• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Optical properties of several ternary nanostructures*

    2021-01-21 02:08:34XiaoLongTang唐小龍XinLuCheng程新路HuaLiangCao曹華亮andHuaDongZeng曾華東
    Chinese Physics B 2021年1期
    關(guān)鍵詞:新路華東小龍

    Xiao-Long Tang(唐小龍), Xin-Lu Cheng(程新路), Hua-Liang Cao(曹華亮), and Hua-Dong Zeng(曾華東)

    Institute of Atomic and Molecular Physics,Sichuan University,Chengdu 610065,China

    Keywords: optical properties of nanostructures, plasmons on surfaces and interfaces, model and numerical simulation

    1. Introduction

    The optical properties in visible range of nanoparticles have been widely studied,[1–4]especially for TiO2and Au.[5–7]As a crucial material in photocatalysis, TiO2has received extensive attention since Fujishima and Honda demonstrated that TiO2can be used for photocatalysis in 1972.[8]However,the photocatalytic efficiency of TiO2is insufficient for photocatalytic applications. To improve the photocatalytic efficiency,TiO2was coupled with noble metal nanoparticles,[9,10]such as Au,[11]Ag,[12]Cu,[13]Pt,[14]etc. Meanwhile, noble metals have strong ability to transfer electrons, making the separation efficiency of electrons and holes higher,thus increasing the catalytic ability of materials.[15,16]Noble metals were also coupled to many materials to obtain different properties,[17,18]such as Fe3O4–Au (Ag),[19]ZnO–Au(Ag),[20]SiO2–Au(Ag),[21]ZrO2–Au,[22]TiO2–Au(Ag),[23]etc. As an efficiency combination, Janus TiO2–Au nanostructure has attracted more and more interest in photocatalysis. Seh et al. first demonstrated that TiO2–Au asymmetric Janus nanoparticleis possess higher efficiency to generate hydrogen than bare Au and core–shell structure in visible-light photocatalysis.[24]Wang et al. investigated the photocatalyst properties of Au/TiO2/Au nanostructure which exhibits a significant improvement in photocurrent density compared with the bare TiO2nanostructure in visible range.[25]Li and Li reported that an Au/Au3+TiO2photocatalyst can not only extend the light absorption of TiO2-based photocatalyst into visible range but also eliminate the rapid recombination of excited electrons/holes during photoreaction.[26]However, for Au–TiO2nanostructure, TiO2with a wide band gap width of 3.2 eV can provide energetic electrons for photocatalysis but lacks extinction in visible range. Au can excite the extinction of TiO2in visible range, but cannot extend the extinction range. Thus this combination of Au and TiO2possesses an improvement in the light absorption but a narrow extinction range in visible light. This restricts the utilization of visible light which contains the majority of the energy of sun light. Therefore, extending the light extinction range in visible light is vital for photocatalysis of Au and TiO2. Some investigations indicated that narrow band gap materials can sensitize wide band gap materials in visible light.[1–3]Therefore,finding a suitable and applicable material combined with TiO2and Au is a feasible way to improve photocatalysis in visible light.[27,28]Ma et al.[29]and Tada et al.[30]found that the CdS–Au–TiO2three-component nanojunction system exhibits much more photocatalytic activity than single-and twocomponent system. However, most of structures consisting of multiple components are of core–shell or multiple sphere.The core–shell structure can provide a huge interface between different materials, but the incident light cannot radiate inner materials directly,thereby limiting the interaction between materials under the incident irradiation.[31]Multiple-sphere structure can be illuminated directly by the incident light,but the interface between the spheres is very small, which also limits the interaction between materials. With the development of micro-nanometer manufacturing technology, Janus nanodisk has been fabricated,[32]and it is possible to generate the ternary nanodisk. In this structure,three materials are illuminated by the incident light directly,and there is a considerable interface between each two materials.

    In this paper, several ternary nanostructures , each with three equal volume parts, are designed. We calculate the optical properties of several types of ternary nanostructures by the the discrete dipole approximation(DDA)method,and the mechanism of the interaction among three materials is discussed.

    2. Method

    Since Mie calculated the nanospheres of Au by solving Maxwell’s equations,[33]more and more complex and different nanoparticles have been calculated. Benefiting from the fantastic work of Draine[34]and Draine and Flatau,[35]DDSCAT7.3[36]was used to simulate different kinds of nanostructures. DDSCAT is an efficient,open-source and free software package which is based on the theory of DDA. In the DDA method,the object is regarded as N-dipoles and the polarizations of these dipoles are calculated to simulate different materials with arbitrary morphologies and sizes.It can be used to calculate the extinction coefficients and near-field intensities of these nanoparticles.

    The real V is divided into N dipoles,and each dipole possesses volume d3in this soft package,specifically,

    In the simulation, the more the dipoles used, the more accurate the calculation is. Previous work shows a relative accuracy when N 1000.[37,38]In our calculations 157200 dipoles are used to simulate the nanostructure in order to obtain relatively high accurate results.The wavelengths we discussed are all between 300 nm and 750 nm. More computational details can be found in the reference.

    Fig.1. Morphology of(a)ternary core–shell,(b)nanodisk,and(c)three-sphere structure.

