黄片| 好男人在线观看高清免费视频| 特级一级黄色大片| 精品午夜福利在线看| 欧美丝袜亚洲另类| 高清午夜精品一区二区三区| 69av精品久久久久久| 在线观看人妻少妇| 国产精品国产三级专区第一集| 男女视频在线观看网站免费| 亚洲av中文字字幕乱码综合| 草草在线视频免费看| 99久国产av精品国产电影| 中文资源天堂在线| 国产精品三级大全| 国产在线一区二区三区精| 国产爱豆传媒在线观看| 午夜福利视频精品| 中国美白少妇内射xxxbb| 国产成人免费观看mmmm| 亚洲精品中文字幕在线视频 | 淫秽高清视频在线观看| 国产色爽女视频免费观看| av在线观看视频网站免费| 亚洲精品国产av成人精品| 久久久久久久久久成人| 国产精品一区二区三区四区久久| 免费黄网站久久成人精品| 男女边摸边吃奶| 在线观看免费高清a一片| 波多野结衣巨乳人妻| 色综合亚洲欧美另类图片| 乱系列少妇在线播放| 国产精品.久久久| 色综合站精品国产| 国产日韩欧美在线精品| 久久久久精品久久久久真实原创| 久久久久性生活片| 成人毛片60女人毛片免费| 午夜亚洲福利在线播放| 久久久精品免费免费高清| 亚洲欧洲国产日韩| 如何舔出高潮| 久久99精品国语久久久| 久久久久网色| 精品熟女少妇av免费看| 一二三四中文在线观看免费高清| kizo精华| 国国产精品蜜臀av免费| 欧美97在线视频| 男女下面进入的视频免费午夜| 欧美xxxx性猛交bbbb| 美女脱内裤让男人舔精品视频| 成人漫画全彩无遮挡| 观看免费一级毛片| 欧美bdsm另类| 嘟嘟电影网在线观看| 永久免费av网站大全| 大片免费播放器 马上看| 人人妻人人看人人澡| 丰满人妻一区二区三区视频av| 亚洲精品456在线播放app| 日本黄大片高清| 一二三四中文在线观看免费高清| 内射极品少妇av片p| 欧美精品国产亚洲| 日韩欧美国产在线观看| 国产av在哪里看| 一区二区三区乱码不卡18| 日韩,欧美,国产一区二区三区| 九色成人免费人妻av| 亚洲精品乱码久久久v下载方式| 免费看a级黄色片| 精品一区二区三区视频在线| 成年女人看的毛片在线观看| 久久6这里有精品| 97超碰精品成人国产| 婷婷六月久久综合丁香| 久久久久性生活片| 天天躁夜夜躁狠狠久久av| 国产在视频线精品| 亚洲成人av在线免费| 欧美性感艳星| 欧美变态另类bdsm刘玥| 久久久国产一区二区| 九九爱精品视频在线观看| 黄片无遮挡物在线观看| 亚洲精品第二区| 免费观看在线日韩| 毛片一级片免费看久久久久| 精品酒店卫生间| 国产精品女同一区二区软件| 在线播放无遮挡| 国产精品人妻久久久影院| 青春草国产在线视频| 91久久精品电影网| 美女cb高潮喷水在线观看| 亚洲最大成人中文| 国产欧美另类精品又又久久亚洲欧美| 乱码一卡2卡4卡精品| 最新中文字幕久久久久| 午夜福利在线观看吧| 青春草视频在线免费观看| 色吧在线观看| 免费黄频网站在线观看国产| 亚洲精品乱久久久久久| 国产 一区 欧美 日韩| 精品国产三级普通话版| 亚洲国产成人一精品久久久| 少妇被粗大猛烈的视频| 亚洲国产成人一精品久久久| 国产不卡一卡二| 欧美丝袜亚洲另类| 成人亚洲欧美一区二区av| 高清av免费在线| 久久久久久久亚洲中文字幕| xxx大片免费视频| 国产 一区 欧美 日韩| 亚洲国产av新网站| 亚洲精品国产av蜜桃| 少妇人妻一区二区三区视频| 久久精品久久久久久久性| 免费av不卡在线播放| 国产黄a三级三级三级人| 中文字幕亚洲精品专区| 成年女人看的毛片在线观看| 少妇裸体淫交视频免费看高清| 九九爱精品视频在线观看| 国产有黄有色有爽视频| 久久综合国产亚洲精品| 久久精品国产亚洲av天美| 日日啪夜夜撸| 成人无遮挡网站| 美女被艹到高潮喷水动态| 久久久午夜欧美精品| 中国国产av一级| av线在线观看网站| 欧美三级亚洲精品| 亚洲内射少妇av| 成年免费大片在线观看| 国产精品99久久久久久久久| 99热网站在线观看| 久久久久九九精品影院| 秋霞伦理黄片| 只有这里有精品99| 18禁在线无遮挡免费观看视频| 亚洲人成网站高清观看| 中文天堂在线官网| 日日干狠狠操夜夜爽| 国产一区有黄有色的免费视频 | 大片免费播放器 马上看| 欧美不卡视频在线免费观看| 亚洲国产精品成人综合色| 国产亚洲精品av在线| 亚洲国产欧美人成| 亚洲欧美成人精品一区二区| 搡老乐熟女国产| 午夜视频国产福利| 听说在线观看完整版免费高清| 亚洲精华国产精华液的使用体验| 激情 狠狠 欧美| 成人午夜精彩视频在线观看| 听说在线观看完整版免费高清| kizo精华| 嫩草影院新地址| 日韩国内少妇激情av| 欧美一区二区亚洲| 久久久久国产网址| 一区二区三区免费毛片| 成人亚洲欧美一区二区av| 欧美日韩国产mv在线观看视频 | 人妻制服诱惑在线中文字幕| av卡一久久| 人妻制服诱惑在线中文字幕| 亚洲欧美日韩卡通动漫| 国产成人freesex在线| 91在线精品国自产拍蜜月| 不卡视频在线观看欧美| 日日摸夜夜添夜夜爱| 国产成人午夜福利电影在线观看| 777米奇影视久久| 成人亚洲精品av一区二区| 亚洲精品aⅴ在线观看| 91精品伊人久久大香线蕉| 国产精品人妻久久久久久| 亚洲av.av天堂| 狂野欧美白嫩少妇大欣赏| 夫妻性生交免费视频一级片| 国产黄色小视频在线观看| 中文在线观看免费www的网站| 国产乱人视频| 毛片女人毛片| 亚洲经典国产精华液单| 少妇裸体淫交视频免费看高清| 国产成人a区在线观看| 亚洲精品成人久久久久久| 在线免费十八禁| av在线亚洲专区| 777米奇影视久久| 99热这里只有精品一区| 亚洲成人精品中文字幕电影| 国产黄色视频一区二区在线观看| 亚洲国产高清在线一区二区三| 偷拍熟女少妇极品色| 天堂网av新在线| 亚洲精品日韩av片在线观看| 国产成人aa在线观看| 成人亚洲欧美一区二区av| 欧美一区二区亚洲| 80岁老熟妇乱子伦牲交| 亚洲国产欧美在线一区| 日韩欧美国产在线观看| 久久久久精品久久久久真实原创| 干丝袜人妻中文字幕| 纵有疾风起免费观看全集完整版 | 九九爱精品视频在线观看| 国产av在哪里看| 男人和女人高潮做爰伦理| 国产精品综合久久久久久久免费| 国产精品一二三区在线看| 国产三级在线视频| 熟妇人妻不卡中文字幕| 我的女老师完整版在线观看| 一级毛片aaaaaa免费看小| 夫妻午夜视频| 尾随美女入室| av卡一久久| 一级毛片黄色毛片免费观看视频| 午夜爱爱视频在线播放| 亚洲精品久久久久久婷婷小说| 久久精品久久久久久久性| eeuss影院久久| av线在线观看网站| 97超视频在线观看视频| 精品国内亚洲2022精品成人| 欧美另类一区| 亚洲性久久影院| 91久久精品国产一区二区成人| 亚洲成人av在线免费| 在现免费观看毛片| 成人毛片60女人毛片免费| 在线免费观看不下载黄p国产| 国产精品无大码| 熟妇人妻不卡中文字幕| 亚洲一级一片aⅴ在线观看| 成年女人在线观看亚洲视频 | 日本黄色片子视频| 看非洲黑人一级黄片| 精品人妻一区二区三区麻豆| 亚洲av成人av| 91精品一卡2卡3卡4卡| av在线播放精品| 国产精品1区2区在线观看.| 亚洲av免费高清在线观看| 汤姆久久久久久久影院中文字幕 | 日本一本二区三区精品| 99热网站在线观看| av黄色大香蕉| 亚洲综合色惰| 国产亚洲av片在线观看秒播厂 | 国产成人aa在线观看| 天天躁夜夜躁狠狠久久av| 能在线免费观看的黄片| 一区二区三区高清视频在线| 国产人妻一区二区三区在| 22中文网久久字幕| 一级黄片播放器| 精品一区二区三区人妻视频| 国产精品熟女久久久久浪| h日本视频在线播放| 精品久久久久久久末码| 看十八女毛片水多多多| 欧美xxxx黑人xx丫x性爽| 