    The morphology of the ternary core–shell, nanodisk and three-sphere structures are presented in Fig.1. The core–shell structure is a three-layer sphere structure,with outer layer radius being R3,the core radius R1,and the meddle layer radius R2, the three parts possess equal volume(Fig. 1(a)). In addition, the morphology of the core–shell structure in Fig. 1 is the cross-section diagram of this structure, and the real morphology in calculation of the structure is a complete core–shell structure. The radius of the nanodisk is R, and the thickness is d (Fig. 1(b)). The nanodisk is divided into three parts,M1=M2=M3=1/3 nanodisk. The three-sphere structure is composed of three spheres of equal radius R1. M1,M2,M3are three different materials (Fig. 1(c)). The incident light is linear radiation propagating along the ?xLFaxis. The polarization direction is parallel to ?zLF.[39]The ambient medium is set to be vacuum where the refractive index is 1.

    3. Results and discussion

    The surface plasmon resonance of nanoparticles is dependent on geometry,size,material composition and surrounding medium.[40–43]Among these factors,the geometry and material composition are the key points for studying the surface plasmon resonance of nanoparticles. A kind of ternary nanostructure composed of three different materials is designed and the optical properties are investigated in this work.

    For ternary nanostructures, the core–shell and threesphere structures are widely studied,[44,45]but the nanodisk structure is less concerned. To investigate the optical properties of ternary nanostructures,the extinction spectra of nanodisk, core–shell and three-sphere structures with equal volume of TiO2, Ag, and Au are calculated, in which the nanodisk structure is M1/M2/M3=TiO2/Ag/Au, the radius R of the nanodisk is 50 nm,and the thickness d is 20 nm. And the core–shell structure is of a three-layer sphere, which is composed of the core sphere, middle shell, and outer shell. The core sphere is of Ag with radius R1of 23.21 nm, the middle shell is of TiO2with a thickness of 6.04 nm,and the outer shell is of Au with a thickness of 4.23 nm. The three-sphere structure is composed of three spheres with a radius R1is 23.21 nm,which contact each other. They are composed of three spheres of TiO2, Au, and Ag. The extinction spectrum of nanodisk,core–shell and three-sphere structures are shown in Fig. 2.The extinction properties of nanodisk structure are much better than those of the core–shell structure and three-sphere structure in 300 nm–750 nm. This is due to the interaction among materials and the migration of electrons needing enough energy(incident light)and touching area(interface). The core–shell structure has a large interface among materials, but the incident light cannot directly irradiate the internal materials,which greatly reduces the interaction between the materials.In the three-sphere structure, although the incident light can directly irradiate the three materials, the interface among the three materials is less, also limiting the interaction between the materials. In the nanodisk structure,the incident light can directly irradiate three materials, and there is a considerable interface,so the interaction among materials is promoted.

    Several researches show that narrow band gap materials can sensitize the extinction characteristics of TiO2in the visible light range.[2,46]In order to study the sensitization effect of narrow band gap materials on TiO2under the local surface plasmon resonance excitation of Au,the extinction spectra of the nanodisk consiting of different band gap materials combined with Au and TiO2are calculated and discussed. We select a series of band gap materials to combine with TiO2[47]and Au.[48]The band gap width of these materials possess an approximately equal difference, PbSe (0.165 eV),[49]Ge(0.66 eV),[50]MoS2(1.17 eV),[51]CdSe(1.7 eV),[52]and CdS(2.4 eV).[53]

    Fig.2. Extinction spectrum of core–shell,nanodisk,and three-sphere structures for M1/M2/M3=TiO2/Ag/Au.

    Fig. 3. Extinction spectra of M1/M2/M3 structures, with M1 fixed to Au,M2=M3 being PbSe,Ge,MoS2,CdSe,CdS or TiO2 respectively.

    For M1=Au, M2=M3=PbSe, Ge, MoS2, CdSe, CdS or TiO2respectively,the extinction spectra of nanodisk structures are shown in Fig.3. By analyzing the band gap width of M2and M3(PbSe=0.165 eV,Ge=0.66 eV,MoS2=1.17 eV,CdSe=1.7 eV, CdS=2.4 eV), the results show that the extinction coefficient is inversely proportional to the band gap for each of M2and M3in 300 nm–600 nm. The narrow band gap width leads to the low electronic transition energy and the high carrier concentration in equilibrium state. Therefore,under the excitation of the near-field energy generated by the local surface plasmon resonance of Au, the valence band electrons are more likely to be excited and transited to the conduction band in narrow band gap material, as a result, the absorption rate and extinction coefficient are both high. At the same time, when M2=M3=PbSe, Ge or MoS2, there is no extinction peak in 600 nm–700 nm, but there is an extinction peak at 676 nm, 652 nm or 658 nm respectively for M2=M3=CdSe,CdS or TiO2. This is due to the strong coupling between the plasmonic near-field produced by Au and the electronic transition energy in semiconductor. The electrons transit from valence band to conduction band under the excitation of plasmonic near-field,and the electron–hole pairs are formed. Since the Fermi energy level of semiconductor is higher than that of metal, when the two materials contact each other,the excited electrons will flow from semiconductor with high Fermi energy level to noble metal with low Fermi energy level,until their Fermi energy levels become the same and reach a static equilibrium. Due to the narrow band gap width of PbSe,Ge and MoS2,the energy values of the transition electrons from the bands are too low to pass through the Schottky barrier between Au and the material.[54–56]It cannot form a path to transfer the electrons from material to Au.[57]The band gap width of CdS, CdSe, and TiO2are wide. The transition electrons generated in CdS, CdSe, and TiO2have enough energy to pass through the Schottky barrier between the material and Au, and flow into Au until their Fermi energy levels reach a balance state, which effectively promotes the charge separation in semiconductor. In this process, the electron–hole pairs produced by electron transition and transfer can produce redox reaction with surrounding oxidants and reducers,thereby completing photocatalysis.

    From the above structures, the M1/M2/M3=Au/PbSe/PbSe structure has the maximum extinction coefficient in 300 nm–600 nm,and the M1/M/M3=Au/TiO2/TiO2structure has a maximum extinction coefficient in 600 nm–750 nm. Based on above results,to investigate how the different materials combined with Au and TiO2structure influence the extinction coefficient,the extinction spectra of the ternary nanodisk structures are calculated.

    Fig.4. Extinction spectra of M1/M2/M3 nanodisk structures with M1 =Au and M3=TiO2,and M2=PbSe,Ge,MoS2,CdSe or CdS respectively.

    The extinction spectra of the ternary nanodisks composed of Au, a semiconductor (PbSe, Ge, MoS2, CdSe or CdS)and TiO2are shown in Fig. 4. The extinction coefficient of M1/M2/M3= Au/PbSe/TiO2structure is always highest in 300 nm–600 nm. In 600 nm–750 nm, the extinction coefficient peak of M1/M2/M3= Au/CdS/TiO2structure is the highest, but the difference in extinction peak between different structures is small. The results show that the structure of M1/M2/M3=Au/PbSe/TiO2has the best extinction performance in the whole range of 300 nm–750 nm. Similarly, the extinction coefficient of the structure is also inversely proportional to the band gap width of M2material in 300 nm–600 nm.Because M1and M3are the same in each structure,the difference is mainly caused by M2material. The band gap width of M2material directly affects the extinction coefficient of this type of structure.

    Figures 5(a)–5(e) show the electric near-field distributions of the two different semiconductors and Au ternary nanodisks at 530 nm.The electric near-field distribution is consistent with the results of above extinction spectra.The near-field intensity outside the M2material is also inversely proportional to the band gap width of the M2material.This is because under the plasmonic near-field excitation,the smaller band gap leads the greater carrier concentration and the smaller transition energy,which makes the occurrence probability of the transition greater,so the absorption is greater. The boundaries of PbSe,Ge, and MoS2are very clear in Fig. 6, and the electric nearfield distributions in the three materials are all small. Due to the fact that at the interface between Au and these materials there exists a Schottky barrier while the transition electrons of these materials are not energetic enough to pass through the Schottky barrier, the electron–hole pairs formed in the material recombine rapidly,which prevents the electron–hole pairs from being continuously produced, leading the internal electric near-field distribution to become small.However,there are some near-field distributions near the interface of CdSe,CdS,TiO2, and Au, indicating that the transition electrons generated in these materials are energetic to cross the Schottky barrier between them and Au, thus further promoting the electrons’ transition and light absorption. The above-mentioned electric near-field distribution verifies the previous Schottky barrier theory discussed in extinction spectra.

    Figures 6(a)–6(e) show the electric near-field distributions of the ternary nanodisks, each of which is composed of two semiconductors and Au for the second peak in 650 nm–690 nm. There are a large number of near-field distributions around the interface between Au and TiO2at the maximum extinction peak,which is due to the strong coupling between the electronic transition in TiO2and the plasmonic near-field of Au.Because of the difference in Fermi energy level,the Fermi energy level of TiO2is higher than that of Au. A large number of electrons from the valence band in TiO2are injected into Au,which slows down the electron–hole pairs recombining in TiO2. It further enhances the efficiency of charge separation in TiO2, until the Fermi energy level of TiO2and Au reach a static balance. Therefore,a strong electric near-field distribution is produced near the interface between TiO2and Au. like the electric near-field distribution near 530 nm,the boundaries of PbSe,Ge,MoS2materials are also very clear for the same reason.

    Fig. 5. Electric near-field distribution maps of the peaks at 530 nm for (a) M1/M2/M3 =Au/PbSe/TiO2, (b) Au/Ge/TiO2, (c) Au/MoS2/TiO2, (d)Au/CdSe/TiO2,(e)Au/CdS/TiO2,and(f)Au/TiO2/TiO2 structures in x plane.

    Fig.6. Electric near-field distribute maps of the second peak between 650 nm and 690 nm for(a)M1/M2/M3 =Au/PbSe/TiO2, (b)Au/Ge/TiO2, (c)Au/MoS2/TiO2,(d)Au/CdSe/TiO2 (e)Au/CdS/TiO2,and(f)Au/TiO2/TiO2 in x plane.