久久久久免费精品人妻一区二区| 亚洲18禁久久av| 亚洲久久久久久中文字幕| 国产伦精品一区二区三区视频9| 中文字幕免费在线视频6| 婷婷色综合大香蕉| 久久人人爽人人爽人人片va| 嫩草影院入口| 亚洲,欧美,日韩| 亚洲18禁久久av| 99久久人妻综合| av免费观看日本| 日韩一区二区三区影片| 久久久久久九九精品二区国产| 最后的刺客免费高清国语| 日日摸夜夜添夜夜添av毛片| 男女国产视频网站| 最近最新中文字幕大全电影3| 欧美bdsm另类| 国产精品久久久久久久久免| 精品久久久久久久久亚洲| 老女人水多毛片| 久久久国产一区二区| 内射极品少妇av片p| 亚洲精品久久午夜乱码| 九草在线视频观看| 亚洲欧美日韩卡通动漫| 欧美不卡视频在线免费观看| 男女视频在线观看网站免费| av天堂中文字幕网| 午夜福利在线观看吧| 老司机影院毛片| 97热精品久久久久久| 中文字幕av在线有码专区| 欧美日韩在线观看h| 2021少妇久久久久久久久久久| 伊人久久精品亚洲午夜| 国产精品人妻久久久影院| 久热久热在线精品观看| 人体艺术视频欧美日本| 欧美一区二区亚洲| 免费黄频网站在线观看国产| 欧美日韩在线观看h| 大片免费播放器 马上看| av专区在线播放| 99久久精品热视频| 国产精品久久久久久精品电影小说 | 久久久久精品久久久久真实原创| a级毛色黄片| 亚洲精品日韩在线中文字幕| 亚洲欧美一区二区三区国产| 九九在线视频观看精品| 大片免费播放器 马上看| 国产精品一区二区在线观看99 | 丝瓜视频免费看黄片| 男人舔女人下体高潮全视频| 蜜桃亚洲精品一区二区三区| 人人妻人人澡欧美一区二区| 国产美女午夜福利| 亚洲精品视频女| 久热久热在线精品观看| 高清av免费在线| 国产成人精品福利久久| 在线 av 中文字幕| 最新中文字幕久久久久| 国产午夜精品一二区理论片| 97热精品久久久久久| 蜜臀久久99精品久久宅男| 国产综合懂色| 日本免费a在线| 国产熟女欧美一区二区| 亚洲成人一二三区av| 亚洲国产欧美在线一区| 岛国毛片在线播放| 国产美女午夜福利| 国产成人91sexporn| 国产在线男女| 国产综合精华液| 亚洲成人av在线免费| 五月天丁香电影| 国产极品天堂在线| 男人狂女人下面高潮的视频| 亚洲欧美成人综合另类久久久| 久久久久性生活片| 欧美成人午夜免费资源| 中国美白少妇内射xxxbb| 国产精品精品国产色婷婷| 日韩成人伦理影院| 一个人免费在线观看电影| 99久久九九国产精品国产免费| 男女视频在线观看网站免费| 全区人妻精品视频| 人妻少妇偷人精品九色| 亚洲真实伦在线观看| 嘟嘟电影网在线观看| 亚洲综合色惰| 久久精品熟女亚洲av麻豆精品 | 禁无遮挡网站| 国产免费一级a男人的天堂| 99热6这里只有精品| 中文欧美无线码| 99久久人妻综合| 亚洲熟妇中文字幕五十中出| kizo精华| 一二三四中文在线观看免费高清| 99视频精品全部免费 在线| 在现免费观看毛片| 日产精品乱码卡一卡2卡三| 午夜精品国产一区二区电影 | 亚洲av成人av| 国产黄片美女视频| 久久精品久久久久久久性| 国产国拍精品亚洲av在线观看| 人人妻人人澡人人爽人人夜夜 | 久久久亚洲精品成人影院| 亚洲av在线观看美女高潮| 免费大片18禁| 久久久久久九九精品二区国产| 亚洲国产精品国产精品| 日韩成人av中文字幕在线观看| 久久久久久九九精品二区国产| 日韩欧美国产在线观看| 久久99热这里只频精品6学生| 日韩一本色道免费dvd| 免费黄频网站在线观看国产| 免费观看无遮挡的男女| 国产av在哪里看| 联通29元200g的流量卡| 午夜福利在线观看吧| 久久国产乱子免费精品| 欧美变态另类bdsm刘玥| 大香蕉97超碰在线| 日韩伦理黄色片| 国产伦理片在线播放av一区| 久久久久精品性色| av免费在线看不卡| 国产成人精品福利久久|