    The extinction spectrum of the ternary nanodisk consisting of two different noble metals and TiO2is calculated. Figure 7 shows the extinction coefficient spectrum of M1/M2/M3=TiO2/Ag/Au,TiO2/Ag/Pt and TiO2/Au/Pt structures. The results show that the M1/M2/M3= TiO2/Ag/Pt structure has the best extinction performance in 300 nm–750 nm. The M1/M2/M3= TiO2/Ag/Au structure has two absorption peaks at 406 nm and 546 nm, respectively. The M1/M2/M3=TiO2/Ag/Pt structure has three extinction peaks at 410 nm, 670 nm, and 694 nm, respectively, and the M1/M2/M3=TiO2/Au/Pt has two extinction peaks at 532 nm and 732 nm, respectively. There is an extinction peak near 400 nm for structure containing Ag,540 nm for structure containing Au,and 700 nm for structure containing Pt.This is due to the fact that the coupling extinction peak of Ag and TiO2is near 400 nm, the coupling extinction peak of Au and TiO2is near 500 nm,and the coupling extinction peak of Pt and TiO2is near 700 nm.[58,59]The difference among the material combinations might be the reason for causing some differences in the location and value of extinction peaks. Based on above results,there is a complementation of extinction efficiency between the TiO2/Ag/Au and TiO2/Ag/Pt structures in visible range.

    Fig. 7. Extinction coefficient spectrum of M1/M2/M3 = TiO2/Ag/Au,TiO2/Ag/Pt,and TiO2/Au/Pt structures.

    The electric near-field distributions of M1/M2/M3=TiO2/Ag/Pt structure at extinction peaks of 410 nm, 670 nm,694 nm are calculated. The electric near-field distribution at 410 nm, 670 nm, and 694 nm in the x plane are shown in Figs. 8(a1), 8(b1), and 8(c1), respectively. And the electric near-field distribution in the y plane at 410 nm, 670 nm, and 694 nm are shown in Figs. 8(a2), 8(b2), and 8(c2), respectively. The electric near-field distribution at 410 nm is mainly concentrated in the part of M2=Ag. The electric near-field distribution at 670 nm is similar to that at 694 nm, which are mainly distributed around M2and M3, and the distribution is larger in M2. It is due to the fact that both Ag and Pt have a coupling effect with TiO2, resulting in two extinction peaks,and that the distance between the two coupling extinction peaks is very close,so the structure has two adjacent extinction peaks at 670 nm and 694 nm.

    Fig.8. Near-field distribution of M1/M2/M3 =TiO2/Ag/Pt structure at(a1)410 nm, (b1)670 nm, (c1)694 nm in x plane and(a2)410 nm,(b2)670 nm,(c2)694 nm y plane.

    4. Conclusions

    We conclude that the ternary nanodisk has better extinction properties than core–shell and three-sphere structures.For the nanodisk structures of M1/M2/M3=Au/(PbSe, Ge,MoS2, CdSe, or CdS)/TiO2, the best extinction performance is obtained for Au/PbSe/TiO2ternary nanodisk in 300 nm–750 nm. And the extinction coefficient is inversely proportional to the band gap of M2in 300 nm–600 nm. When M1/M2/M3=TiO2/Ag/Au,TiO2/Ag/Pt or TiO2/Au/Pt of nanodisk structures,the TiO2/Ag/Pt nanodisk has the best extinction performance. The extinction efficiency and electric nearfield intensity of TiO2/Ag/Pt structure are much higher than those of Au/PbSe/TiO2. The TiO2/Ag/Pt nanodisk structure has two extinction peaks and strong electric near-field in visible range,so it is hopeful to achieve a better efficiency in the field of photocatalysis. The spectrum of TiO2/Ag/Pt structure and the spectrum of TiO2/Ag/Au structure can form a threepeak extinction spectrum in visible range, it provides a reference for extending the extinction range.

    猜你喜歡
    新路華東小龍
    El regreso del dragón
    華東銷售在一線
    水土保持探新路 三十九年寫春秋
    相華東:走在欣欣向榮的田野上
    華人時刊(2022年21期)2022-02-15 03:42:36
    小小小小龍
    蔬果種植走新路
    劉小龍
    中國篆刻(2016年5期)2016-09-26 07:40:04
    多絲量新品種華東×春晨的引進(jìn)推廣
    蠶桑通報(2015年2期)2015-12-15 00:41:56
    民國時期無“華東”稱渭
    城鄉(xiāng)一體化走出的新路
    国产成人欧美在线观看 | 人人澡人人妻人| 国产成人免费无遮挡视频| 亚洲五月色婷婷综合| 美女午夜性视频免费| videosex国产| 免费在线观看黄色视频的| 国产精品一区二区免费欧美| 一级黄色大片毛片| 在线观看免费视频网站a站| 成在线人永久免费视频| 十分钟在线观看高清视频www| 人人妻人人添人人爽欧美一区卜| 国产高清视频在线播放一区| 美女高潮到喷水免费观看| 久久九九热精品免费| 高清在线国产一区| 精品少妇一区二区三区视频日本电影| 亚洲成人国产一区在线观看| 欧美日韩视频精品一区| 精品一区二区三区av网在线观看 | 天天添夜夜摸| 夜夜夜夜夜久久久久| 精品国内亚洲2022精品成人 | 亚洲少妇的诱惑av| 狠狠婷婷综合久久久久久88av| 国产成人av教育| 国产一区二区 视频在线| 成年版毛片免费区| 成年动漫av网址| 国产成人精品久久二区二区91| 在线av久久热| a级毛片黄视频| 国产淫语在线视频| 免费看十八禁软件| 国产精品一区二区免费欧美| 亚洲中文字幕日韩| 老汉色av国产亚洲站长工具| 99精品久久久久人妻精品| 国产成人av激情在线播放| 中文亚洲av片在线观看爽 | 99riav亚洲国产免费| √禁漫天堂资源中文www| 欧美激情久久久久久爽电影 | 淫妇啪啪啪对白视频| 亚洲欧美激情在线| 99在线人妻在线中文字幕 | 国产精品电影一区二区三区 | 国产精品九九99| 免费观看a级毛片全部| 亚洲欧美日韩高清在线视频 | 丝袜美足系列| 亚洲少妇的诱惑av| 51午夜福利影视在线观看| e午夜精品久久久久久久| 王馨瑶露胸无遮挡在线观看| 精品亚洲乱码少妇综合久久| 俄罗斯特黄特色一大片| 少妇的丰满在线观看| 一本大道久久a久久精品| 免费看a级黄色片| 亚洲性夜色夜夜综合| 日本wwww免费看| 男男h啪啪无遮挡| 亚洲专区中文字幕在线| 香蕉丝袜av| 日韩大片免费观看网站| 下体分泌物呈黄色| 人妻一区二区av| 亚洲熟女精品中文字幕| 王馨瑶露胸无遮挡在线观看| 国产在线观看jvid| 国产精品久久久久久人妻精品电影 | 国产精品熟女久久久久浪| 欧美精品高潮呻吟av久久| 狠狠婷婷综合久久久久久88av| 欧美一级毛片孕妇| 麻豆乱淫一区二区| 日韩欧美国产一区二区入口| 搡老岳熟女国产| 日本欧美视频一区| 热99久久久久精品小说推荐| 国产精品免费一区二区三区在线 | 免费黄频网站在线观看国产| 国产免费av片在线观看野外av| 在线天堂中文资源库| 国产伦人伦偷精品视频| 老鸭窝网址在线观看| 久久精品亚洲av国产电影网| 日韩一卡2卡3卡4卡2021年| 国产高清国产精品国产三级| 久久人妻av系列| 一级毛片精品| 亚洲中文字幕日韩| 啦啦啦 在线观看视频| 国产极品粉嫩免费观看在线| 搡老熟女国产l中国老女人| 精品亚洲成国产av| 视频在线观看一区二区三区| 一级毛片精品| 国产精品香港三级国产av潘金莲| 国产av又大| 国产精品电影一区二区三区 | 99国产综合亚洲精品| 首页视频小说图片口味搜索| 老司机深夜福利视频在线观看| 日韩精品免费视频一区二区三区| 母亲3免费完整高清在线观看| 国产片内射在线| 国产精品熟女久久久久浪| 悠悠久久av| 久久久久精品人妻al黑| 男女免费视频国产| 正在播放国产对白刺激| 欧美日韩黄片免| 久久国产精品男人的天堂亚洲| 90打野战视频偷拍视频| 一级毛片电影观看| 大型黄色视频在线免费观看| 满18在线观看网站| 亚洲欧美日韩高清在线视频 | 成人三级做爰电影| 国产精品99久久99久久久不卡| 国产精品免费一区二区三区在线 | 一级片'在线观看视频| 欧美精品亚洲一区二区| 国产精品九九99| 首页视频小说图片口味搜索| 侵犯人妻中文字幕一二三四区| 人人妻人人爽人人添夜夜欢视频| 99久久精品国产亚洲精品| 我要看黄色一级片免费的| 日韩精品免费视频一区二区三区| 亚洲人成电影免费在线| 曰老女人黄片| 深夜精品福利| 在线av久久热| 精品一区二区三区视频在线观看免费 | 咕卡用的链子| 久久久欧美国产精品| 制服诱惑二区| 岛国在线观看网站| 久久av网站| 无人区码免费观看不卡 | 十八禁人妻一区二区| 脱女人内裤的视频| av在线播放免费不卡| 一区二区三区精品91| 啦啦啦视频在线资源免费观看| 97在线人人人人妻| 超色免费av| 国产1区2区3区精品| 在线观看人妻少妇| 久久精品亚洲av国产电影网| 欧美人与性动交α欧美软件| 99精品欧美一区二区三区四区| 国产成人av教育| 超碰成人久久| 久久久水蜜桃国产精品网| 性少妇av在线| 热re99久久精品国产66热6| 国产一区二区三区在线臀色熟女 | 一本色道久久久久久精品综合| 亚洲欧美精品综合一区二区三区| 大香蕉久久网| www.精华液| 超碰97精品在线观看| 久久国产精品大桥未久av| 高清av免费在线| 国产一区二区三区视频了| 叶爱在线成人免费视频播放| 伦理电影免费视频| 成人国产一区最新在线观看| 视频在线观看一区二区三区| 人人澡人人妻人| 久久久久久久国产电影| 国产精品 国内视频| 亚洲精品久久午夜乱码| 国产精品香港三级国产av潘金莲| 别揉我奶头~嗯~啊~动态视频| 午夜福利影视在线免费观看| 国产91精品成人一区二区三区 | 在线观看免费视频网站a站| 亚洲熟女精品中文字幕| 久久久久网色| 午夜福利免费观看在线| 9色porny在线观看| 新久久久久国产一级毛片| 中国美女看黄片| 国产1区2区3区精品| 午夜福利欧美成人| 老司机午夜十八禁免费视频| 蜜桃国产av成人99| 亚洲av日韩在线播放| 国产在线精品亚洲第一网站| 女人高潮潮喷娇喘18禁视频| 免费观看a级毛片全部| 女性被躁到高潮视频| 美女高潮喷水抽搐中文字幕| 一本—道久久a久久精品蜜桃钙片| 国产精品亚洲一级av第二区| 国产成人精品无人区| 日本av手机在线免费观看| 男女午夜视频在线观看| 男人操女人黄网站| 黄色成人免费大全| 国产有黄有色有爽视频| 久久国产亚洲av麻豆专区| 老熟女久久久| 午夜福利在线免费观看网站| 男女边摸边吃奶| 欧美一级毛片孕妇| 国产精品久久久久成人av| 精品亚洲乱码少妇综合久久| 亚洲精品国产精品久久久不卡| 色精品久久人妻99蜜桃| 一级片'在线观看视频| 免费日韩欧美在线观看| 免费黄频网站在线观看国产| 国产精品av久久久久免费| 精品国产一区二区久久| 丁香六月欧美| 久久人人97超碰香蕉20202| 亚洲av美国av| 成人黄色视频免费在线看| 天堂8中文在线网| 不卡一级毛片| 18禁美女被吸乳视频| 淫妇啪啪啪对白视频| 国产又爽黄色视频| 日韩有码中文字幕| 另类精品久久| 日韩大码丰满熟妇| 欧美日韩av久久| 亚洲精品国产精品久久久不卡| svipshipincom国产片| 日韩制服丝袜自拍偷拍| 国产黄色免费在线视频| 757午夜福利合集在线观看| 国产一区二区激情短视频| 亚洲欧洲日产国产| 欧美在线黄色| 在线av久久热| 精品人妻1区二区| 国产色视频综合| 在线 av 中文字幕| 国产av精品麻豆| 人人妻人人添人人爽欧美一区卜| 国产91精品成人一区二区三区 | 精品人妻在线不人妻| 国产麻豆69| 亚洲中文字幕日韩| 1024视频免费在线观看| av电影中文网址| 十八禁网站网址无遮挡| 搡老乐熟女国产| 搡老岳熟女国产| 一进一出抽搐动态| 免费在线观看影片大全网站| 国产色视频综合| 下体分泌物呈黄色| 91av网站免费观看| 精品久久久精品久久久| 亚洲成av片中文字幕在线观看| 亚洲综合色网址| 男人舔女人的私密视频| 1024视频免费在线观看| 国产精品99久久99久久久不卡| 大陆偷拍与自拍| 国产成人av激情在线播放| 久久精品熟女亚洲av麻豆精品| 亚洲人成伊人成综合网2020| 91字幕亚洲| 丝袜人妻中文字幕| 变态另类成人亚洲欧美熟女 | 国产熟女午夜一区二区三区| 最近最新中文字幕大全免费视频| 18禁黄网站禁片午夜丰满| 看免费av毛片| 国产精品一区二区精品视频观看| 亚洲精品一二三| tocl精华| 欧美国产精品一级二级三级| 天天躁日日躁夜夜躁夜夜| 激情视频va一区二区三区| 99re6热这里在线精品视频| 亚洲熟女精品中文字幕| 成人影院久久| 丰满饥渴人妻一区二区三| 亚洲成人国产一区在线观看| 亚洲一区二区三区欧美精品| 久久久精品94久久精品| 丝袜在线中文字幕| 天天添夜夜摸| 国产激情久久老熟女| 精品一区二区三区视频在线观看免费 | 国产精品二区激情视频| 人人妻人人澡人人看| 中文字幕精品免费在线观看视频| 国产淫语在线视频| 欧美乱妇无乱码| 精品国产国语对白av| 国产av一区二区精品久久| 99香蕉大伊视频| 亚洲va日本ⅴa欧美va伊人久久| 欧美老熟妇乱子伦牲交| 亚洲avbb在线观看| 啦啦啦免费观看视频1| 桃花免费在线播放| 亚洲少妇的诱惑av| 亚洲免费av在线视频| 嫩草影视91久久| 亚洲一卡2卡3卡4卡5卡精品中文| 悠悠久久av| 国产色视频综合| 黑人巨大精品欧美一区二区mp4| 交换朋友夫妻互换小说| 欧美激情久久久久久爽电影 | 国产亚洲一区二区精品| 久久精品亚洲av国产电影网| 热re99久久精品国产66热6| 亚洲一区二区三区欧美精品| 久久久久网色| 久久精品国产亚洲av香蕉五月 | 高清欧美精品videossex| 美女高潮到喷水免费观看| 亚洲欧美日韩高清在线视频 | 91九色精品人成在线观看| 啦啦啦 在线观看视频| 精品一区二区三区av网在线观看 | 美女扒开内裤让男人捅视频| 国产又色又爽无遮挡免费看| 18禁裸乳无遮挡动漫免费视频| 97在线人人人人妻| 人人妻人人澡人人看| 黄色 视频免费看| 欧美成狂野欧美在线观看| 日韩中文字幕欧美一区二区| 欧美成狂野欧美在线观看| 建设人人有责人人尽责人人享有的| 欧美精品人与动牲交sv欧美| 变态另类成人亚洲欧美熟女 | 久久久久久久国产电影| 热99re8久久精品国产| 老汉色∧v一级毛片| 欧美成狂野欧美在线观看| 久久久精品区二区三区| 男人操女人黄网站| 狠狠精品人妻久久久久久综合| 久久午夜亚洲精品久久| 久久久久久久大尺度免费视频| 久久九九热精品免费| 国产亚洲一区二区精品| 一区在线观看完整版| 欧美亚洲日本最大视频资源| 最黄视频免费看| 亚洲精品国产区一区二| 亚洲一卡2卡3卡4卡5卡精品中文| 久久精品亚洲熟妇少妇任你| 欧美日韩黄片免| 一本综合久久免费| 国产在线一区二区三区精| 性高湖久久久久久久久免费观看| 两人在一起打扑克的视频| 精品福利观看| 久久精品人人爽人人爽视色| 高清在线国产一区| 老熟女久久久| 99riav亚洲国产免费| 无限看片的www在线观看| www.999成人在线观看| 亚洲第一欧美日韩一区二区三区 | 亚洲欧美色中文字幕在线| 国产精品偷伦视频观看了| 亚洲va日本ⅴa欧美va伊人久久| 国产在线视频一区二区| 欧美成人免费av一区二区三区 | 成年版毛片免费区| 色94色欧美一区二区| 欧美大码av| 老司机靠b影院| 欧美亚洲日本最大视频资源| videosex国产| 夜夜夜夜夜久久久久| 9色porny在线观看| 欧美久久黑人一区二区| 在线亚洲精品国产二区图片欧美| av网站免费在线观看视频| xxxhd国产人妻xxx| h视频一区二区三区| 久久久久久久久久久久大奶| 在线观看免费高清a一片| 午夜福利乱码中文字幕| 亚洲人成电影免费在线| av不卡在线播放| 日本精品一区二区三区蜜桃| 色综合欧美亚洲国产小说| 国产欧美日韩一区二区三区在线| cao死你这个sao货| 99精品在免费线老司机午夜| 日本欧美视频一区| 国产国语露脸激情在线看| 又紧又爽又黄一区二区| 亚洲性夜色夜夜综合| 国产在线精品亚洲第一网站| 国产又爽黄色视频| 女警被强在线播放| 黑人巨大精品欧美一区二区mp4| 肉色欧美久久久久久久蜜桃| 日日爽夜夜爽网站| 极品教师在线免费播放| 欧美精品啪啪一区二区三区| 国产精品 国内视频| 亚洲欧美激情在线| 国产欧美日韩综合在线一区二区| 午夜福利视频在线观看免费| √禁漫天堂资源中文www| 亚洲视频免费观看视频| 午夜免费鲁丝| 久久久国产精品麻豆| 午夜福利影视在线免费观看| av网站免费在线观看视频| 国产视频一区二区在线看| 大香蕉久久成人网| 久久久久久久国产电影| 国产单亲对白刺激| 国产av一区二区精品久久| 久久国产精品人妻蜜桃| 岛国毛片在线播放| 色视频在线一区二区三区| 极品少妇高潮喷水抽搐| 免费黄频网站在线观看国产| 一边摸一边抽搐一进一小说 | 日韩一卡2卡3卡4卡2021年| 国产精品99久久99久久久不卡| 香蕉丝袜av| 91精品国产国语对白视频| 国产欧美日韩一区二区三| 国产成人欧美在线观看 | 欧美精品高潮呻吟av久久| 女警被强在线播放| 黄网站色视频无遮挡免费观看| 18禁美女被吸乳视频| 色综合婷婷激情| 天堂动漫精品| 最新美女视频免费是黄的| 国产精品香港三级国产av潘金莲| 国产97色在线日韩免费| 狠狠精品人妻久久久久久综合| 91国产中文字幕| 欧美日韩av久久| 最近最新免费中文字幕在线| 飞空精品影院首页| 国产成人欧美在线观看 | 桃红色精品国产亚洲av| 三上悠亚av全集在线观看| 日本撒尿小便嘘嘘汇集6| 啦啦啦免费观看视频1| 成在线人永久免费视频| 少妇猛男粗大的猛烈进出视频| 黑丝袜美女国产一区| 757午夜福利合集在线观看| 国产成人影院久久av| 悠悠久久av| 国产区一区二久久| 国产欧美日韩一区二区三| 啦啦啦在线免费观看视频4| 大陆偷拍与自拍| 老熟妇乱子伦视频在线观看| 男人操女人黄网站| 少妇精品久久久久久久| 最新美女视频免费是黄的| 性高湖久久久久久久久免费观看| 女性被躁到高潮视频| 大香蕉久久成人网| 亚洲少妇的诱惑av| av一本久久久久| 99在线人妻在线中文字幕 | 美女高潮到喷水免费观看| 国产成+人综合+亚洲专区| 国产精品久久久久久人妻精品电影 | 国内毛片毛片毛片毛片毛片| 久热爱精品视频在线9| 欧美日韩福利视频一区二区| 亚洲第一av免费看| 国产一区二区 视频在线| 亚洲av电影在线进入| 9热在线视频观看99| 欧美精品一区二区免费开放| 精品亚洲成国产av| 亚洲欧洲精品一区二区精品久久久| 国产欧美日韩精品亚洲av| 日韩免费高清中文字幕av| 亚洲一区二区三区欧美精品| 韩国精品一区二区三区| 夫妻午夜视频| 大香蕉久久网| 欧美日韩av久久| 别揉我奶头~嗯~啊~动态视频| 天天躁狠狠躁夜夜躁狠狠躁| 黑人欧美特级aaaaaa片| 成在线人永久免费视频| 一边摸一边做爽爽视频免费| aaaaa片日本免费| 午夜福利乱码中文字幕| 啦啦啦视频在线资源免费观看| 狠狠婷婷综合久久久久久88av| 亚洲欧美激情在线| 国产区一区二久久| 欧美激情 高清一区二区三区| 亚洲av成人一区二区三| 日韩人妻精品一区2区三区| 三上悠亚av全集在线观看| 午夜激情久久久久久久| 在线天堂中文资源库| 在线十欧美十亚洲十日本专区| 欧美精品一区二区免费开放| 欧美av亚洲av综合av国产av| 人人妻人人添人人爽欧美一区卜| 性色av乱码一区二区三区2| 黄网站色视频无遮挡免费观看| 操美女的视频在线观看| 他把我摸到了高潮在线观看 | 天天操日日干夜夜撸| 精品国产超薄肉色丝袜足j| 成人国产av品久久久| √禁漫天堂资源中文www| 国产在线免费精品| 久久 成人 亚洲| 成人亚洲精品一区在线观看| 成人国语在线视频| 一区二区三区乱码不卡18| 免费高清在线观看日韩| 午夜福利影视在线免费观看| 久久人妻熟女aⅴ| 欧美精品啪啪一区二区三区| 俄罗斯特黄特色一大片| 欧美乱码精品一区二区三区| 国产精品av久久久久免费| 女人爽到高潮嗷嗷叫在线视频| 欧美日韩亚洲综合一区二区三区_| 欧美乱码精品一区二区三区| 久久人妻熟女aⅴ| 下体分泌物呈黄色| 久久久久国内视频| 国产亚洲一区二区精品| 国产欧美日韩一区二区精品| 女人被躁到高潮嗷嗷叫费观| 精品国产乱码久久久久久小说| 亚洲精品在线观看二区| 日韩中文字幕视频在线看片| 啦啦啦免费观看视频1| svipshipincom国产片| 精品乱码久久久久久99久播| 久久青草综合色| 天天添夜夜摸| 岛国在线观看网站| 这个男人来自地球电影免费观看| 亚洲精品国产区一区二| 一区二区av电影网| 亚洲第一av免费看| 丰满迷人的少妇在线观看| 女性生殖器流出的白浆| 国产成+人综合+亚洲专区| 一区二区三区精品91| 国产在线观看jvid| 啦啦啦视频在线资源免费观看| 久久免费观看电影| 亚洲av成人不卡在线观看播放网| 亚洲欧洲精品一区二区精品久久久| 亚洲九九香蕉| 悠悠久久av| 色尼玛亚洲综合影院| 国产av精品麻豆| 蜜桃国产av成人99| √禁漫天堂资源中文www| 亚洲性夜色夜夜综合| 欧美日韩黄片免| 国产精品免费大片| 亚洲性夜色夜夜综合| 欧美日韩黄片免| 国产精品免费大片| 大陆偷拍与自拍| 久久婷婷成人综合色麻豆| 午夜久久久在线观看| 99国产综合亚洲精品| 999精品在线视频| 法律面前人人平等表现在哪些方面| 久久国产精品大桥未久av| 欧美日韩黄片免| 国产亚洲午夜精品一区二区久久| 国产av精品麻豆| 丝袜在线中文字幕| www.熟女人妻精品国产| 精品国产一区二区三区久久久樱花| 午夜激情av网站| 久久久国产成人免费| 亚洲国产毛片av蜜桃av| 国产成人免费无遮挡视频| 亚洲精品自拍成人| 久久人人97超碰香蕉20202| 欧美成人免费av一区二区三区 | 黄片小视频在线播放| 免费日韩欧美在线观看| 精品国产一区二区久久| 欧美黑人欧美精品刺激| 美女国产高潮福利片在线看| av片东京热男人的天堂| 一二三四社区在线视频社区8| 国产精品98久久久久久宅男小说| 十分钟在线观看高清视频www| 19禁男女啪啪无遮挡网站| 亚洲熟女毛片儿| 国产激情久久老熟女| 国内毛片毛片毛片毛片毛片|